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Decoherence wave in magnetic systems and creation of Néel antiferromagnetic state by measurement
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The interplay between the singlet ground state of the antiferromagnetic Heisenberg model and the
experimentally measured Néel state of antiferromagnets is studied. To verify the hypothesis [M. I. Katsnelson
et al., Phys. Rev. B 63, 212404 (2001)] that the latter can be considered to be a result of local measurements
destroying the entanglement of the quantum ground state, we have performed systematic simulations of the effects
of von Neumann measurements for the case of a one-dimensional antiferromagnetic spin-1/2 system for various
types and degrees of magnetic anisotropies. It is found that in the ground state, a magnetization measurement can
create decoherence waves [M. I. Katsnelson et al., Phys. Rev. A 62, 022118 (2000)] in the magnetic sublattices,
and that a symmetry breaking anisotropy does not lead to alignment of the spins in a particular direction. However,
for an easy-axis anisotropy of the same order magnitude as the exchange constant, a measurement on the singlet
ground state can create Néel ordering in finite systems of experimentally accessible size.
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I. INTRODUCTION

Magnetism has played a crucial role in the development of
electronic data storage. To keep up with the ever increasing
demand of storage space, finding new technologies, which are
able to do so, is paramount. This requires fundamental insight
in the workings of magnetism at the smallest possible length
scales. Recent developments of scanning probe microscopy
allow one to do precisely this, namely study magnetic particles
atom-by-atom [1–3]. Apart from technical perspectives, this
also opens a new way to study fundamental issues of the
quantum physics of magnetism.

At present, the origin of magnetically ordered states is well
understood from basic principles of quantum physics [4–6].
Nevertheless, some subtle points of fundamental importance
still seem to require deeper understanding. The origin of the
antiferromagnetic Néel state is one of them [4,7]. Neutron
diffraction experiments seem to suggest the existence of sublat-
tice magnetization in antiferromagnetic materials [8], even for
one-dimensional systems [9,10]. Therefore the conventional
picture of an antiferromagnetic material in the low temperature
ordered phase is a Néel state in which neighboring spins are
antiparallel, i.e., |ψN 〉 = |↑↓↑ . . . 〉 or |ψN ′ 〉 = |↓↑↓ . . . 〉. A
more detailed analysis [7] shows that these basic observa-
tions, as well as most other experimental manifestations of
antiferromagnetism, can formally be described without broken
symmetry and sublattices. What is required is long-range order
of Néel type in the sense that there are singularities in the spin
pair correlation functions [7].

To stress, the aforementioned Néel state is not the ground
state of the antiferromagnetic Heisenberg Hamiltonian (HH):
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there is only a partial overlap with the ground state (see e.g.,
Ref. [11]). Only in the limiting case in which the product of
the spin S and atom co-ordination number z tends to infinity
(1/(zS) → 0) does the energy of the Néel state coincide with
the ground-state energy of the HH [4,7].

One manifestation of the difference between |ψN 〉 and
the ground state |ψ0〉 is in the sublattice magnetization. The
magnetization operator SA of sublattice A (or equivalently
SB of sublattice B) does not commute with the Hamiltonian.
Therefore the sublattice magnetization is not a good quantum
number [4]. In fact, as is well-known, in one dimension
the ground state of the antiferromagnetic HH with nearest-
neighbor interactions and periodic boundary conditions is a
nondegenerate singlet (i.e., S = 0) [12–15]. Hence, in the
ground state, the sublattice magnetization vanishes [16].

In order to bridge the gap between the experimentally
measurable sublattice magnetization and the ground-state
singlet configuration of the antiferromagnetic HH, one can
introduce a conjugate field. The textbook procedure is to
introduce an infinitesimal staggered magnetization hst , which
breaks time reversal symmetry [5,17–19]. The conjugate field
hst points in a particular direction, e.g., the z direction, and
alternates in sign when going from one sublattice to another.
In contrast to ferromagnetic systems, for antiferromagnetic
systems, there is no clear physical picture to which this
staggered magnetization should correspond to [7,19].

In one dimension, the discrepancy between the Néel state
and the ground state of the HH is especially large due to
the small co-ordination number. One-dimensional antiferro-
magnetic materials (such as the (isotropic) Heisenberg chains
KCuF3 [9,20] and Sr2CuO3 [10,21]) have already been known
for some time. However, these systems are not well suited to
measure the magnetization at individual sites.
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FIG. 1. Schematic of the measurement setup. The system consists
of N spin-1/2 particles with nearest-neighbor interactions. The spins
are arranged in a ring and the system is prepared in the ground state.
Measurement is performed at a single site.

New experimental techniques allow the creation of artificial
spin chains in which spins can be individually probed: this
can be done using spin-polarized STM techniques [3,22–26],
chains of trapped ions [27,28], or optical lattices [29,30]. This
has caused renewed interest in the ground state of antiferro-
magnetic (AFM) one-dimensional spin systems. In particular,
it was claimed that singlet [22] and Néel configurations [23,24]
can in fact be measured. Therefore it is of interest to see
how the Néel state can emerge from the ground state. It was
suggested that the formation of sublattice magnetization can
be induced by the act of local measurements [31]. However,
the supporting analytical calculations in that work were based
on the trial wave function [7], which is accurate only in the
1/(zS) → 0 limit, and therefore it is expected that this is a
poor approximation for a one-dimensional spin-1/2 system.

In the present paper, the emergence of the Néel state from
the ground state |ψ0〉 is studied by analyzing the effect of a
measurement by means of straightforward (numerically exact)
computation of the time-dependent Schrödinger equation. We
consider a ring of spin-1/2 particles, see Fig. 1. The effect of a
localized (i.e., a single site) measurement on the system in the
ground state is analyzed and the influence of the anisotropy on
the result of the measurement is studied.

II. FORMULATION OF THE MODEL

According to von Neumann [32] a measurement can be
described as the (nonunitary) transition from a pure to a mixed
state ρ → ρ ′ = ∑

i PiρPi , where ρ is the density matrix and
Pi are (idempotent) projection matrices summing to unity.
This process can be described in various ways [33–35],
but for simplicity we restrict ourselves to idealized local
instantaneous magnetization measurements, that is, single
particle measurements in which the transition from pure
to mixed state is immediate. It has been shown that in a
closed system a local measurement can induce a propagating
disturbance, a so-called decoherence wave [31,36,37]. Up
to now, the calculations were done only for simple exactly
solvable systems such as the ideal (or weakly nonideal) Bose

gas [36] or the one-dimensional Ising model in a transverse
field [37].

In the case of spin-1/2 systems, as considered here, an
instantaneous magnetization measurement along Cartesian
axis α on spin m corresponds to application of the projection
operator

P ±α
m = 1 ± 2Sα

m

2
, (1)

to the wave function. Here and in the following, Sα
m is the

spin operator for site m along Cartesian axis α. The + (−)
sign of the projection operator indicates projection parallel
(antiparallel) to axis α. Throughout this article units in which
� = 1 are used.

Subject of the present study is the effect of a von Neumann
measurement on the ground state of the one-dimensional spin-
1/2 Heisenberg Hamiltonian, see Fig. 1. The Hamiltonian is
given by [4,6]

H0 = J
∑
〈i,j〉

Si · Sj , (2)

where 〈i,j 〉 denotes pairs of nearest neighbors and J is the
exchange parameter. Henceforth AFM (J > 0) finite systems
of an even number of N spins are considered, with periodic
boundary conditions, i.e., Si+N = Si .

The effect of symmetry on the formation of the Néel state
can be examined by introducing an anisotropy H ′ of strength
�. Specifically, anisotropies of the form

H ′ = J�
∑
〈i,j〉

Sz
i S

z
j , (3)

will be studied such that the total Hamiltonian takes the
form H = H0 + H ′. Note that the anisotropic interaction H ′
preserves time-reversal symmetry and that the ground state
of the Hamiltonian H is nondegenerate for arbitrary � [15].
For spin S > 1/2, it is also possible to consider a single ion
anisotropy H ′′ = K

∑
i(S

z
i )2 instead of H ′, which is common

in spin polarized STM measurements [2,3]. However, it is
believed that the specific form of the anisotropy is not of
significant importance for the present considerations [31].

Observables such as the magnetization of site l in direction
β after a projection of Eq. (1) can be calculated using

〈
S

β

l (t)
〉 = Tr

[
S

β

l (t)
P ±α

m ρ0P
±α
m

N0

]
, (4)

where ρ0 is the density matrix [38] of the ground state and N0

is a normalization factor to ensure that ρ = P ±α
m ρ0P

±α
m /N0

has unit trace. Similar relations can be constructed for, e.g.,
the equal-time correlation function.

III. SIMULATION PROCEDURE

To compute the ground state of the Hamiltonian H , we
use the Lanczos algorithm [39]. The unitary time evolution
of the wave function |�〉, or equivalently the evolution of the
density matrix ρ = |�〉〈�|, is calculated using the Chebyshev
polynomial expansion, which yields numerically exact results
up to machine precision [41,42].

As a consistency check, in Fig. 2 the calculated values of the
ground-state energy are compared with the exact result from
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FIG. 2. The ground-state energy E0 as a function of the chain
length N . The markers indicate the values calculated using the
Lanczos algorithm [39] and the slope of the (straight) lines follow
from the (exact) Bethe ansatz solution in the N → ∞ limit [40].

the Bethe ansatz in the thermodynamic limit [40]. Figure 2
shows that there is excellent agreement between the ground-
state energy of the finite N calculation and the Bethe ansatz
in the thermodynamic limit. In addition, both the calculated
ground state and time evolution has been cross-checked with
exact diagonalization for small values of N � 12. In all
simulations, the ground state shows zero magnetization (as
required for a singlet), which corroborates the correctness of
the calculated ground state.

Most simulation results presented here are for three
different chain lengths, namely, N = 10, 20, and 28. This
choice is motivated by the small size of systems in trapped
ions [28,43] and spin polarized STM [23,24] experiments

on the one hand, and the role of finite size effects and the
computational complexity (Hilbert space grows as 2N ) on the
other hand.

IV. RESULTS

A. Single measurement

The isotropic (or XXX) HH, i.e., � = 0, will be considered
first. In Fig. 3, the single-site magnetization 〈Sz

m〉 (m =
1, . . . ,N) is plotted as a function of time t for different values
of the chain length N . Time t has been made dimensionless,
i.e., t → tJ , throughout this article. For clarity of presentation,
the magnetization is split up in even [Figs. 3(a), 3(b), and 3(c)]
and odd sites [Figs. 3(d), 3(e), and 3(f)]. In the classical Néel
picture, the separation of even and odd sites would correspond
to magnetic sublattices. At time step t = 5.0, spin 1 is projected
on to the positive z direction [Eq. (1)]. Figures depicting the
magnetization in the x and y directions have been omitted
since no significant deviations from zero could be observed.

Figure 3 illustrates that a measurement induces four
decoherence waves [31,36,37]; in each sublattice, a forward
and backward evolving wave is created. For N = 28 [Figs. 3(c)
and 3(f)], the disturbance is localized. Upon decreasing the
chain length to N = 20 and 10, the disturbance extents to
(almost) the entire chain, which is a finite-size effect. What is
observed (see Appendix A) is that the correlations 〈Sα

1 Sα
1+m〉

are very localized both in the ground state and the state that
results from the measurement. This is in accordance with the
absence of long-range order in the isotropic HH chain in
the thermodynamic limit [44,45]. The qualitative features of
the measurement are best observed for the N = 28 system,
where the width of the decoherence wave is relatively small

(a)N=10, m even. (b)N=20, m even. (c)N=28, m even.

(d)N=10, m odd. (e)N=20, m odd. (f)N=28, m odd.

FIG. 3. Time evolution of the magnetization 〈Sz
m(t)〉 for the isotropic (i.e., XXX) AFM Heisenberg spin chain of length N . The system at

t = 0 is prepared in the ground state after which at t = 5 spin 1 is projected on the +z axis.
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compared to chain lengths N = 20 and 10. What can be
seen is that the forward and backward evolving waves of
a single sublattice meet and flip sign upon reflection. The
waves traverse the ring, reflect again, and the cycle repeats.
These qualitative features can also be observed for the smaller
chains N = 20 and 10. The decreasing oscillation period
of the spin-up and spin-down islands for smaller N are
naturally explained by the fact that the wave is to traverse a
shorter distance. It is interesting to note the resemblance with
standard antiferromagnetic spin-wave theory. In the spin-wave
treatment, one introduces creation and annihilation operators
for each sublattice [45]. What is observed in Fig. 3 is that
indeed, each sublattice has an individual decoherence wave.

Finally, we would like to draw attention to a recent
paper [46] that considers the effect of a localized spin flip
on the HH ground state, which supposedly mimics a neutron
scattering off a chain [46]. Interestingly, it was found that
a (measurement induced) spin flip creates a propagating
localized disturbance as well [46], thereby suggesting it too is
a decoherence wave (albeit a different type).

B. Role of symmetry

In this section, the importance of the system’s global
symmetries and its relation to the anisotropy � is studied. To
this end, we consider the effect of adding a small anisotropy
H ′ [see Eq. (3)] to H0 for both anisotropy types and examine
the magnetization dynamics that results from a measurement.
According to standard terminology, the system is said to have
easy plane (easy axis) magnetization if � < 0 (� > 0) [47].

The magnetization for a chain of N = 20 spins is presented
in Fig. 4 in which different values of the anisotropy parameter
� are considered. In order to conveniently compare the
different values of �, only the magnetization of spin 1 is
plotted as function of time (magnetizations of all sites are
given in Appendix C). For the anisotropies � = 0.01 and 0.1
(corresponding to easy-axis magnetization), the ground-state
measurement is performed along the positive z direction
on spin 1 at t = 5. The anisotropies � = −0.01 and − 0.1
correspond to easy-plane magnetization and measurement is
performed in the positive x direction; the corresponding x-axis
magnetization is depicted in the figure. What can be seen

FIG. 4. Time evolution of the magnetization of spin 1 in the z

direction (x direction) for the HH with anisotropy � � 0 (� < 0)
and chain length N = 20. At t = 0, the system is prepared in the
ground state and for the anisotropy � � 0 (� < 0), the measurement
P +z

1 (P +x
1 ) is performed at t = 5.

is that for anisotropies |�| � 0.1 there is some quantitative
difference in the dynamics of the system. The qualitative
features, however, are similar to the isotropic HH. Simulation
results for chain lengths N up to 28 (data not shown) indicate
that this conclusion does not depend on the size of the system.

The insensitivity of the magnetization dynamics for small
values of |�| is also suggested by considering the energy dif-
ference �E accompanied by the measurement. For example,
the energy difference for N = 20 is �E = 0.5936J [6.667%]
in the absence of an anisotropy. In this case, adding a
1% anisotropy (i.e., � = ±0.01) changes the measurement
induced energy difference �E by less than 0.04% relative
to the ground-state energy. The aforementioned insensitivity to
� indicates that the anisotropy can not be used as a handle to
align spins along a particular direction, as was assumed long
ago [48].

A priori one could think that breaking SU(2) symmetry
brings about different features in the magnetization due to
the reduced symmetry. For example, in earlier studies, it was
suggested that for � → 0+ no decoherence wave is to be
observed [31]. This is shown not to be the case for S = 1/2
(this is correct only in the limit 1/(zS) → 0 considered in that
work).

The importance of the size of the spin S can be understood
as follows. Increasing S is equivalent to decreasing the
quantum effects, as is clear from, e.g., the Holstein-Primakoff
parametrization. Hence, the change in energy �E accompa-
nied by the collapse of the wave function is lower for more
classical (i.e., larger S) systems. Therefore one would expect
a weaker disturbing effect for larger S. Indeed, the disturbing
effect of measurement is the hall mark of quantum mechanics.

C. Emergence of Néel order

The ground state of H0 written in the basis of local spins
up and spins down contains a large number of components
with vanishing total magnetization. As discussed in Sec. IV B
adding a small positive anisotropy to H0 does not ensure
that the ground state becomes the antisymmetrized Néel state
|ψT 〉 = (|ψN 〉 − |ψN ′ 〉)/√2. One possible way to tame the
quantum fluctuations, is to increase the anisotropy � from
zero to a large positive value. The increase of � makes the
system behave more Ising-like, and therefore increases the
weight of the |ψT 〉 contribution in the ground state. Calculation
of the ground state |ψ0〉 of the Hamiltonian H = H0 + H ′
for increasing anisotropy � indeed indicates the development
of long-range order (in the ground state). The correlation
function of |ψ0〉 along the anisotropy axis increases with sites
of the same sublattice and decreases for sites of inequivalent
sublattices (see also Fig. 9 in Appendix B). Moreover, the
norm of the correlation tends towards the maximum value of
1/4 upon increasing �, which is characteristic for Néel states.
Upon performing a measurement in the +z direction onto spin
1 of the ground state, the system starts to oscillate between
the two sublattice configurations. This is observed in Fig. 5,
which depicts I (ω), the absolute value of the Fourier transform
of 〈Sz

1(t)〉, as a function of the dimensionless wave number ω

(that is, ω/J ). The observed oscillations are reminiscent of the
Rabi-type oscillations as also discussed in Ref. [49].
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FIG. 5. Fourier transform of the z magnetization of spin 1
[〈Sz

1(t)〉] after a ground-state measurement of spin 1 along the +z axis.
A measurement creates oscillations between sublattice configurations
of which the dominant contribution decreases as function of the
anisotropy � and chain length N .

It is seen that the frequency ω of the dominant oscillation
decreases for larger values of �. That is, the time scale in which
the state has a particular Néel-like configuration is increased by
considering larger anisotropies. What is more, this time scale
also depends on the size of the system N . The dependence on
the anisotropy can be understood by considering the Ising-limit
(i.e., large �). In this case, the ground state is approximately
the |ψT 〉 state, and measurement in the z direction would fix
the system to either |ψN 〉 and |ψN ′ 〉. Hence the frequency
should go to zero as � becomes very large. Similarly, the
decrease of the measurement induced energy difference �E

(for increasing �) can be understood in the same way. To see
that, �E is proportional to the commutator of the projection
operator with the Hamiltonian [P ±α

i ,H ]. Therefore the energy
difference vanishes in the Ising limit. In terms of the stability
criterion as proposed in Ref. [50], one might say that for larger
values of � the system is more stable as compared to � = 0.

D. Multiple measurements

A projection applied to the ground state creates a state
that is entangled with numerous excitations. Indeed, a local
instantaneous measurement can be interpreted as performing
nonequilibrium work [51]. Hence, one might expect that the
effects of subsequent measurements yield different dynamics.
The effect of subsequent measurements on the magnetization is

FIG. 7. Magnetization 〈Sz
1〉 for N = 20 and � = 2, projections

P z
1 are performed at t = 1 and t = 500. The subsequent measurement

(at t = 500) restores the sublattice order (close) to the state after the
first measurement.

addressed in Fig. 6 where the isotropic HH system is studied.
This figure depicts the magnetization of the odd sites after
measurement on the ground state along the z axis at t = 1
and subsequent measurements at t = 1 + 7.5m, where m =
1, . . . ,3. Looking at this figure it can be seen that additional
measurements do not have a pronounced effect. In particular,
no disturbance waves in the magnetization are formed, which
resemble the waves resulting from the ground-state projection.

The effect is somewhat different when considering the HH
with additional positive anisotropy, see Fig. 7. A subsequent
measurement temporarily restores the Néel-like order (the
same type as described in Sec. IV C), after which oscillation
between the two states continues.

Qualitatively, the oscillation between the two Néel-ordered
states, as observed in Figs. 5 and 7, allows for an interesting
interpretation. Measurement of the ground state initially puts
the system in one of the two sublattice configurations. With
time evolution the state decays into a superposition, which
oscillates between the two Néel-like states. By performing
a subsequent measurement, one resets the clock. Hence,
the metastable state, which results from measurement, can
be interpreted as as a manifestation of the quantum Zeno
effect [52–54]. In the quantum Zeno analogy, the undecayed
state corresponds to the projected ground state and the decayed
state is the state with the sublattices reversed. Subsequent
measurements as described here are identical to the one

(a)N=10 (b)N=20 (c)N=28

FIG. 6. Magnetization 〈Sz
m〉 for odd values of m after multiple projections on spin 1 in the z direction performed at t = 1 + 7.5m, where

m = 0, . . . ,3, on an isotropic antiferromagnetic Heisenberg spin chain of length N .
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considered in Ref. [52], namely, it is described by the operator
Tl(t) = P ±α

l exp(iH t)P ±α
l .

V. DISCUSSION AND CONCLUSION

Summarizing, the effect of a localized instantaneous
ground-state magnetization measurement was studied by con-
sidering finite rings of antiferromagnetic spin-1/2 particles. It
was found that for the isotropic HH a measurement induces
a decoherence wave in each of the magnetic sublattices. We
found that modifying the symmetry properties of the HH by
introducing small anisotropies does not lead to qualitative
differences. By increasing the anisotropy to the same order
of magnitude as the exchange parameter, Néel-like order can
be created by performing a measurement. With subsequent
time evolution, the magnetization of individual spins oscillates
between the two sublattice orderings whereby additional
measurements temporarily pin down a particular sublattice
configuration.

From an experimental point of view, our considerations are
idealized for it does not take into account the environmental
effects such as coupling to the substrate. Recent work for
spin S > 1/2 adatoms, however, does indeed indicate the
importance of the effect of the substrate on the system [49,55]
and the role it plays in the transition to classicality [49,55]. The
intricate interplay between a chain of spins and the coupling to
an environment is still not fully understood and is an intriguing
open question.

The results presented here touch upon the core of quantum
mechanics; namely in quantum mechanics, as opposed to clas-
sical mechanics, measurement disturbances cannot be made
arbitrarily small [56]. Indeed, the emergence of the Néel order
due to measurement is an extreme case of such a disturbance;
subsequent spin-magnetization measurements are completely
determined by the outcome of the first measurement provided
one performs the measurements within the Zeno regime.

The simulation results presented here have direct experi-
mental bearing. For an exchange value of J of the order of
10−4 eV [3,24] the typical time scale of the decoherence wave
dynamics for N = 28 is 10−11 s, whilst switching rates of the
order of 108 s−1 have already been achieved [23]. Moreover,
the time scale of the decay of Néel-like order depends crucially

on � so that the ordering can be made stable for large time
scales by tuning �.
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APPENDIX A: EQUAL-TIME CORRELATIONS

The subject of this appendix are the (equal-time) correlation
functions 〈Sz

1S
z
1+m〉 of the isotropic Heisenberg Hamiltonian

(HH) [Eq. (2)]. In particular, the system under consideration
is prepared in the ground state and is subjected to a local
instantaneous measurement [as described by Eq. (1)] on spin
1 along the positive z axis. Figure 8 depicts the correlation
function 〈Sz

1S
z
1+m〉 and 〈Sx

1 Sx
1+m〉 (the y correlations follow

from symmetry) as a function of the distance m and the
dimensionless time t . Measurement is performed at t = 5 in
the +z direction and the correlations are split up in the two
sublattices (corresponding to even and odd m) for different
chain lengths N . What is observed is that in the ground-state
correlations are short-ranged. For example, |〈Sz

1S
z
5〉| � 0.04

for the three chain lengths N = 10, 20, and 28. Short-ranged
correlations are indeed expected considering the absence
of long-range order for the isotropic HH in the N → ∞
limit [44,45]. In addition, the range of correlations is not
significantly influenced by a measurement.

When looking at the 〈Sx
1 Sx

1+m〉 correlation function, it is
seen that it vanishes at the instant of measurement. This can be
understood by writing the projected spin from the z into the x

basis |↑〉 = (|←〉 + |→〉)/√2. The dynamics in the 〈Sx
1 Sx

1+m〉
correlation after the projection are similar to 〈Sz

1S
z
1+m〉 in the

sense that (1) the correlations quickly decay as a function
of m and (2) time-evolution does not radically change these
characteristics.

Now consider the same isotropic HH setup in which,
after the initial ground-state measurement, additional mea-
surements are performed along the same axis (see Sec. IV D).
It is found that no pronounced difference between the
first and consecutive measurements can be observed in the

(a) N=10 (b) N=20 (c) N=28

FIG. 8. The equal-time correlation function 〈Sα
1 Sα

m+1〉 with α = z,x as a function of m and the dimensionless time t for the isotropic
antiferromagnetic Heisenberg spin chain of length N with periodic boundary conditions. The system is prepared in the ground state after which
spin 1 is projected on the +z axis at t = 5.
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(a) N=10, Δ = 1 (b) N=10, Δ = 2 (c) N=10, Δ = 3

(d) N=20, Δ = 1 (e) N=20, Δ = 2 (f) N=20, Δ = 3

FIG. 9. Magnetization 〈Sz
m〉 for odd values of m for different values of the anisotropy � and chain length N . At t = 0, the system is prepared

in the ground state, and at t = 100 a single measurement is performed on spin 1 along the z direction.

correlations (figures not shown). This is to be contrasted with
the magnetization (Fig. 6), where it is no longer possible to
speak of measurement induced decoherence waves. In view
of the aforementioned results for the equal-time correlation
functions for both single and multiple measurements, one is
led to conclude that for the ground state of the isotropic HH
correlations are short ranged, and projections have little effect
on this property.

APPENDIX B: ISING-LIKE SYSTEM

In Fig. 9, the effect of an easy-axis anisotropy (i.e., � > 0)
is studied, J� being of the same order of magnitude as
the exchange parameter J . At t = 100, the projection P +z

1
(parallel to the anisotropy) is applied to the ground state.
What is observed is that sublattices are created as a result of
measurement, the magnitude of which increases as a function
of �. This is understood by noticing that an increase in �

increases the weight of the Néel state contribution in the
ground-state singlet. Hence one would expect more Néel-like
correlations in the ground state. The equal-time correlation
functions 〈Sα

1 Sα
1+m〉 along the axis of the anisotropy (data not

shown) indicate that this is indeed the case. What is observed
is that upon increasing the anisotropy �, the ground state has
increasing parallel alignment along the same sublattice.

After the von Neumann measurement, oscillation between
the two sublattice configurations can be observed. The oscil-
lations have a well defined oscillation period (Fig. 5), which
increases both as a function of the size of the anisotropy � as
well as the chain length N .

The effect of a subsequent measurement is such that it
restores the sublattice configuration to the state after the

initial ground-state measurement, as shown in Fig. 10. Time
evolution after the second measurement shows sublattice mag-
netization oscillations, which are analogous to the oscillation
observed after the first projection.

APPENDIX C: SYMMETRIES

The role of symmetry on the measurement induced dynam-
ics can be investigated by breaking the global SU(2) symmetry.
This is done by considering an anisotropy � = ±0.1, ± 0.01
in the z direction. Positive (negative) anisotropy corresponds to
easy-axis (easy-plane) magnetization. Therefore measurement
is performed in the z direction for � > 0 and in the x direction
for � < 0. The results are presented in Fig. 11 where in
addition to the anisotropy the chain length has been varied.
What can be noticed by looking at � = 0.1 is that the width
of the decoherence wave is increased for N = 20 and 28. This

(a) Sz
m , m odd (b) Sz

m , m even

FIG. 10. Magnetization for a system with N = 20 particles and
anisotropy � = 2. The system is prepared in the ground state and two
consecutive measurement are performed in the z direction at t = 1
and 500.
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Δ = −0.1 Δ = −0.01 Δ = 0 Δ = 0.01 Δ = 0.1

N=10

N=20

N=28

FIG. 11. Magnetization 〈Sα
m〉 for odd values of m with α = z (α = x) for anisotropy � � 0 (� < 0) for different chain lengths N . The

system is prepared in the ground state and a single measurement is performed on spin 1 at t = 5. The direction of projection is the positive
z axis (x axis) for anisotropy � � 0 (� < 0).

can also be observed for � = −0.1, but to a lesser extent.
This is to be expected since antiparallel alignment along the z

direction is slightly favored for � > 0 compared to the other
axes. Similarly, for � < 0, antiparallel alignment is favored in

the plane perpendicular to the z axis but to a lesser degree due to
rotational freedom in the plane. The qualitative features from
the decoherence wave are, however, preserved upon adding a
small anisotropy.
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[29] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,
A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I.
Bloch, Science 319, 295 (2008).

[30] J. Simon, W. S. Bakr, R. Ma, M. E. Tai, P. M. Preiss, and M.
Greiner, Nature (London) 472, 307 (2011).

[31] M. I. Katsnelson, V. V. Dobrovitski, and B. N. Harmon, Phys.
Rev. B 63, 212404 (2001).

[32] J. von Neumann, Mathematical Foundations of Quantum Me-
chanics (Princeton University Press, Princeton, 1955).

[33] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[34] E. Joos, H. D. Zeh, C. Kiefer, D. J. W. Giulini, J. Kupsch, and I.

O. Stamatescu, Decoherence and the Appearance of a Classical
World in Quantum Theory (Springer, Berlin Heidelberg, 2013).

[35] A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, Phys.
Rep. 525, 1 (2013).

[36] M. I. Katsnelson, V. V. Dobrovitski, and B. N. Harmon, Phys.
Rev. A 62, 022118 (2000).

[37] S. D. Hamieh and M. I. Katsnelson, Phys. Rev. A 72, 032316
(2005).

[38] U. Fano, Rev. Mod. Phys. 29, 74 (1957).
[39] G. H. Golub and C. F. Van Loan, Matrix Computations (John

Hopkins University Press, Baltimore, 1996).
[40] R. Orbach, Phys. Rev. 112, 309 (1958).

[41] V. V. Dobrovitski and H. A. De Raedt, Phys. Rev. E 67, 056702
(2003).

[42] H. De Raedt and K. Michielsen, “Computational methods for
simulating quantum computers”, in Quantum and Molecular
Computing, Quantum Simulations, edited by M. Rieth and
W. Schommers, Handbook of Theoretical and Computational
Nanotechnology Vol. 3 (American Scientific, 2006), Chap. 1,
pp. 2.

[43] S. Murmann, F. Deuretzbacher, G. Zürn, J. Bjerlin, S. M.
Reimann, L. Santos, T. Lompe, and S. Jochim, Phys. Rev. Lett.
115, 215301 (2015).

[44] N. M. Bogoliubov, A. G. Izergin, and V. E. Korepin, Nucl. Phys.
B 275, 687 (1986).

[45] J. B. Parkinson and D. J. J. Farnell, An Introduction to Quantum
Spin Systems (Springer, Berlin Heidelberg, 2010).

[46] R. Vlijm and J.-S. Caux, arXiv:1602.03745 [cond-mat.str-el].
[47] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous

Media, 2nd ed. (Elsevier Science, Oxford, 1984), Vol. 8.
[48] P. W. Anderson, Phys. Rev. 86, 694 (1952).
[49] J.-P. Gauyacq and N. Lorente, J. Phys. Condens. Matter 27,

455301 (2015).
[50] W. Hahn and B. V. Fine, arXiv:1601.06402 [quant-ph].
[51] J. Yi and Y. W. Kim, Phys. Rev. E 88, 032105 (2013).
[52] B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).
[53] E. Joos, in Compendium of Quantum Physics, edited by D.

Greenberger, K. Hentschel, and F. Weinert (Springer Berlin
Heidelberg, 2009), pp. 622.

[54] D. J. Griffiths, Introduction to Quantum Mechanics, Pearson
International Edition (Pearson Prentice Hall, Upper Saddle
River, 2005).

[55] F. Delgado, S. Loth, M. Zielinski, and J. Fernández-Rossier,
Europhys. Lett. 109, 57001 (2015).

[56] J. Schwinger, Quantum Mechanics: Symbolism of Atomic
Measurements (Springer, Berlin Heidelberg, 2001).

184426-9

http://dx.doi.org/10.1038/nphys2299
http://dx.doi.org/10.1038/nphys2299
http://dx.doi.org/10.1038/nphys2299
http://dx.doi.org/10.1038/nphys2299
http://dx.doi.org/10.1103/PhysRevLett.110.157206
http://dx.doi.org/10.1103/PhysRevLett.110.157206
http://dx.doi.org/10.1103/PhysRevLett.110.157206
http://dx.doi.org/10.1103/PhysRevLett.110.157206
http://dx.doi.org/10.1038/nmat4018
http://dx.doi.org/10.1038/nmat4018
http://dx.doi.org/10.1038/nmat4018
http://dx.doi.org/10.1038/nmat4018
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/nphys1032
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1038/nature13450
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1126/science.1150841
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1038/nature09994
http://dx.doi.org/10.1103/PhysRevB.63.212404
http://dx.doi.org/10.1103/PhysRevB.63.212404
http://dx.doi.org/10.1103/PhysRevB.63.212404
http://dx.doi.org/10.1103/PhysRevB.63.212404
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1103/RevModPhys.75.715
http://dx.doi.org/10.1016/j.physrep.2012.11.001
http://dx.doi.org/10.1016/j.physrep.2012.11.001
http://dx.doi.org/10.1016/j.physrep.2012.11.001
http://dx.doi.org/10.1016/j.physrep.2012.11.001
http://dx.doi.org/10.1103/PhysRevA.62.022118
http://dx.doi.org/10.1103/PhysRevA.62.022118
http://dx.doi.org/10.1103/PhysRevA.62.022118
http://dx.doi.org/10.1103/PhysRevA.62.022118
http://dx.doi.org/10.1103/PhysRevA.72.032316
http://dx.doi.org/10.1103/PhysRevA.72.032316
http://dx.doi.org/10.1103/PhysRevA.72.032316
http://dx.doi.org/10.1103/PhysRevA.72.032316
http://dx.doi.org/10.1103/RevModPhys.29.74
http://dx.doi.org/10.1103/RevModPhys.29.74
http://dx.doi.org/10.1103/RevModPhys.29.74
http://dx.doi.org/10.1103/RevModPhys.29.74
http://dx.doi.org/10.1103/PhysRev.112.309
http://dx.doi.org/10.1103/PhysRev.112.309
http://dx.doi.org/10.1103/PhysRev.112.309
http://dx.doi.org/10.1103/PhysRev.112.309
http://dx.doi.org/10.1103/PhysRevE.67.056702
http://dx.doi.org/10.1103/PhysRevE.67.056702
http://dx.doi.org/10.1103/PhysRevE.67.056702
http://dx.doi.org/10.1103/PhysRevE.67.056702
http://dx.doi.org/10.1103/PhysRevLett.115.215301
http://dx.doi.org/10.1103/PhysRevLett.115.215301
http://dx.doi.org/10.1103/PhysRevLett.115.215301
http://dx.doi.org/10.1103/PhysRevLett.115.215301
http://dx.doi.org/10.1016/0550-3213(86)90579-1
http://dx.doi.org/10.1016/0550-3213(86)90579-1
http://dx.doi.org/10.1016/0550-3213(86)90579-1
http://dx.doi.org/10.1016/0550-3213(86)90579-1
http://arxiv.org/abs/arXiv:1602.03745
http://dx.doi.org/10.1103/PhysRev.86.694
http://dx.doi.org/10.1103/PhysRev.86.694
http://dx.doi.org/10.1103/PhysRev.86.694
http://dx.doi.org/10.1103/PhysRev.86.694
http://dx.doi.org/10.1088/0953-8984/27/45/455301
http://dx.doi.org/10.1088/0953-8984/27/45/455301
http://dx.doi.org/10.1088/0953-8984/27/45/455301
http://dx.doi.org/10.1088/0953-8984/27/45/455301
http://arxiv.org/abs/arXiv:1601.06402
http://dx.doi.org/10.1103/PhysRevE.88.032105
http://dx.doi.org/10.1103/PhysRevE.88.032105
http://dx.doi.org/10.1103/PhysRevE.88.032105
http://dx.doi.org/10.1103/PhysRevE.88.032105
http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1063/1.523304
http://dx.doi.org/10.1209/0295-5075/109/57001
http://dx.doi.org/10.1209/0295-5075/109/57001
http://dx.doi.org/10.1209/0295-5075/109/57001
http://dx.doi.org/10.1209/0295-5075/109/57001



