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We study the dynamical magnetization process in the ordered ground-state phase of the transverse Ising
model under sweeps of magnetic field with constant velocities. In the case of very slow sweeps and for small
systems studied previously �H. De Raedt et al., Phys. Rev. B 56, 11761 �1997��, nonadiabatic transitions at
avoided level-crossing points give the dominant contribution to the shape of magnetization process. In contrast,
in the ordered phase of this model and for fast sweeps, we find significant size-independent jumps in the
magnetization process. We study this phenomenon in analogy to the spinodal decomposition in classical
ordered state and investigate its properties and its dependence on the system parameters. An attempt to
understand the magnetization dynamics under field sweep in terms of the energy-level structure is made. We
discuss a microscopic mechanism of magnetization dynamics from a viewpoint of local cluster flips and show
that this provides a picture that explains the size independence. The magnetization dynamics in the fast-sweep
regime is studied by perturbation theory and we present a perturbation scheme based on interacting Landau-
Zener-type processes to describe the local cluster flip dynamics.
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I. INTRODUCTION

It is well known that nonadiabatic transitions among adia-
batic eigenstates take place when an external field is swept
with finite velocity.1,2 In particular, at avoided level-crossing
points strong nonadiabatic transitions occur, causing a step-
wise magnetization process.3

In the so-called single-molecule magnets,4 the energy-
level diagram consists of discrete levels because the mol-
ecules contain only small number of magnetic ions and
hence the quantum dynamics plays an important role. In par-
ticular, in the easy-axis large spin molecules such as Mn12
and Fe8, stepwise magnetization processes have been found
and they are attributed to the adiabatic change—that is, the
quantum tunneling at the avoided level-crossing points—and
are called resonant tunneling phenomena.5 The Landau-
Zener �LZ� mechanism also causes various interesting mag-
netization loops in field cycling processes.6

The amount of the change in the magnetization at a step
in the magnetization process is governed by the Landau-
Zener mechanism and depends significantly on the energy
gap at the crossing. This dependence has played an important
role in the study of single-molecule magnets. Observations
of the gap have been done on isolated magnetic molecules.7

The quantum dynamics of systems of strongly interacting
systems which show quantum phase transitions is also of
much contemporary interest. As far as static properties are
concerned, the action in the path-integral representation of a
d-dimensional quantum system maps onto the partition func-
tion of a �d+1�-dimensional classical model, which is the
key ingredient of the quantum Monte Carlo simulation.8

From this mapping, it follows that the critical properties of
the ground state of the d-dimensional quantum system are
the same as those of the equilibrium state of the
�d+1�-dimensional classical model, with quantum fluctua-
tions playing the role of the thermal fluctuations at finite
temperatures.

However, from a viewpoint of dynamics, the nature of the
quantum and thermal fluctuations is not necessarily the same.
Thus, it is of interest to study dynamical aspects of quantum
critical phenomena. As a typical model showing quantum
critical phenomena, in the present work we adopt the one-
dimensional transverse Ising model.9

Recently, interesting properties of molecular chains which
are modeled by the transverse Ising model with large spins
have been reported.10 However, in this paper, we focus our-
selves to systems of S=1 /2. The dynamics of the transverse
Ising model plays an important role in the study of quantum
annealing in which the quantum fluctuations due to the trans-
verse field are used to survey the ground state in a complex
system.11 The dynamics of domain growth under the sweep
of the transverse field through the critical point has been
studied in relation to the Kibble-Zurek mechanism.12,13

In this paper, we study the hysteresis behavior as a func-
tion of the external field in the ordered state by performing
simulations of pure quantum dynamics—that is, by solving
the time-dependent Schrödinger equation.14 This gives us nu-
merically exact results of the dynamical magnetization pro-
cess of the transverse Ising model under sweeps of magnetic
field with constant velocities.

Previously we have studied the time evolution of magne-
tization of the transverse Ising model from a viewpoint of
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Landau-Zener transition, sweeping the field slowly and find-
ing transitions at each avoided level-crossing point.3 How-
ever, for fast sweeps the transition at zero field Hz=0 disap-
pears and the magnetization does not change even after the
field reverses. The magnetization remains in the direction
opposite to the external field for a while, and when the mag-
netic field reaches a certain value, the magnetization sud-
denly changes to the direction of the field. This sudden
change is also found for very slow sweeps at the level-
crossing point. However, the present case has the following
two differences: �1� the switching field does not necessarily
correspond to a level crossing and �2� in all cases the
changes are independent of the size L of the system. This
sudden change resembles the change in magnetization at the
coercive field in the hysteresis loop of ferromagnetic sys-
tems, where it is called spinodal decomposition. Therefore,
we will call the phenomenon that we observe in the quantum
system a “quantum spinodal decomposition” and the field
“quantum spinodal point” HSP. We study the dependence of
HSP on the transverse field Hx and also study the sweep-
velocity dependence of HSP.

As in the case of the single-molecule magnets, it should
be possible to understand the dynamics of the magnetization
in terms of the energy levels as a function of field. However,
because the structure of the energy-level diagram strongly
depends on the size of the system, it is difficult to explain the
size-independent property of the quantum spinodal decom-
position from the energy-level structure only. In the case of
much faster sweeps, we find almost perfect size-independent
magnetization processes. We also find a peculiar dependence
of magnetization on the field in the case of weak transverse
fields. These processes can be understood from the energy-
level diagram for local flips of spins, but not from the energy
diagram of the total system.

In this paper, we attempt to understand the microscopic
mechanism that gives rise to this size-independent dynamics.
We present a perturbation scheme for fast sweeps, regarding
the fast-sweeping field term as the unperturbed system and
treating the interaction term as the perturbation. From this
viewpoint, we investigate fundamental spatially-local time
evolutions which yield the size-independent response to the
sweep procedure. In particular, we propose a perturbation
scheme in terms of independent Landau-Zener systems, each
of which consists of a spin in a transverse and sweeping
field. A system consisting of locally interacting Landau-
Zener systems explains well the magnetization dynamics for
fast sweeps.

II. MODEL

We study characteristics of dynamics of the order param-
eter of the one-dimensional transverse Ising model with pe-
riodic boundary condition under a sweeping field.9 The
Hamiltonian of the system is given by

H�t� = − J�
i

�i
z�i+1

z − Hx�
i

�i
x − Hz�t��

i

�i
z, �1�

where �i
x and �i

z are the x and z components of the Pauli
matrix, respectively. Hereafter, we take J as a unit of the

energy. The order parameter is the z component of the mag-
netization

Mz = �
i

�i
z. �2�

We study the dynamics of the order parameter of the model,
i.e., the time dependence of the magnetization under the
time-dependent field Hz�t�,

�Mz� = ���t��Mz���t�� , �3�

where ���t�� is a time-dependent wave function given by the
Schrödinger equation

i�
�

�t
���t�� = H�t����t�� . �4�

In the present paper we study the case of linear sweep of the
field

Hz�t� = − H0 + ct , �5�

where −H0 is an initial magnetic field. In the present paper,
we set H0 /J=1 and c is the speed of the sweep. We use a
unit where �=1.

In the case Hz=0, the model shows an order-disorder
phase transition as a function of Hx. The transition point is
given by Hx

c=J. In the ordered phase �Hx�J�, the system has
a spontaneous magnetization ms,

ms = lim
Hz→+0

lim
L→�

�G�0��Mz�G�0�� , �6�

where �G�0�� is the ground state of the model with Hz=0.
Therefore, the ground state is twofold degenerate with
symmetry-broken magnetization, while the ground state is
unique when Hx�J. Because of these twofold symmetry-
broken ground states, the magnetization changes discontinu-
ously at Hz=0.

In a finite system L��, this degeneracy is resolved by
the quantum mixing �tunneling effect� and a small gap opens
at Hz=0. This gap becomes small exponentially with L as
shown in Appendix A. Therefore, the change in the magne-
tization becomes sharper as L increases. Dynamical realiza-
tion of this change by field sweeping becomes increasingly
difficult with L. This phenomenon corresponds to the exis-
tence of a metastable state.

The energy-level diagram becomes complicated when L
increases. However, as shown below, when c is large the
system shows a size-independent magnetization dynamics
which is not easily understood in terms of the energy-level
diagram. In this paper, we focus on the regime of moderate
to large sweep velocities.

III. ENERGY STRUCTURE

In Fig. 1�a�, we present an energy-level diagram for L
=6 and Hx=0.7. We plot all energy levels as a function of Hz.
We find that the energy levels show a linear dependence at
large fields, where quantum fluctuations due to Hx have little
effect. The levels are mixed in the region −3�Hz /J�3
where the energy levels come close and are mixed by the
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transverse field. The isolated two lowest-energy levels are
located under a densely mixed area, which represent the or-
dered states with M =L and −L, and they cross at Hz=0 with
a small gap �E1, reflecting the tunneling between the
symmetry-broken states. The gap �E1 is so small that one
cannot see it in Fig. 1�a�. After the crossing, these states join
the densely mixed area. In Fig. 1�b�, we show the energy
levels for L=16 where we plot only energies of a few low-
energy states. In this figure, we also find the above-
mentioned characteristic structure of two lowest-energy lev-
els.

Let us point out a few more characteristic features of the
energy-level diagram. A finite gap �E2 exists between the
crossing point of the low-lying lines and the densely popu-
lated region of excited states. The d-dimensional Ising model
in a transverse field is closely related to the transfer matrix of
�d+1�-dimensional Ising model. From this analogy, we asso-
ciate �E1 to symmetry-breaking phenomena. When
symmetry-breaking takes place, the two largest eigenvalues
of the transfer matrix of the model become almost degener-
ate. The energy gap corresponds to the tunneling through the
free-energy barrier between the two ordered states and van-
ishes exponentially with the system size. On the other hand,
�E2 is related to the correlation length of the fluctuation of
antiparallel domains in the ordered state. The correlation
length is finite at a given temperature in the ordered state and
is almost size independent. At Hz=0 we can calculate
eigenenergies analytically and we can explicitly confirm that
�E1 vanishes exponentially with L and that �E2 is almost
constant as a function of the size. The dependencies of the
energy gaps at Hz=0 are discussed in Appendix A.

For large Hz, the slopes of the low-lying isolated lines are
	L because they represent the states with M = 	L. Thus, the
field at which the lines merge in the area of densely popu-
lated excited states is given by

Hz 	
�E2

L

 Hz

��L� . �7�

At this point, the magnetization shows a jump when the
speed of the sweep is very slow.3

However, as we will see in Sec. IV, the dynamical mag-
netization does not show any significant change at this field
value when the sweeping field is fast. Another type of jump
which we called quantum spinodal jump or quantum spin-
odal transition will occur.

IV. EVOLUTION OF THE MAGNETIZATION FOR FAST
SWEEPS OF THE FIELD

A. Quantum spinodal decomposition

When we sweep the magnetic field from Hz=−1 to Hz
=1, the magnetization shows a rapid increase to a positive
value. In Fig. 2, we depict examples of dynamics of the
magnetization as a function of time for a sweeping velocity
c=0.001. Because Hz�t�=−H0+ct, Hz also represents time.

The magnetization stays at a negative value until a certain
field strength is reached. The system can be regarded as be-
ing in a metastable state. Then, the magnetization changes
significantly toward the direction of the field in a single con-
tinuous jump, with the magnetization processes Mz�t� de-
pending very weakly on the system size. In the classical
ordered state, we know a similar behavior. Namely, at the
coercive field �at the edge of the hysteresis�, the magnetiza-
tion relaxes very fast and the relaxation time does not depend
on the size. Thus, we may make an analogy to the spinodal
decomposition phenomena. We call the phenomenon that we
observe in the quantum system quantum spinodal decompo-
sition and we call the field at which the magnetization
changes HSP. It should be noted that the spinodal decompo-
sition corresponds to the fact that the size of the critical
nuclei becomes of the order 1. If the size of the critical nuclei
is larger than the size of the particle, as in the case of nano-
particles, the critical field of the sudden magnetization rever-
sal, which is also a kind of spinodal decomposition, strongly
depends on the size.

Let us attempt to understand this dynamics from the view-
point of the energy diagram. As we mentioned in Sec. III, the
low-lying levels of M = 	L merge with the continuum at
Hz=Hz

�. Thus, we expect that at this point the magnetization
begins to change because the states with M = 	L begin to
cross other states. In fact, in earlier work, we found stepwise
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FIG. 1. �Color online� Typical energy-level diagrams of model �1�. �a� Full spectrum for L=6,Hx=0.7. �b� A few low-energy states for
L=16,Hx=0.7.
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magnetization processes at avoided level crossings in very
slow sweeps, each of which could be analyzed in terms of
successive Landau-Zener crossings.3

From Fig. 2�a�, we find that the sharp change in Mz�t�
starts at Hz=0.2–0.25, which is much larger than Hz

��L�. We
estimate Hz

��12�	0.18, and for larger lattices Hz
��L� is even

smaller. Moreover, it should be noted that the magnetization
processes display almost no size dependence. In Fig. 2�b�,
which shows Mz�t� for Hx=0.7, we also find that the magne-
tization processes Mz�t� for all sizes L are very similar. Here
HSP�0.11 is again significantly larger than Hz

��L� �for L
=16 and �E2�1.4 in the case Hx=0.7, and hence Hz

��14�
	0.09�. This observation is in conflict with the picture based
on the structure of the energy-level diagram given earlier.

In Fig. 3, we present an example of sweep-velocity de-
pendence for a system with L=20 �results of other sizes are
not shown�. The magnetization processes show strong depen-
dence on the sweep velocity c, as expected. However, for
fixed c, there is little dependence on L �results of other sizes
are not shown�.

We have found the characteristic change in the cases of
relatively large quantum fluctuations, i.e., Hx=0.5 and 0.7.

The size independence indicates that the change occurs lo-
cally. When Hx is small, the quantum fluctuations are weak
and local flips of clusters consisting of small number of spins
become dominant. In Fig. 4, Mz�t� for Hx=0.1 is shown,
where a peculiar sequence of jumps is found. It is almost
independent of the system size �except for L=2�. Before the
large jump of the magnetization at Hz /J=1, there is a small
but nonzero precursor jump around Hz	2 /3. After these
jumps, the magnetization shows a plateau of Mz�t� /L
�−1 /2 until the smooth crossover to the saturated value
takes place around Hz /J=2. The value Hz /J=2 corresponds
to the spinodal point of the corresponding classical model.

The positions of these jumps can be understood from
the viewpoint of local “cluster” flips. Let us consider a
single-spin flip—that is, a flip from the state with all spins
�−−−−−−−¯� to a state �−−−+−−−¯�. The diabatic ener-
gies of these states are E0=−LJ+LHz and E1=−�L−4�J
− �L−2�Hz, respectively. Thus, the crossing of these states
occurs at Hz

�1�=4J /2=2J. The transition probability due to
the transverse field Hx at this crossing is proportional to Hx

2
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FIG. 2. �Color online� �a� Magnetization Mz�t� as a function of Hz�t� for c=0.001, Hx=0.5, and various system sizes. Solid �red� line:
L=12; dashed �green� line: L=14; and dotted �magenta� line: L=16. �b� Same as �a� except that Hx=0.7. �Lines for different L overlap.�
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FIG. 3. �Color online� Magnetization Mz�t� as a function of
Hz�t� for L=20 and Hx=0.7 and various sweep velocities. Solid
�red� line: c=0.1; dashed �green� line: c=0.01; and dotted �ma-
genta� line: c=0.001.
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FIG. 4. �Color online� Magnetization Mz�t� as a function of
Hz�t� for Hx=0.1, c=0.001, and various system sizes. Solid �black�
line: L=2, showing a jump at Hz=0 and a plateau; solid �red� line:
L=4, showing a spike; long dashed �green� line: L=6; dashed �ma-
genta� line: L=8; dotted �red� line: L=10; and dashed dotted �blue�
line: L=12. Curves for L=6, 8, 10, and 12 almost overlap.
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because the matrix element for a single flip is proportional to
Hx.

If we consider a collective flip of a connected cluster of m
spins, the diabatic energy of this state is

Em = − �L − 4�J + �L − 2m�Hz, �8�

and thus the crossing of the states occurs at

Hz
�m� = 4J/2m = 2J/m . �9�

For m=2,3 , . . . we have Hz
�m�=1,2 /3, . . ., respectively. These

values do not depend on L. It should be noted that, for the
system L=2, the two-spin cluster �m=2� surrounded by +
spins cannot be realized and no jump appears at Hz /J=1.

The matrix element for the m-spin cluster flip is propor-
tional to Hx

m �see Appendix A�. Therefore, for small Hx, only
the flips with small values of m are appreciable. In the case
of Hx /J=0.1 for c=0.001, jumps for m
2 are observed. The
change in the magnetization of each spin is given by a per-
turbation series and is independent of L as shown in Appen-
dix B. These local flips may correspond to the nucleation in
classical dynamics in metastable state.

If c becomes small or Hx becomes large, contributions
from large values of m become relevant. Then, magnetization
process consists of many jumps and amount of the change
becomes large. But, as long as the perturbation series con-
verges, we have a size-independent magnetization process,
as shown in Fig. 2. This sharp and size-independent nature is
consistent with the property of the classical spinodal decom-
position.

In the classical system, the magnetization relaxes to its
equilibrium value at the spinodal decomposition point. In
contrast, for pure quantum dynamics, the magnetization of
the state does not change for adiabatic motion along a par-
ticular energy level. Only if we include an effect of contact
with the thermal bath, relaxation to the ground state takes
place.15

Phase diagram

In Fig. 5, we give a schematic picture of the order param-
eter M as a function of the temperature T and the field Hz in
the thermal phase transition of a ferromagnetic system. The
overhanging structure signals the existence of the metastable
state. The spinodal point is at the edge of the metastable
branch. In this figure, the magnetic field is swept from posi-
tive to negative and the metastable positive magnetization
jump down to the equilibrium value at HSP�T�.

In a mean-field theory for the magnetic phase transition at
a finite temperature, the spinodal point is given by

HSP = − Jz�1 −
kBT

J
+

kBT

2
ln 1 +�1 −

kBT

J

1 −�1 −
kBT

J
� , �10�

where z is the number of nearest-neighbor sites. We show the
dependence of HSP as a function of T by a dashed-dotted
curve in Fig. 5.

A similar argument can be made for the classical ground-
state energy. Let the z component of spin be denoted by �.
Then, the energy is expressed by

E = − J�2 − Hx
�1 − �2 − H� . �11�

We assume that the energy satisfies the condition

dE

d�
= 0, �12�

which gives

− 2J� +
Hx�

�1 − �2
− H = 0. �13�

Here, we consider the metastable state and thus we set H
=−�H� for ��0. At the endpoint of metastability,

d�

dH
= � or

dH

d�
= 0. �14�

This leads to

� = �1 − �Hx

2J
�2/3�1/2

. �15�

The endpoint of the metastable state is given by

HSP = 2J�1 − �Hx

2J
�2/3�3/2

, �16�

which gives HSP as a function of Hx and is shown in Fig. 6 as
the dotted curve.

It is interesting to note that expression �16� is very similar
to the well-known expression of the Stoner-Wohlfarth
model16 for the reversal of a classical magnetic moment un-
der the application of a magnetic field tilted with respect to
the easy anisotropy axis. This is not surprising because, with
both longitudinal and transverse field components, this
model can be considered as a realization of the classical spin-
odal transition. One might derive the Stoner-Wohlfarth
model from Eq. �11� by replacing the exchange energy pa-

M

H

T

FIG. 5. �Color online� Schematic picture of the magnetization M
as a function of field H below the critical temperature. Open circles
denote the spinodal decomposition points. The �red� dashed-dotted
curve in the H-T plane shows HSP�T� as given by Eq. �10�.
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rameter J with the anisotropy energy constant D.
It should be noted that the critical Hx is a factor of 2 larger

than that of the correct value Hc
x=J for the one-dimensional

quantum model. This difference is due to the presence of
quantum fluctuations. Therefore, in Fig. 6 we plot Eq. �16�
with and without renormalized values of the fields. The
dashed curve denotes the case of Hx scaled by 1/2 and the
solid curve denotes the case where both Hx and Hz are scaled
by 1/2.

As we saw in Fig. 2, we find a large change in magneti-
zation at values of Hz for each value of Hx, which we called
HSP. In Fig. 6, we plot values of Hz at which: �1� M�t� shows
a small but clear jump, �2� M�t� /L is equal to −1 /2, and �3�
M�t� saturates as a function of Hz, for various values of c.
The data show a dependence on Hx that shows a similar
dependence to the dotted line. If we use other value of c, the
values of Hz change. Although the values of Hz for �1�–�3�
for larger values of c are larger than those for c=0.001, the
values of Hz for c=0.0001 are close to those for c=0.001.
They seem to saturate around the value of the dotted line and
we may identify a sudden appearance of size-independent
change as an indication for a quantum spinodal point. If we
sweep much faster, the jumps of the magnetization become
less clear, as we now study in more detail.

B. Very fast sweeps

For a fast sweep c=0.1, the magnetization processes for
different sizes almost overlap each other �see Fig. 7�. The
data for L=12, 14, 16, and 20 are hard to distinguish. This
almost perfect overlap is rather surprising from the view-

point of the structure of energy-level diagram. The data for
L=6 deviate from the others. This fact indicates that for
these parameters �Hx=0.7, c=0.1� the relevant size of the
cluster �m in Eq. �8�� is larger than 6 but smaller than 12.

Let us now study the behavior if we sweep much faster. In
Fig. 8�a�, we show the magnetization as a function of t �or
Hz�t�� for L=12 with c=10, 20, 50, 100, and 200. For these
parameters, the data for other L are almost indistinguishable
from the L=12 data and are therefore not shown. As Fig. 8�a�
shows, the magnetization oscillates about a stationary value
for large values of Hz where the energy levels with different
magnetization M are far separated in the energy-level dia-
gram as we saw in Fig. 1. Let us study the c dependence of
the saturated value MS=MS�c�. In Fig. 8�b�, we plot the
change in the magnetization �M /L= �MS�c�− �−L�� /L as a
function of 1 /c. As shown in Fig. 8�b�, the data can be fitted
well by the expression

�M

L
	

�M0

L
+

a

c
, �17�

where �M0 /L and a are constants. These constants, to good
approximation, do not depend on the system size.

In order to explain the observed 1 /c dependence, we
present a perturbation scheme for fast sweeps �see Appendix
B�. We regard the sweeping-field �Zeeman� term as the
zeroth-order system and treat the interaction among spins as
the perturbation term. The result is a series expansion in
terms of H0 /c �see Eq. �B8��, which explains the 1 /c depen-
dence.

In Appendix B, we also present a perturbation scheme
based on independent Landau-Zener systems, each of which
is given by a spin in a transverse field with a sweeping field.
We show that this scheme can explain the behavior of the
magnetization dynamics in the fast-sweep regime.
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FIG. 6. �Color online� Spinodal points Hz
SP as a function of the

quantum fluctuation Hx for various sweep velocities c. The horizon-
tal dotted lines correspond to 2 /m for m=2, . . . ,10 �see Eq. �9��.
Plus signs �1�, crosses �2�, and stars �3�: c=0.0001; open squares
�1�, solid squares �2�, and solid diamonds �3�: c=0.001; open circles
�1�, bullets �2�, and open diamonds �3�: c=0.01; and open triangles
�1�, solid triangles �2�, and inverted solid triangles �3�: c=0.1. The
numbers �1�, �2�, and �3� correspond to the field at which M�t�
shows a small but clear jump, M�t� /L=−1 /2, and M�t� saturates as
a function of Hz, respectively. Dotted �blue� curve: The spinodal
field HSP according to Eq. �16�; dashed �green� and solid �red�
rescaled spinodal field �see text�.
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FIG. 7. �Color online� The magnetization M�t� as a function of
the sweeping field Hz for Hx=0.7, c=0.1, and various system sizes.
Solid �black� line: L=6; solid �red� line: L=14; long dashed �green�
line: L=16; dashed �magenta� line: L=18; dotted �red� line: L=20;
and dashed dotted �blue� line: L=12. Except for L=6, all other
curves overlap, indicating that for sufficiently large systems, the
dependence on L is very weak. The curves for L=12, 14, 16, and 18
overlap and are difficult to distinguish.
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V. SUMMARY AND DISCUSSION

We have studied the time evolution of the magnetization
in the ordered phase of the transverse Ising model under
sweeping field Hz. We found significant jumps of the mag-
netization at a certain value of the magnetic field which we
called quantum spinodal point Hz

SP. Although the energy-
level diagram of the system significantly changes with the
system size, we found size-independent magnetization pro-
cesses for each pair �Hx ,c�.

In principle, it should be possible to understand the quan-
tum dynamics of the magnetization from the energy-level
diagram of the total system. Indeed the picture of successive
Landau-Zener scattering processes works in slow-sweeping
case.3 However, for fast sweeps, the time evolution can be
regarded as an assembly of local processes, with the interac-
tion between the spins being a perturbation. Hence the dy-
namics of the magnetization does not depend on the size.

When the quantum fluctuations are weak �small Hx�, a
series of local spin flips governs the magnetization dynamics.
The jumps of magnetization can be understood on the basis
of energy-level crossings of certain spin clusters �Eq. �8��.
The energy-level structure corresponding to the local cluster
flips is, of course, present in the energy-level diagram of the
total system but it is hidden in the complicated structure of
the huge number of energy levels.

For large values of Hx and fast sweeps, the magnetization
process is also size independent. To explain this feature, we
have presented a perturbation scheme in which the small
parameter is H0 /c. In addition, we presented a perturbation
scheme based of single-spin free Landau-Zener processes,
which all together have allowed us to provide an understand-
ing of the magnetization dynamics under field sweeps in
terms of the energy-level structure.
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APPENDIX A: SIZE DEPENDENCE OF THE ENERGY
GAP AT Hz=0

The eigenvalues of model �1� are given by9

E = Hx�
q

�q�2�q
†�q − 1� , �A1�

where �q and �q
† are fermion annihilation and creation op-

erators, respectively, and

�q = 2�1 + 2 cos q + 2, �A2�

where =J /Hx. When the number of the fermions is even, q
takes the values

q = 	
�

L
, 	

3�

L
, . . . , 	

��L − 1�
L

�A3�

and when the number of the fermions is odd

q = 0, 	
2�

L
, 	

4�

L
, . . . , 	

��L − 2�
L

,� . �A4�

Because �q�0, the ground state is given by �q
†�q=0. Thus,

in the case of even number of fermions, the ground state is
given by

EE1 = − 2Hx�
m=1

L/2 �1 + 2 cos�L − 2m + 1

L
� + 2 �A5�

and the first excited state is given by

EE2 = EE1 + 4Hx�1 + 2 cos�L − 1

L
� + 2. �A6�

In the case of an odd number of fermions, the lowest-energy
state is
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FIG. 8. �Color online� �a� The magnetization Mz�t� as a function Hz for L=12, Hx=0.7, and various sweep velocities. Solid �red� line:
c=10; long dashed �green� line: c=20; dashed �dark blue� line: c=50; dotted �magenta� line: c=100; and dashed dotted �cyan� line: c
=200. �b� �M /L as a function of 1 /c for Hx=0.7 and various system sizes. Solid �red� line: L=4; long dashed �green� line: L=6; dashed
�dark blue� line: L=10; and dotted �magenta� line: L=12.
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EO1 = Hx
�1 + 2 + 2 + Hx

�1 − 2 + 2

− 2Hx �
m=1

L/2−1�1 + 2 cos�L − 2m + 1

L
� + 2

�A7�

and the first excited state is given by

EO2 = EO1 + 2Hx
�1 − 2 + 2 +�1 + 2 cos�L − 2

L
� + 2.

�A8�

The energy gaps are given by

�E1 = EO1 − EE1, �A9�

�E2 = EE2 − EE1, �A10�

and

�E3 = EO2 − EE1. �A11�

Using these formulas, we can calculate the L dependence of
the gaps. The results are plotted in Fig. 9�a�. We find that
�E1 vanishes exponentially with L; that is,

�E1 � exp�− aL� , �A12�

where a depends on . We also plot −log �E1 /2 to confirm
the exponential dependence. On the other hand, we find that
�E2 is almost independent of L, and �E3 is very close to
�E2, reflecting the fact that above the third level the infinite
system has a continuous spectrum.

It is also of interest to study the dependence of the energy
gap �E1 on Hx for several L. In Fig. 9�b� we show the data
on double-logarithmic scale. In the regime of small Hx we
find a linear dependence on Hx, suggesting that

�E1 � Hx
2S. �A13�

Indeed, for small Hx the slopes of the lines is given by 2S
=L. This dependence on Hx and L is to be expected when L
spins flip simultaneously.

APPENDIX B: PERTURBATION ANALYSIS FOR
LANDAU-ZENER-TYPE SWEEPING PROCESSES

When the sweep velocity c is very large, the duration of
the sweep is very short. This suggests that it may be useful to
study the magnetization processes by a perturbational
method in terms of the small parameter 1 /c.

Let us consider the following model:

H = H0 + ctV , �B1�

where H0 and V are time independent. We will work in the
interaction representation with respect to ctV; that is, we take
the motion of ctV as reference, not H0 as is usually done.
The Schrödinger equation is

i�
�

�t
��� = �H0 + ctV���� . �B2�

In the interaction representation we have

��� = e−ict2V/2���� �B3�

and the equation of motion is given by

i�
�

�t
��� = i��− ictV/��e−ict2V/2���� + i�e−ict2V/2�

�

�t
���

= e−ict2V/2��ctV + i�
�

�t
���� , �B4�

and therefore the Schrödinger equation for ��� is given by

i�
�

�t
��� = eict2V/2�H0e−ict2V/2���� . �B5�
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FIG. 9. �Color online� �a� Size dependence of the energy gaps for Hx=0.7. Bullets: difference �E1 /J��500� between the energy of the
first excited state and the ground-state energy. This difference vanishes exponentially with L. Solid squares: −�ln �E1 /J� /2; stars: �E2 /J;
and open squares: �E3 /J. �b� The energy gap �E1 /J as a function of Hx for several L. Plus signs: L=10; crosses: L=20; stars: L=30; and
open squares: L=40. Note the double-logarithmic scale. In both figures, lines are guides for the eyes only.
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W�t� 
 eict2V/2�H0e−ict2V/2�, �B6�

we can use the usual perturbation expansion scheme for

i�
�

�t
��� = W�t���� �B7�

and find

���t�� = �1 + � 1

i�
��

t0

t

W�t1�dt + � 1

i�
�2

��
t0

t �
t0

t1

W�t1�W�t2�dt1dt2 + ¯����0�� . �B8�

In the sweep �−H0�ct�H0�, t0=−H0 /c and t=H0 /c. Thus,
the integral is of order the H0 /c. Therefore we can regard the
above expansion as a series expansion in terms of power of
H0 /c. Of course the series can be also regarded as a power of
H0 as in the usual sense.

1. Transverse Ising model under a field sweep

Now, we consider our problem

H�t� = − J�
j

� j
z� j+1

z − Hx�
j

� j
x − ct�

j

� j
z. �B9�

We set

H0 = − J�
j

� j
z� j+1

z − Hx�
j

� j
x �B10�

and

V = − �
j

� j
z. �B11�

Then, W�t� is given by

W�t� = exp�− ict2/2��
j

� j
z�H0 exp�ict2/2��

j

� j
z�

= − J�
j

� j
z� j+1

z − Hx�
j

�� j
+e−ict2/� + � j

−eict2/�� .

�B12�

We may include the diagonal term −J� j� j
z� j+1

z in V. Then the
expansion is regarded as series of Hx. This expansion corre-
sponds to the series of jumps discussed in Eq. �8�.

We also note that if J=0 the above process is an ensemble
of independent Landau-Zener processes. Each of them is in-
dependently expressed by

i�
�

�t
��LZ�t�� = − Hx��+e−ict2/� + �−eict2/����LZ�t�� .

�B13�

2. Perturbation theory in terms of independent LZ
systems

Next, we consider the case in which the transverse field is
included in V. We sweep the field from −H0 to H0. The

duration of the sweep is 2H0 /c. We assume that

H0 � J � Hx, �B14�

such that the motion due to V is that of an ensemble of
independent Landau-Zener processes. Thus, we consider the
ensemble of the LZ systems as the unperturbed system.

We know the properties of each system. Namely, we
know that the scattering becomes small when c becomes
large. The time evolution of each LZ system is given by

�1

0
� → ei��t�� �p

�1 − pei��t� � 
 ��t� , �B15�

in the adiabatic basis—that is, in the representation that uses
the eigenstates of the system with given Hz�t�. Here, p is the
probability for staying the ground state. In the Landau-Zener
theory, p is given by the well-known expression

p = 1 − exp�−
�Hx

2

�c
� . �B16�

In the case of small H0, p may have a different form. Even in
those cases, expression �B15� is still correct and the present
formulation works if we employ a correct expression for p.

The unperturbed state is given by

�0�t� = �
j

� j�t� = eiL��t�� �p

�1 − p ei��t� �
1

� � �p

�1 − p ei��t� �
2

� ¯ � � �p

�1 − p ei��t� �
L

. �B17�

The zeroth order is given a usual Landau-Zener process of
which the energy diagram is given by Fig. 10�a�, which
shows the energy-level diagram for the two independent
spins. Thus, in this case there are four states �++�, �+−�, �−
+�, and �−−�. The states consisting of �+−� and �−+� are
degenerate with energy zero.

The interaction term −J� j� j
z� j+1

z is the perturbation. As
long as expansion �B8� converges with less than Lth terms, it
gives a local effect. To the first order in J, only the nearest-
neighbor spins interact, giving a contribution of the order J.
The sweep-velocity dependence is taken into account
through the zeroth-order term. If we take a large H0, the
integral in Eq. �B8� is no longer small, and we have to regard
Eq. �B8� as a series of J. Therefore, we do not have any
small parameter and Eq. �B8� represents the original general
dynamics. In the case of fast sweeps, the effective range of
quantum mixing in which the diabatic energy levels �levels
for Hx=0� cross each other is of the order L�J, and there-
fore the duration of interaction is of the order LJ /c. Hence,
the integration gives a contribution of the order LJ /c which
now becomes the small parameter. In the case of finite H0,
the small parameter is the minimum of �H0 /c ,LJ /c�. In the
present study, H0=1. Then H0 /c is the small parameter and
we cannot use the form of p given in Eq. �B16�. In any case,
the series converges for the fast sweeps and we expect that
the perturbation effect does not depend on L.

The system described by the first-order perturbation
theory corresponds to a Hamiltonian of two spins exhibiting
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the Landau-Zener scattering process and which are coupled
by an Ising interaction. The Hamiltonian reads

HCLZ = − J�1
z�2

z − �Hx�1
x − ct�1

z� − �Hx�2
x − ct�2

z� .

�B18�

The energy-level diagram of this system is shown in Fig.
10�b�. Let us study the effect of the interaction on the dy-
namics in this case. We compare the magnetization processes
of model �B18� with J=0 and J=1. The results are shown in
Fig. 11�a�. Note that the sweep starts from Hz=−H0=−1.

Next, in Fig. 11�b�, we show the magnetization processes
for c=100 for model �B18� with that of the same model with
J replaced with 2J. If we use a small value of H0, the ground
states of the models at Hz=−1 differ significantly. Therefore,
to compare the results, in this figure, we take H0=−60 such
that the ground state of both models is close to the all-spin-
down state. The average of the first and the third curves is
close to the second curve. This fact indicates that the pro-
cesses are well described by the first-order perturbation

theory. Indeed, the deviation from the single Landau-Zener
model is 0, J, and 2J, respectively.

We also compare the magnetization processes of model
�B18� with J replaced with 2J and that of a model with three
spins in Fig. 12�a�. The difference between the models of
four spins and of 12 spins is also shown in Fig. 12�b�. In all
these cases, we start at Hz=−1 because the magnetizations
per spin are very close in all the cases. We find almost no
difference, indicating that the processes are well described
by the first-order perturbation theory.

When the sweep velocity becomes small, we may need
higher-order perturbation terms. If the relevant order of the
perturbation is less than the length of the chain, we expect a
size-independent magnetization process. The size-
independent magnetization in the quantum spinodal decom-
position can be understood in this way.

The local motion of magnetization can be understood
from a view point of an effective field from the neighboring
spins. We may study the magnetization process of a single
spin in a dynamical mean-field generated by its neighbors.17
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FIG. 10. �Color online� Energy-level diagram for a two-spin Landau-Zener model �B18� with Hx=0.7. �a� J=0 and �b� J=1.
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FIG. 11. �Color online� �a� Comparison of the magnetization processes of model �B18� with J=0 �thin line� and J=1 �thick lines� for
Hx=0.7. Solid �red� line: c=10; long dashed �green� line: c=20; dashed �dark blue� line: c=50; dotted �magenta� line: c=100; and
dashed-dotted �cyan� line: c=200. For each c, the magnetization of the single LZ process is shifted by an amount such that at Hz=−1 it
coincides with the magnetization of model �B18� with J replaced with 2J. �b� Comparison of the magnetization of a single LZ process that
of model �B18� and that of model �B18� with J replaced with 2J. Hx=0.7 and c=100. Solid �black� line: c=10, single LZ process; solid �red�
line: c=10, Eq. �B18�; long dashed �green� line: c=10, Eq. �B18� with J replaced with 2J; dashed �dark blue� line: c=100, single LZ process;
dotted �magenta� line: c=100, Eq. �B18�; and dashed-dotted �cyan� line: c=100, Eq. �B18� with J replaced with 2J.
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Let us describe the situation by the following Hamiltonian:

HMF = − �Hz�t� + 2J��z���z − Hx�
x. �B19�

Because the mean field is almost 2J during the fast sweep,
the mean field simply shifts H0 by a constant 2J. Thus, we

conclude that for fast sweeps, the dynamics is very similar to
that of a single spin, meaning that, for the dynamics, the
effective field on each spin in the lattice is essentially that
same as the applied field. This conclusion is consistent with
our earlier comparison of the zeroth- and first-order pertur-
bation results.
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