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Antiferromagnetic order without recourse to staggered fields
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In the theory of antiferromagnetism, the staggered field—an external magnetic field that alternates in sign on
atomic length scales—is used to select the classical Néel state from a quantum magnet but justification is missing.
This work examines, within the decoherence framework, whether repeated local measurement can replace a
staggered field. Accordingly, the conditions under which local decoherence can be considered a continuous
measurement are studied. The dynamics of a small magnetic system is analyzed to illustrate that local decoherence
can lead to (symmetry-broken) order similar to order resulting from a staggered field.
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I. INTRODUCTION

The decoherence program intends to clarify the emergence
of classical physics from within quantum mechanics. The
standard works [1–3] follow essentially a bottom-up approach
in which the decoherence of a single particle (e.g., a quantum
Brownian particle or a single spin) is discussed. Although this
clarifies the fragility of quantum states of different macroscopic
configurations, it does not explain how a genuine many-body
system, whereby the local particles are inextricably quantum
correlated (i.e., entangled), can turn into a collection of
classical particles. Motivated by the prospects of quantum
information technology, developments in the understanding
of the decoherence of bi- and multipartite entangled systems
are only now beginning to unfold [4–8]. However, subtleties
relating to classicality are, to the best of our knowledge, still
largely unexplored. Nevertheless, in the context of magnetism,
several works attempted to tackle this problem by truncating a
many-body magnet to a two-level system [9–13]. In particular,
Prokof’ev and Stamp reviewed in detail the effects of a spin
environment on a two-level system [9,10], for which a mapping
to the spin-boson model [14] can in general not be made. (See
also a complementary review [15] that analyzes a two-level
system in a spin environment from a numerical perspective.)

On the other hand, large systems lead to emergent collective
properties that are difficult to understand from a simplified
sum-of-its-parts view, as discussed in several popular scientific
accounts [16–18]. Indeed, the concept of spontaneous symme-
try breaking, in which solutions are singled out in the thermo-
dynamic limit by infinitesimal fields, depend on the (collective)
low-energy behavior of a macroscopic system [19,20]. Most
systems break a(n almost) continuous symmetry—like the

*h.donker@science.ru.nl

direction or location in space—and therefore require a host of
states which conspire to form localized structures; a two-level
description is then, by its very nature, inadequate.

What is more, a symmetry-breaking analysis indicates if
such solutions can be singled out but does not address the how,
i.e., the physical mechanism that is responsible.

In magnetism, for example, this difficulty comprises the
(in)consistency of the (classical) Néel state |ψN 〉 (the state
in which neighboring spins align antiparallel |↑↓↑ . . . 〉 or
vice versa) with the antiferromagnetic Heisenberg Hamiltonian
(HH) [21,22], its experimental evidence [23], and the possible
physical realization of the staggered field (explained below).
The problem is as follows: The exact ground state (GS) |ψ0〉
of the antiferromagnetic HH

H = J
∑

〈i,j〉
Si · Sj (1)

is known to be a total spin Stot = 0 singlet [24], whereby the
local magnetization of each spin Si vanishes 〈ψ0|Si |ψ0〉 =
0 according to group theory (see, e.g., the Wigner-Eckart
theorem [25]). In this equation, the exchange constant J is
positive and the sum extends over nearest neighbors. Contrary
to the GS, the Néel state |ψN 〉 is not an eigenstate of the HH
and is thus a very specific linear combination of a (possibly
extensive [26] number of) spin Stot states. Moreover, the
sublattice magnetization is not a constant of motion. Therefore,
the sublattice magnetization of an arbitrary state, including the
Néel state, will decay. However, since the energy levels close
to the GS are very nearly degenerate, collapsing onto the GS as
1/N with N being the number of particles [27], the decay rate
can be rather long. Anderson estimated the time for the Néel
state to rotate to an orthogonal direction to be roughly three
years [27]. Furthermore, the actual GS energy E0 is bounded
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quite strongly [22,28],

− 1
2NJZS2

i > E0 > − 1
2NJZS2

i [1 + 1/(ZSi)] , (2)

with Si being the single-site spin (which is taken to be the same
for all i), and Z being the coordinate number of the lattice. In
the limit 1/(ZSi) → 0, the GS energy E0 precisely coincides
with the energy of the Néel state [left-hand side of Eq. (2)].

A mathematical trick to overcome the inconsistency be-
tween the Néel state |ψN 〉 and the nondegenerate singlet
|ψ0〉 introduces a staggered field, M = SA − SB (the order
parameter), with opposite signs on sublattices A and B, that
couples to a conjugate field, hst. Time-reversal invariance is
thus explicitly broken by adding the term Hst = M · hst to
the Hamiltonian. The sublattice magnetization then arises as
a quasiaverage [29], whereby the conjugate field hst tends
to zero after taking the thermodynamic limit. Although it is
known that an effective staggered field can be generated in
very specific crystal structures [30], it is usually regarded as
unphysical [20,23,31,32]. More generally, the proper choice
of the order parameter cannot always be decided a priori, but
is dictated by phenomenology [33].

Assume now, for the sake of argument, that the staggered
field does have a physical origin. For naturally occurring mag-
netic fields of arbitrary shape that are infinitely differentiable,
the Fourier component corresponding to the staggered field is
suppressed faster than any power of the spectral scale (which
is typically much larger than the lattice spacing) and hence
decreases superexponentially below this scale. Therefore, ar-
bitrary stray fields emanating from outside into the sample are
an unlikely source of the staggered field.

In fact, for the interpretation of neutron diffraction ex-
periments no such field is required [23,34,35]. Elastic neu-
tron diffraction experiments probe the time-reversal invariant
static structure factor [Eq. (22)] and therefore do not require
symmetry-broken states [23,34,35]. An explicit demonstration
was given by Irkhin and Katsnelson [23], who proposed a trial
wave function without broken symmetry for the Heisenberg
antiferromagnetic model in the semiclassical 1/(ZSi) → 0
limit. Not only were they able to reproduce the peaks at
the antiferromagnetic reciprocal lattice vector in the static
structure factor, but also the nuclear magnetic resonance line
form could be accounted for without resorting to broken
symmetry.

Besides the existence and necessity of the staggered field, it
is a priori unclear whether this mathematical trick indeed leads
to nonvanishing anomalous averages 〈M〉 �= 0 upon sending
hst → 0 after taking the thermodynamic limit. The Lieb-Mattis
model [24] is one of the few nontrivial systems where this can
be worked out in detail [36,37]. More generally, the ability
to develop spontaneous staggered magnetization hinges on the
presence of long-range order. In the antiferromagnetic Heisen-
berg model on the cubic lattice, long-range order was first
established by Dyson et al. [38] for d � 3 spatial dimensions
and spin Si � 1. This proof was later strengthened by others
for d = 3 to include the case Si = 1/2 [39]. In two spatial
dimensions, numerical evidence suggests long-range order in
the GS for both the bipartite [35,40,41] and the triangular
lattice [41–44] when Si = 1/2 (for other lattices, see also
Refs. [35] and references therein). Only fairly recently was
it demonstrated that taking an anomalous average does indeed

lead to broken symmetry for the HH on a bipartite lattice,
provided that long-range order exists [45,46].

Later refinements of several experimental techniques called
for a reevaluation of the magnetic ordering in antiferromagnets.
Measurements of the quadrupole magnetic moment of the anti-
ferromagnetic compound Cr2O3 indicated broken symmetry in
the magnetic structure [47]. Furthermore, state-of-the-art spin-
polarized scanning tunneling microscopy (STM) experiments
can probe the magnetization of individual atoms and have
revealed antiferromagnetic structures whereby time-reversal
symmetry is manifestly broken. Moreover, these structures
have been seen to telegraph between the two alternating Néel
configurations [48,49], reminiscent of Bohr’s quantum jumps
in atoms [1]. (In these works [48,49], they considered S = 2 Fe
atoms on Cu2N that have a large magnetic easy-axis anisotropy
[50] which consequently suppresses quantum fluctuations.)
This has sparked renewed interest in how such classical
magnetic order can come about from quantum systems [11–
13]. This work contributes to the discussion by analyzing the
necessity of the staggered field, going beyond a two-level
simplification.

Historically, the decoherence program focused primarily on
single-particle subsystems but, as it turned out, the decoherence
of local particles in a many-body subsystem can lead to many
surprising consequences. Examples are the decoherence wave
[51–53], suppression of the Kondo effect [54,55], and the
creation of sublattices in antiferromagnets [56], all of which
considered idealized local measurement (i.e., a wave function
collapse). This work follows up on a suggestion in Ref. [56] that
repeated local measurements on antiferromagnets can replace a
staggered field. A decoherence approach is followed, in which
the entanglement between a local spin of an antiferromagnet
and an environment is studied. Since the decoherence process
is technically different from wave function collapse, first a
detailed comparison is carried out. Next, a critical assessment
is made to clarify under which conditions, and to what extent,
the repeated measurement hypothesis is correct with the help
of numerical calculations.

For clarity, the analysis is broken up in two parts. In model
A, the decoherence of a local particle is compared to idealized
measurement (Sec. III). In model B, local decoherence is
applied to a low-energy description of antiferromagnets (Sec.
IV). Both models are outlined in Sec. II and implications are
discussed in Sec.VI.

II. OUTLINE MODELS

The two spin models that are the centerpiece of this work
shall now be outlined. Units in which the reduced Planck
constant h̄ and the Boltzmann constant kB equal unity are
used throughout this paper. In both models, the entire system
consists of a collection of spin-1/2 particles. A single (local)
particle is strongly coupled to an environment along the z

direction, so as to resemble a measurement-like interaction.
While model A mainly serves to compare ideal measurement
with local decoherence, model B extents the environment of
A by introducing a thermal reservoir. An important difference
between models A and B is that in the latter an effective descrip-
tion of antiferromagnets is used (for a detailed discussion, see
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Sec. IV) for the system of interest [henceforth, central system
(CS)].

A. Model A: Decoherence of a local spin

The entire system is partitioned in two parts, the CS
(denoted by S) and its complement, the environment (indicated
by E). The CS (environment) is composed of NS = 6 (NE = 8)
spin-1/2 particles. To avoid unnecessarily complicating the
analysis, the CS with Hamiltonian H —

S interacts locally with
environmentE viaHI , while the spins inE have no Hamiltonian
of their own. That is, the intraenvironment Hamiltonian (the
self-Hamiltonian of E) is neglected. The Hamiltonian of model
A can then be written as

HA = H —
S + HI . (3)

The CS is taken to be an open chain of NS spins (i.e., Si = 1/2
for all i), coupled via Heisenberg exchange [22]

H —
S = JS

NS−1∑

i=1

Si · Si+1 , (4)

with exchange constant JS , and the — superscript indicates
the lattice geometry (in this case, an open chain). To emulate
decoherence as a measuring effect on a local spin, which is
chosen to be spin S1, requires a well-defined measurement di-
rection. The z axis is selected such that the system-environment
interaction takes the following form:

HI = I
∑

i∈E
riS

z
1S

z
i ≡ ISz

1S̃
z
E , (5)

where the sum is over all NE spins inside the environment E ,
I is the interaction strength, {ri} are a set of random numbers
ri ∈ [0,1], and S̃z

E = ∑
i∈E riS

z
i . The use of random numbers

are to suppress recurrences of phase coherence after the initial
Gaussian decay. In order for E to couple strongly to the CS, I

is set to I = 20JS .

B. Model B: Addition of a thermal reservoir

In model B, the CS interacts with an environment E , but in
this case E is consists of two fragments E1 and E2. Fragment
E1 describes the strong decoherence with the local spin, while
E2 couples weakly to the entire CS to mimic contact with a
thermal reservoir. The Hamiltonian of model B is split into
four,

HB = H
©
S + HI1 + HI2 + HE2 , (6)

with H
©
S being the Hamiltonian of the CS (the © indicates

ring geometry), HI1 (HI2 ) being the coupling between the
CS and E1 (E2), and HE2 being the self-Hamiltonian (i.e.,
the intraenvironment Hamiltonian) of E2. A schematic of the
setup is shown in Fig. 1. The Hamiltonian, H

©
S , is given

by Eq. (4) with the addition of the boundary term H
©
S =

H —
S + JS S1 · SNS

, thereby giving rise to a ring geometry.
Similar to model A, spin S1 of the CS is strongly coupled to

spins in E1 via Ising coupling. HI1 is identical to Eq. (5), apart
from the sum that is now restricted to the NE1 sites pertaining
to fragment E1.

FIG. 1. Schematic of models A and B. In model A (B), the central
system consists of an open (periodic) chain of NS = 6 (NS = 4) spin-
1/2 particles and spin S1 is strongly coupled to an environment E
(environment fragment E1) of spins via Ising coupling. In model B,
the spin chain is immersed in fragment E2 that resembles a thermal
reservoir (inverse temperature β = 50/JS). The number of spins in
each environment (fragment) and the respective coupling strengths
are indicated in the figure.

For E2, slightly different system-environment couplings are
used to facilitate decoherence of the energy states. In Ref. [57],
it was found that binary coupling strengths and the presence of
a conserved quantity are particularly efficient. Therefore, the
following coupling to E2 is chosen,

HI2 =
∑

i∈S,k∈E2

I ′
ikS

z
i S

z
k , (7)

where i runs over spin indices in the CS (indicated by S)
and I ′

ik are binary values ±I ′ picked at random. As for the
self-Hamiltonian of E2, spin-glass-like couplings are used to
maximize decoherence and relaxation [57,58]

HE2 =
∑

α∈{x,y,z}

∑

k,l∈E2

Kα
klS

α
k Sα

l , (8)

with Kα
lm being uniform random numbers in the range [−K,K].

The philosophy behind the specific form HE2 is that it is not
necessary to have a very large environment in order to have
efficient decoherence and relaxation [57,58], thereby keeping
the problem computationally tractable. But this comes at the
expense of having to choose specific—namely, spin-glass—
types of couplings for the bath.

In order to prevent energy flow from E2 into the CS, the
environment is prepared in a configuration that resembles a
thermal state with inverse temperature β = 50/JS , i.e., very
close to the GS. Both decoherence and relaxation are sensitive
to the precise numerical values of the interaction strengths.
The values that are picked lead to efficient decoherence and
relaxation for the given size of the environment. The interaction
strengths of both models (as well as other parameters) are
summarized in Table I.

C. State preparation and simulation procedure

In order to study the decoherence process, it is most
instructive to examine a state that is initially unentangled, i.e.,
a product state. In particular, this work shall encompass the
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TABLE I. Model parameters; interaction strengths are expressed
in units relative to the exchange constant, JS , of the central system.

Model A Model B

NS = 6 NS = 4
NE = 8 NE1 = 6

NE2 = 12
I = 20JS I = 20JS

I ′ = 0.1JS

K = 0.1JS

β = 50/JS

decoherence of a CS that is prepared in the GS, |ψ0〉, (respective
to the model) at time t = 0. The global wave function, |�(t)〉,
is then expressed as

|�(0)〉 = |ψ0〉 ⊗ |E0〉 , (9)

with |E0〉 the initial state of E . The state |E0〉 is constructed
using the Box-Muller method [59] to generate a random state.
In the case of model B, an additional step is required to
turn fragment E2 into a thermal-like state. This is done by
performing imaginary time evolution exp[−βHE2/2] on the
random state of E2 [60] and subsequent normalization of the
resulting wave function.

Time evolution of the global state |�(t)〉 in model A (B) is
governed by the unitary operator exp[−itHA] (exp[−itHB]).
Time t shall consistently be expressed in dimensionless form
t = t ′JS/h̄, in which t ′ is dimensionful time and h̄ was restored
for clarity. Both real and imaginary time evolutions are numer-
ically calculated by expanding the exponential in Chebyshev
polynomials [61,62]. The expansion allows for calculation of
the wave function with an accuracy up to machine precision
[61,62]. This accuracy is important to unambiguously assign
loss of phase coherence to quantum entanglement instead of
the accumulation of numerical errors.

Finally, the loss of phase coherence is studied by taking
partial traces of the density matrix [63] of the global system
�(t) = |�(t)〉〈�(t)|. The resulting reduced density matrix
(RDM) of the CS is defined as

ρ(t) = TrE�(t) , (10)

where the trace is over all the spin states in E . For each
simulation, a new realization of the environment was generated
as well as a new set of random couplings. The data shown
here are representative for simulations with different random
realizations.

III. COMPARISON OF DECOHERENCE
WITH THE QUANTUM ZENO EFFECT

As stated in the introduction, the primary goal is to under-
stand the consequences of repeated local measurement—the
local analog of the quantum Zeno effect [1,64]—on antifer-
romagnets. This section examines to what extent repeated
local measurement can be described within the framework of
decoherence.

It is intuitively clear that, from the decoherence perspective,
a continuous measurement might originate from an environ-
ment interacting much longer than the typical timescale of the

FIG. 2. Pictorial representation of the initial decoherence process
in model A. Different parts of the (initial) singlet state evolve to
(approximately) orthogonal parts of the environment (denoted by
|⇑〉 and |⇓〉) via spin S1. The boxes represent a product state of the
central system with the environment. The magnetization of each spin
is indicated by the arrows, and the red (blue) color intensity illustrates
the net magnetization parallel (antiparallel) to the z axis.

CS. One key requirement is that coherences can be quenched
locally while maintaining global coherence in the CS. To make
the connection between decoherence and the quantum Zeno
effect explicit, let us now turn to model A (see Sec. II A) and
invoke the Trotter-Suzuki product formula [65],

exp[−itHA] ≈ [exp(−itH —
S /n) exp(−itHI /n)]n , (11)

in which the approximation becomes exact if n tends to infinity.
Under time evolution, the wave function initially branches
(partially) due to exp[−itHI /n], as different parts of the CS
singlet state, |ψ0〉, entangle to mutually (close to) orthogonal
environment states (see Fig. 2). Subsequently, each branch
evolves individually for a time t/n under H —

S . In comparison,
the time evolution according to the quantum Zeno effect is
governed by the operator Tn(t) = [exp(−itH —

S /n)P ±
1 ]n with

P ±
i = [1 ± σ z

i ]/2 being the spin Si projection operator. In
the limit where the decoherence timescale τ (the timescale
that makes the relative states of E orthogonal) tends to zero
and n tends to infinity, the descriptions exp[−itHA] [see
Eq. (11)] and Tn(t) become compatible. In this limit, the
repeated application of this two-step process causes spin S1

to be pinned, while the remaining spins in each branch are
allowed to evolve freely under H —

S .
In physically more realistic systems, these precise math-

ematical limits are never reached. As a result, τ stays finite
but small. Therefore, if the Trotter-Suzuki product formula—
which has a structure similar to the quantum Zeno time-
evolution operator Tn(t)—is used to approximate the evolution
operator exp[−itHA] with finite τ = t/n, then the contribu-
tions coming from the commutator [H —

S ,HI ] as well as higher
order commutators are neglected, as can be made explicit using
the Campbell-Baker-Hausdorff formula [66].

A. Results model A

The simulation results of model A will now be compared
to the quantum Zeno picture, and it will be verified that
local decoherence leads to a decoherence wave (DW). The
representation |i1 . . . iNS

〉 in which each ik takes the value ↑ or
↓ shall henceforth be referred to as the computational basis.

The preceding discussion (and as illustrated in Fig. 2)
suggests that coherence in the computational basis between
|↑ ,i2, . . . ,iNS

〉 and |↓ ,j2, . . . ,jNS
〉 diminishes for all
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FIG. 3. Simulation results of model A, where spin S1 of a NS = 6 Heisenberg (open) spin chain is coupled to NE = 8 environment spins
via Ising coupling with random uniform interaction strength I = 20JS . The central system is prepared in the (singlet) ground state at t = 0.
(a) Coherence local to spin S1 [dashed line, Eq. (14)] and the remainder of the subsystem [solid line, Eq. (15)], as a function of time. Coherence
is with respect to the computational basis. (b) Entropy of the entire subsystem S(t) = S[ρ(t)] (solid line) and that complementary to spin S1:
S↑↑(t) = S[ρ̃↑↑(t)] (dashed line) and S↓↓(t) = S[ρ̃↓↓(t)] (dotted line).

realizations of the undetermined indices. At the same time,
states with identical Sz

1 eigenvalues are expected to be unaf-
fected in the quantum Zeno limit. Therefore, to quantify the
local coherence of the RDM

ρ{i1i2i3...|j1j2j3... } ≡ 〈i1,i2,i3 · · · | ρ | j1,j2,j3 . . . 〉, (12)

it is beneficial to focus on the i1 and j1 components. To this
end, consider the RDM conditioned on the spin S1 components
(as indicated by the bra and ket subscript):

ρab = 1〈a|ρ|b〉1 ; ρ̃ab = ρab/Tr[ρab] . (13)

Normalization of the density operator ρ̃ab is primarily to
compare entropy, as discussed below. The matrix elements of
ρ↑↓ (and ρ↓↑) determine the degree of (local) S1 coherence. To
measure the loss of local coherence, for each time step t , the
maximal magnitude (absolute value) of the |ρ↑↓| components

Mlocal(t) = maxi,j [|〈i|ρ↑↓(t)|j 〉|] , (14)

is calculated, with |i〉 = |i2,i3, . . . ,iNS
〉 the remaining spins

evaluated in the computational basis, and likewise for |j 〉.
The coherence of the rest of the CS is determined by the off-
diagonal components of |ρ↑↑| and |ρ↓↓|, which can similarly
be quantified as

Mglobal(t) = maxi �=j [|〈i|ρ↑↑(t)|j 〉|] , (15)

where i and j are as above, which do not coincide i �= j (it
must be an off-diagonal component of ρ). The time evolution
of the components are shown in Fig. 3(a).

Two regions can be identified: (1) the dephasing regime with
t < 1 and (2) the dynamic regime t ∼ 1. Figure 3(a) illustrates
that in region 1 the global coherence in the CS is essentially
unperturbed while the local coherence associated with spin
S1 is suppressed. Region 2 is determined by the Hamiltonian
H —

S , and it is on this timescale that the DW manifests itself.
The oscillatory behaviors of Mlocal(t) starting t ∼ 100 are
recurrences that originate from the finite size of NE ; additional
suppression can be achieved by increasing NE .

To further quantify the system’s coherence, it is helpful to
introduce the von Neumann entropy [67],

S[ρ(t)] = −Tr[ρ(t) ln ρ(t)] , (16)

which measures the purity of the density matrix ρ(t) (it
vanishes for pure states). Analogously, the entropy of the
(normalized) spin S1 diagonal components of the RDM are
defined as Snn(t) = S[ρ̃nn(t)]. In the quantum Zeno descrip-
tion, the diagonal components ρ̃nn are by definition pure
(since it describes wave function collapse, leading to a new
pure state). By the normalization of ρ̃nn, this would imply
Snn(t) = 0. The entropies of the RDM S(t) ≡ S[ρ(t)], as well
as S↑↑(t) and S↓↓(t), are shown in Fig. 3(b). What can be seen
is that up to t ≈ 1, the increase in entropy of ρ(t) (tending
toward S = ln 2 ≈ 0.69) can be primarily attributed to the
decoherence of spin S1 [see also Fig. 3(a)]. For larger times,
t , the coherence of the CS is somewhat diminished on a more
global scale as the entropy of the spin S1 diagonal components
increase. In addition, the entropy of ρ̃↑↑ is almost the same
as that of ρ̃↓↓. This can be understood by noting that, from
the local spin perspective, the random environment state looks
similar when all the spins are reversed. Simulations, not shown
here, indeed indicate that the entropy difference between the
two diagonal components varies for each random realization
of the environment.

To see how the nonideal aspect, whereby decoherence not
only affects spin S1 but also the remainder of the system,
modifies the DW, consider now a time-reversal invariant
observable, such as the local energy of the Heisenberg spin
chain 〈Si · Si+1〉.

In Fig. 4, the nearest-neighbor correlations from the deco-
herence process are compared to repeated (every 
t = 10−1)
collapse of spin S1 along the z direction. The latter is achieved
by applying the site i projection operator P ±

i = [1 ± σ z
i ]/2

to the wave function. Although 〈S1 · S2〉 (left panel of Fig. 4)
shows some deviation between decoherence (circular markers)
and collapse (thick blue line), the other sites show very good
quantitative agreement. The apparent scattering of the 〈S1 · S2〉
markers actually originates from fast oscillatory behavior.
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FIG. 4. Nearest-neighbor correlations 〈Si(t) · Si+1(t)〉 of a NS =
6 antiferromagnetic open Heisenberg chain for different sites i.
Repeated collapse (solid lines) along the z direction of spin S1

(performed every 
t = 10−1 units of time) is compared with decoher-
ence model A (markers). For clarity, the correlations 〈Si(t) · Si+1(t)〉
with i = 1,2,3 (i = 4,5) are shown in the left (right) panel and the
t = 0 ground-state values, 〈Si(0) · Si+1(0)〉 ≡ 〈Si · Si+1〉0, have been
subtracted for each i.

The data points of both the markers and the solid lines are
solutions to the Schrödinger equation that are numerically
accurate up to machine precision. The deviation between the
solutions can therefore be solely attributed to the degree to
which the two descriptions are compatible. Further agreement
can be achieved by increasing the interaction strength, thereby
decreasing the relative importance of the noncommutative
contributions and increasing NE to negate finite-size effects.

It can thus be concluded that even though the description of
the decoherence process in terms of the quantum Zeno effect
(meaning repeated wave function collapse) is approximate, in
practice the two descriptions show a fair degree of compatibil-
ity.

IV. STAGGERED FIELD FROM THE
QUANTUM ZENO EFFECT

Let us start by discussing the hierarchy of the low-lying
excitations in magnetic systems [20,26,35,43,68,69]. The basic
tenet is that, in the thermodynamic limit, the collective dynam-
ics (of the antiferromagnet as a whole) are slow compared
to the timescale pertaining to the internal excitations that
describe local modulations of magnetic order [19]. Hence, the
collective configuration—such as absolute position of a crystal
or sublattice magnetization direction in an antiferromagnet—
can be presumed fixed in comparison to the time interval
wherein internal dynamics are relevant [19]. This, of course,
still requires that the initial state of the system has a well-
defined collective configuration to begin with.

To further discuss the ordering of energy levels, consider the
HH [Eq. (1)] in Fourier space (Latin and Greek indices refer
to real and Fourier space, respectively) in d spatial dimensions

H = J
∑

κ

γκ Sκ · S−κ = HLM + J
∑

κ �=0,π

γκ Sκ · S−κ , (17)

with γκ = ∑
i cos(κ · ui) a sum over primitive vectors ui , and

where

Sκ = 1√
N

∑

l

eiκ ·Rl Sl , (18)

defines the Fourier transform of spin operators Sl , and Rl

the respective lattice positions (in units of lattice spacing)
with periodic boundary conditions. On the right-hand side
of Eq. (17), the κ = 0 and κ = π contribution are separated
to form HLM. On a bipartite lattice HLM turns out to be the
Lieb-Mattis [24] Hamiltonian [26,35,43,68,69]

HLM = 4dJ

N

N/2∑

i=1,j=1

S2i−1 · S2j = J ′

N
SA · SB , (19)

whereby the odd (even) sites refer to sublattice A (B) and
J ′ ≡ 4dJ . For this system, the lowest energy levels are total
spin Stot states with maximal SA and SB that collapse onto
the GS as J ′Stot(Stot + 1)/N [36,37]. To compare this to the
dynamics of H , the complement of HLM can be treated in
linear spin wave theory [27]. The “softest” magnon is separated
from its ground state as ∝ J/N1/d , thereby justifying the
hierarchy in timescales—in which the collective dynamics are
slow compared to the internal magnon excitations—for d > 1
(and not too large Stot) in the spin-wave picture [26,35,43,68].

A posteriori analysis of the energy levels of specific sys-
tems indicate that the aforementioned dichotomy between
collective and local dynamics can indeed be found in many
antiferromagnetic systems for d = 2 dimensions [35,43,70]
not only in near-neighbor antiferromagnets on various lattices
[26,43] but also in antiferromagnetic systems with further-
neighbor interactions [35,70]. This, then, is another example
whereby the emergent physical state is insensitive to the
precise microscopic details of the Hamiltonian, as discussed by
Laughlin and Pines [17]. Having established that the lowest-
lying energy levels of the Lieb-Mattis model approximately
describe the respective states of the Heisenberg Hamiltonian
(for various lattices and geometries), let us proceed to discuss
the consequences of local decoherence. Assume now, for
simplicity, that all individual spins (i.e., for both sublattices) are
Si = 1/2 and consider the decoherence of spin S1 positioned
on sublattice A. To reiterate, the decoherence of a spin and the
quantum Zeno effect are strictly speaking inequivalent. But as
demonstrated in Sec. III, in practice the two descriptions are
to a large degree compatible. Therefore, assume that spin S1

is decohered sufficiently strong such that it is, for all practical
purposes, pinned along the z direction by its environment.

The branch of the wave function corresponding to spin up
(spin down) can now be described by an effective Hamiltonian
H+

eff (H−
eff ),

H±
eff = J ′

N
SA′ · SB ± J ′

2N
Sz

B , (20)

whereby the spin of the reduced sublattice SA′ = ∑N/2
i=2 Si was

introduced. If the initial state of the CS was the GS, belonging
to the Sz

tot = Sz
A + Sz

B = 0 subspace, the effective Hamiltonian
can be cast in the following suggestive form,

H ′
eff

± = J ′

N
SA′ · SB ∓ hst(S

z
A′ − Sz

B) , (21)
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FIG. 5. Simulation data of model B: a NS = 4 antiferromagnetic spin ring, whereby spin S1 is connected to E1 containing NE1 = 6 spins,
and the entire central system is in contact with E2, a NE2 = 12 spin state that resembles a thermal reservoir at β = 50/JS . E1 (E2) is Ising coupled
to the central system with random uniform (random binary) strength I = 20JS (I ′ = 0.1JS), and without (with) intraenvironment coupling
(of strength K = 0.1JS). The figures show the static structure factor [see Eq. (22)], whereby the component a is indicated in the panels.
(a) Simulation data of the static structure factor evaluated at the antiferromagnetic reciprocal lattice vector (i.e., κ = π ) as a function of time.
(b) The values of the structure factor in the ground state of the Heisenberg Hamiltonian without [with] an additional staggered field is denoted
by Kaa

0 (κ) [Kaa
st (κ)] and indicated by square [star] markers. Kaa

∞ (κ) (filled circles) denotes the simulation data evaluated at t = 103.

with hst = J ′/(4N ), whereby an additive constant due to spin
S1 was dropped. Note that in the decoherence framework,
time-reversal symmetry is manifestly preserved; the global
state of the CS plus environment describes a superposition of
two reduced CS (spin S1 no longer partakes in any dynamics),
subject to equal but opposite staggered fields.

V. DEMONSTRATION EMERGENT MAGNETIC ORDER
BY DECOHERENCE

To exemplify the dynamic process whereby the decoherence
of a local spin enhances antiferromagnetic order by generating
a de facto staggered field, consider now model B (Sec. II B). To
reiterate, a low-energy description in terms of the Lieb-Mattis
model can not be expected to hold for d = 1 dimensions,
not even approximately. However, writing SA = S1 + S3 and
SB = S2 + S4 shows that the NS = 4 Heisenberg ring (of
model B) is special and that it coincides with the Lieb-Mattis
model exactly.

A. Results model B

Strictly speaking, the spontaneous breaking of symmetry
can only occur in the thermodynamic limit. The results will
therefore be compared to an equivalent system that includes a
staggered field H ′

S = H
©
S + JS/4Mz. To quantify the degree

of magnetic order, the static structure factor [71]

Kab(κ) = 〈Sa(κ)Sb(−κ)〉 (22)

is used, whereby κ = π corresponds to the antiferromagnetic
reciprocal lattice vector on the bipartite chain. In Fig. 5(a),
the static structure factor is shown at the magnetic reciprocal
lattice. Three different regimes can be identified: (i) t ∼ 10−1

whereby spin S1 is decohered by E1 resulting in a reduction
of Kxx(π ), (ii) t ∼ 1 with the DW dominating the dynamics
as evidenced by the oscillations, and finally (iii) t > 10 where

the entire system decoheres due to E2, causing the quantum
oscillations to be quenched.

In Fig. 5(b), the magnetic ordering of the decohered system
is compared to the GS of H

©
S and that of H ′

S . The left panel
indicates that the enhancement of antiferromagnetic order
along the z axis is slightly higher than in the case of a staggered
field. On the right panel, one finds that the magnetic order
along the x direction is significantly reduced in comparison to
the ground state of the Hamiltonian with a staggered field, H ′

S .
This can be attributed to the small size of the CS, since spin
S1—which carries significant weight in Eq. (22) for NS = 4
spins—becomes completely uncorrelated along the x axis.

Further support for the claim that the remaining CS is
described by the effective Hamiltonian Eq. (21) can be obtained
by analyzing ρ̃nn. If this assumption is correct, then, according
to decoherence theory [3,72], ρ̃↑↑ (ρ̃↓↓) is expected to become
diagonal in H ′

eff
+ (H ′

eff
−) upon identifying J ′/N = JS and

N = NS (for a detailed discussion of decoherence in the HH,
see also Ref. [73]). To measure the loss of coherence in the
eigenbasis, for each time step t , the maximum off-diagonal
component |ρn�=m(t)|,

Meig(t) = maxn�=m[|〈En|ρ(t)|Em〉|] , (23)

is calculated. Here, the set {|En〉} refers to the eigenstates of
H ′

eff
+ (H ′

eff
−), the effective Hamiltonian of ρ̃↑↑ (ρ̃↓↓). (Note

that coherence is basis dependent; Eqs. (14) and (15) referred
instead to the computational basis.) The simulation results are
shown in Fig. 6. Decoherence is indeed observed in Fig. 6,
thereby corroborating the picture in which local decoherence
creates an effective staggered field.

Finally, Figs. 5(a) and 6 indicate a decoherence and relax-
ation timescale of t ∼ 102 (in dimensionless units) for this
model. Using an exchange constant J ∼ 6 meV, as measured
in STM experiments[74] (and ignoring for the moment the
presence of magnetic anisotropic terms), estimates that anti-
ferromagnetic order develops in τ ∼ 10 ps in model B.

014416-7
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FIG. 6. Loss of phase coherence in model B. The maximum off-
diagonal component [see Eq. (23)] of the density matrix ρ̃↑↑ (ρ̃↓↓) is
evaluated in the basis diagonalizing H ′

eff
+ (H ′

eff
−).

VI. DISCUSSION AND CONCLUSION

Justification of anomalous fields, that single out the clas-
sical symmetry-broken states, was often sought in heuristic
arguments. For example, in Ref. [20] it was suggested that
thermal disturbances select states with negligible fluctuation
in intensive bulk quantities as the only stable low-energy
superpositions. Here, the possibility of antiferromagnetic order
by repeated local measurement [56] was explored, without the
need for a staggered field. Within the decoherence framework,
continuous—quantum Zeno—measurement was achieved by
rather modest environments, containing as little as seven or
eight spin-1/2 particles, and moderately strong environment
coupling (I = 20JS in units of exchange constant JS). Ac-
cordingly, the quantum Zeno picture was applied to a class of
isotropic exchange antiferromagnets whereby the low-energy
configuration can approximately be described using the Lieb-
Mattis (LM) Hamiltonian. To exemplify the enhancement of
antiferromagnetic order from the decoherence point of view,
the dynamics of a small magnetic structure was analyzed
whereby a local spin is strongly coupled to an environment.

A decisive parameter that determines whether sublattices
can be pinned is the dimensionality d. From the linear
spin wave perspective, the d � 2 bound follows from the

requirement that the energy levels responsible for symmetry
breaking are in the thermodynamic limit well separated from
excitations that lead to local modulation of the magnetic
order (see also the discussion in Sec. IV). Complementary to
this, numerical diagonalization studies of various finite d = 2
lattices indicates that the approximate picture provided by
linear spin wave theory captures the low-energy behavior of
the system surprisingly well [35]. In these cases, the analysis
leading to Eq. (21) seems justified, provided that the static
structure factor of the system does not vanish [26]. In the
d = 1 Heisenberg chain, on the contrary, whereby the ground-
state spin correlations decay algebraically [75,76], repeated
measurements are unable to pin down a sublattice [53]. Only
after reducing the quantum fluctuations—by introducing, e.g.,
anisotropic coupling as done in Ref. [53]—is one able to create
quasistable sublattices from a measurement [53]. In this study,
magnetic ordering resulted from the decoherence of a small
LM magnet, but it is important to note that the staggered
magnetization in the LM model is like a classical vector with
zero fluctuation [45].

Our exposition is admittedly somewhat artificial from an
experimental point of view. One might argue that a system-
environment coupling strength of I = 20JS is unphysically
large. But the relevant parameter is the decoherence timescale
τ (as discussed in Sec. III), which depends on the interaction
strength I , the size of the environment, and possibly other pa-
rameters. Thus, I can be small if the environment is sufficiently
large. Second, realistic systems usually contain spatially lo-
calized impurities or magnetic isotopes that continuously
monitor (parts of) the system (see, for example, Ref. [77]
for the analysis of nitrogen-vacancy centers in diamond). In
this sense, the continuous local measurement strategy is not
entirely unrealistic. It is hoped that this work will pave the
way toward more realistic descriptions of local decoherence in
antiferromagnets.
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