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Finite-temperature charge transport in the one-dimensional Hubbard model
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We study the charge conductivity of the one-dimensional repulsive Hubbard model at finite temperature using
the method of dynamical quantum typicality, focusing at half filling. This numerical approach allows us to obtain
current autocorrelation functions from systems with as many as 18 sites, way beyond the range of standard exact
diagonalization. Our data clearly suggest that the charge Drude weight vanishes with a power law as a function
of system size. The low-frequency dependence of the conductivity is consistent with a finite dc value and thus
with diffusion, despite large finite-size effects. Furthermore, we consider the mass-imbalanced Hubbard model
for which the charge Drude weight decays exponentially with system size, as expected for a nonintegrable model.
We analyze the conductivity and diffusion constant as a function of the mass imbalance and we observe that the
conductivity of the lighter component decreases exponentially fast with the mass-imbalance ratio. While in the
extreme limit of immobile heavy particles, the Falicov-Kimball model, there is an effective Anderson-localization
mechanism leading to a vanishing conductivity of the lighter species, we resolve finite conductivities for an inverse
mass ratio of η � 0.25.
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I. INTRODUCTION

The Hubbard model is a paradigmatic model in the theory of
strongly correlated electrons, capturing some of the essential
many-body effects due to short-range electronic correlations
in condensed matter physics: Mott-insulating behavior and the
resulting localization of magnetic moments with antiferromag-
netic spin correlations. Moreover, the Hubbard model is the
parent Hamiltonian for the Heisenberg and t-J model, which
describe its low-energy physics in the strongly interacting
regime [1–3].

The interest in the one-dimensional (1D) version of the
model arises because of the existence of an exact solution
based on the Bethe ansatz [4] and its relevance for quasi-
1D materials [5–9], nanostructures [10–12], and realizations
with ultracold atomic gases in optical lattices [3,13]. A recent
optical-lattice experiment has investigated the nonequilibrium
charge transport in the two-dimensional Hubbard model [14].

The Hamiltonian of the 1D repulsive Hubbard model is
given by H = ∑L

l=1 hl with local terms,

hl = −th
∑

σ

(c†l,σ cl+1,σ + H.c.) + U

(
nl,↑ − 1

2

)

×
(

nl,↓ − 1

2

)
, (1)

with cL+1,σ = c1,σ , where cl,σ (c†l,σ ) annihilates (creates) a

fermion with spin σ = ↑,↓ on site l, and nl,σ = c
†
l,σ cl,σ is the

local density. L is the number of sites, th is the hopping matrix
element, and U denotes the on-site Coulomb repulsion.
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Despite the success of the theory of such integrable systems
in computing many equilibrium properties, the quantitative
and qualitative understanding of transport within the linear
response theory has proven to be a hard problem [15,16]. While
the zero-temperature transport properties are completely un-
derstood (see, e.g., [17]), the main open questions concern
transport of charge, spin, or energy at finite temperatures
T > 0. The theory of the algebraic structure of the Bethe ansatz
provides knowledge of local conservation laws, which can give
rise to ballistic transport [18].

This ballistic transport is usually described via the Drude
weight D, the zero-frequency contribution in the real part of
the conductivity σ (ω),

Re σ (ω) = 2πDδ(ω) + σreg(ω). (2)

As was argued by Zotos, Naef, and Prelovšek [18], a finite
Drude weight exists if a lower bound is obtained from the
Mazur inequality,

D � 1

2T L

∑
i

〈Qij 〉2〈
Q2

i

〉 , (3)

where 〈•〉 is the thermodynamic average at temperature T .
Such a bound exists if at least one conserved charge Qi has
a finite overlap with the current operator j . The Qi = ∑

l ql,i

are commonly ordered by their range, i = 1 corresponding
to particle number Q1 = N and i = 2 corresponding to the
Hamiltonian Q2 = H . Q3 has range three (i.e., ql,3 involves
operators acting on three neighboring sites) and has the same
structure as the energy-current operator, yet the two differ in the
prefactor of one term [18]. As a consequence, thermal transport
in the one-dimensional Hubbard model is ballistic at any finite
temperature T > 0 [18,19]. Recently, it has been shown that
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there are also quasilocal conserved quantities in Bethe-ansatz
integrable systems which can be crucial for some transport
channels [20–22]. Using the Mazur inequality, one obtains a
nonzero Drude weight for charge transport for any filling n =
N/L (N is the number of fermions) other than n = 1/2, from
considering only the leading nontrivial local conserved charge
Q3 of range three. The case of half filling has been discussed
controversially, with some studies arguing in favor of a finite
charge Drude weight D > 0 [17,23] while others provided
evidence for a vanishing D = 0 [24–26] or at best a very small
D [26] in the thermodynamic limit (tDMRG gives a small
upper bound to the Drude weight). The situation thus appears
to be similar to spin transport in the spin-1/2 XXZ chain
at zero magnetization, where also no local conservation law
yields a nonzero bound to the spin Drude weight [18], while
numerical results [27–33] and Bethe-ansatz-based calculations
[34,35] strongly indicate a nonzero spin Drude weight at least
in its gapless phase, with the possible exception of the point
of full SU(2) symmetric exchange, i.e., the Heisenberg chain.
For that model, though, quasilocal conservation laws have
ultimately been identified as being at the heart of the ballistic
spin transport [20,21] at zero magnetization and in its gapless
phase.

The connection between (quasi-)local conservation laws
and ballistic transport is closely related to how such conser-
vation laws affect thermalization in integrable systems [36].
Consider a quantum quench in which the force driving the
current is turned off. If this initial condition leads to a finite
value of 〈jQi〉, then the current will never completely decay
back to zero. A simple example is the quench of a flux piercing
a ring, which has been studied in this context [37].

Besides the question of the (divergent) zero-frequency
contribution, the actual frequency dependence of the optical
conductivity σreg(ω) constitutes an equally interesting problem
[26,38–40]. Some insight can be gained from effective low-
energy theories such as bosonization [41–43], which is,
however, limited to very low temperatures and may not
correctly capture effects due to integrability without fine-
tuning of parameters. An exact diagonalization study observed
strong anomalous finite-size effects in σreg(ω) of integrable
Mott insulators [38], while many studies conclude that the dc
conductivity,

σdc = lim
ω→0

σreg(ω), (4)

is nonzero in such systems [26,38]. A recent density matrix
renormalization group study suggests a generic divergence
of σdc(T ) at low temperatures with σdc ∝ 1/T [26], different
from the Fermi-liquid behavior σdc ∝ 1/T 2 that emerges in
sufficiently high dimensions [44]. For the high-temperature
regime, a lower bound for the diffusion constant D has been
derived [45], reading

D � const. × t3
h

U 2
. (5)

(Note that D �= D.) While our primary interest is in the
behavior in the linear response regime, we mention that
numerical simulations of boundary-driven transport through
open Hubbard chains also indicate diffusive high-temperature
transport [46].

In our work, we revisit the problem of charge transport in
the Hubbard chain at half filling by employing the method of
dynamical quantum typicality (DQT). Basically, this approach
uses single pure states that are constructed to yield typical
thermal behavior at finite temperature to compute the time
dependence of correlation functions. In the current context
of transport, this method has recently been applied to the
calculation of the spin Drude weight in XXZ chains [33] and
to transport in various nonintegrable models [47–49]. Since
only a pure state needs to be propagated in the DQT method,
any means of propagating the wave function such as a forward
integration or Krylov-space-based approaches can be used,
giving access to system sizes as large as L = 18, which is
comparable to what can be reached for the ground state via
Lanczos methods.

We extract the Drude weight from the long-time behavior
of current autocorrelation functions and study its finite-size
dependence. We observe a power-law decay with system size
to zero, which we interpret in the framework of the eigenstate
thermalization hypothesis applied to integrable systems [50].
Thus, our results confirm the predictions of Ref. [24,25], i.e.,
a vanishing Drude weight D = 0 at finite temperatures. We
further analyze the optical conductivity, for which our data
suggest a finite σdc. Depending on how the time-dependent data
are converted to frequency, one either recovers the anomalous,
system-size dependent fluctuations discussed in [38] or one
obtains a smooth, diffusivelike low-frequency dependence.

The Hubbard model can equivalently be formulated as a
spin-1/2 model defined on a two-leg ladder: Spin-up and
spin-down fermions live on the two separate legs, where
the exchange is of the XY type along the legs, while on
the rungs the Hubbard interaction translates into an Ising
interaction. This reformulation is, on the one hand, useful
for numerical implementations, and on the other hand, there
are several natural ways of breaking the integrability that
emerge in this picture. Transport in various spin Hamiltonians
defined on spin ladders has in fact been intensely investigated
[29,47,49,51–55].

Here, we consider the mass-imbalanced Hubbard model as
an example of a nonintegrable system. The local Hamiltonian
now takes the form,

hl = −
∑

σ=↑,↓
[tσ (c†l,σ cl+1,σ + H.c.)] + U

(
nl,↑ − 1

2

)

×
(

nl,↓ − 1

2

)
, (6)

i.e., we introduce different hopping matrix elements tσ , σ =
↑,↓, for the two fermionic species. We define the inverse mass
ratio as

η = t↓
t↑

. (7)

In the limit of η = 0, also known as the Falicov-Kimball model,
one naturally obtains perfectly insulating behavior at any
temperature due to an effective Anderson-localization mech-
anism. In this case, all the local density operators nl,↓ of the
heavy species become conserved quantities, i.e., [H,nl,↓] = 0.
Thus, for a given random distribution of immobile spin-down
fermions, via the interaction term Unl,↑nl,↓, one effectively
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obtains a diagonal disorder potential for the light fermions with
local potentials εl = Unl,↓ drawn from a binary distribution
εl = 0,U . The translational invariance of the original model
at a given density of n↓ = N↓/L is restored by averaging over
many random distributions of the heavy fermions.

We are interested in the dependence of the conductivities
σ↑(ω) and σ↓(ω) of the heavy and light species, respectively,
as a function of the inverse mass ratio η. First, we compute the
associated Drude weights, which vanish approximately expo-
nentially fast with system size, as expected for a nonintegrable
model [50,56,57]. For intermediate values of η, we observe
a regular form of σ↑(ω) and σ↓(ω). The dc conductivity of
the heavy component appears to simply vanish quadratically
with t↓, while the presence of the heavy fermions leads to an
approximately exponential decay of the dc conductivity of the
light fermions as a function of decreasing η, which we are able
to resolve for η � 0.25.

The mass-imbalanced Hubbard model has recently attracted
renewed interest in the context of many-body localization
[58,59] since several authors have considered the possibility
of many-body localization in translationally invariant systems
[60–62]. In our model, interactions could thus potentially lead
to a nontrivial effect in the strongly mass-imbalanced regime.
Recent work has suggested, though, that there likely is no
mass-imbalance driven localization-delocalization transition
in our model at a nonzero η, but a quasi-many-body localized
behavior with anomalous diffusion at small values of η [63].
These results are based on exact diagonalization with L � 10.
Our results suggest a finite, albeit exponentially small dc
conductivity at least for η � 0.25.

The plan of the paper is the following. Section II sum-
marizes the definitions and expressions of the conductivity,
the Drude weight, and current autocorrelation functions. In
Sec. III, we provide a brief introduction to the DQT method and
its application to the calculation of finite-temperature current
autocorrelation functions. Section IV contains our results for
the integrable Hubbard chain at half filling, while we present
our data and the discussion of the mass-imbalanced model
in Sec. V. We conclude with a summary and an outlook in
Sec. VI.

II. DEFINITIONS

Using the Jordan-Wigner transformation, the mass-
imbalanced Fermi-Hubbard model can equivalently be for-
mulated as a spin-1/2 model defined on a two-leg ladder,

hl =
∑

σ=↑,↓
−2tσ

(
Sx

l,σ Sx
l+1,σ + S

y

l,σ S
y

l+1,σ

) + USz
l,↑Sz

l,↓, (8)

where spin-up and spin-down fermions live on the two separate
legs and the Hubbard interaction translates into an Ising
interaction. Our numerical implementation is formulated in
the spin language.

We derive the charge current from the continuity equation
[18], leading to j = j↑ + j↓ and jσ = i

∑
l[nl,σ ,hl] in the

Hubbard notation. In the spin notation,

jσ = −2tσ
∑

l

(
Sx

l,σ S
y

l+1,σ − S
y

l,σ Sx
l+1,σ

)
, (9)

is the spin current in the first (σ =↑) or second (σ =↓)
leg. We correspondingly study the two current autocorrelation
functions at inverse temperature β = 1/T ,

Cσ (t) = Re 〈jσ (t)jσ 〉
LZ

= Re Tr{e−βH jσ (t)jσ }
LTr{e−βH } , (10)

where the time argument of jσ (t) refers to the Heisenberg
picture, jσ (0) = jσ , and Cσ (0) = t2

σ /2 in the high-temperature
limit β → 0.

From the time dependence of Cσ (t) we determine the
quantities,

C̄σ (t1,t2) = 1

t2 − t1

∫ t2

t1

dt Cσ (t), (11)

in a time interval [t1,t2] where Cσ (t) has decayed to its long-
time value C(t1 < t < t2) ≈ C(t → ∞) and is practically
constant. Thus, the quantities C̄σ (t1,t2) approximate the finite-
size Drude weights of the two legs given by

Dσ = 1

2π
lim

t2→∞ C̄σ (0,t2). (12)

We determine the frequency-dependent optical conductivity
Re σσ,tmax (ω) via the finite-time Fourier transformation,

Re σσ,tmax (ω) = 1 − e−βω

ω

∫ tmax

0
dt eıωt Cσ (t). (13)

Here, the choice of a particular tmax implies a frequency
resolution δω ≈ π/tmax. In the thermodynamic limit L → ∞,
Re σσ,tmax (ω) is a smooth function on an arbitrarily small scale
δω → 0 and does not depend on the actual value of tmax

chosen, as long as it is large compared to the current relaxation
time [48]. For any finite L, however, it is important to find a
reasonable tmax where finite-size effects are well controlled. In
particular, for integrable systems, finding such a tmax can be a
subtle issue, as discussed later in detail. Note that, to leading
order in β, Re σσ (ω) ∝ β and that Re σσ (ω) = σσ (ω) in the
high-temperature limit.

If we find a (tmax,L) region with no significant dependence
on tmax and L, we extract the dc conductivity σσ,dc as the
low-frequency limit,

σσ,dc = lim
ω→0

σσ,tmax (ω). (14)

In case of vanishing Drude weights, σσ,dc/χ is identical to the
time-dependent diffusion constant,

Dσ (tmax) = β

χ

∫ tmax

0
dt Cσ (t), (15)

with χ being the static susceptibility and reading, at β → 0,

χ

β
= Tr

{( ∑
l S

z
l,σ

)2} − (
Tr

{∑
l S

z
l,σ

})2

L
= 1

4
. (16)

In the case of significant finite-size Drude weights, however,
Dσ (tmax) may not depend on tmax and L, while σσ,dc clearly
does. Therefore, in such cases, the time-dependent diffusion
constant provides a useful alternative for extracting transport
coefficients on the basis of finite systems. Beyond technical
aspects,D(t) also has a clear physical interpretation: It directly
yields information on how spatial variances of density profiles
evolve in time [64–67] for any finite L.
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III. DYNAMICAL QUANTUM TYPICALITY

A. Concept

In this section we first introduce a very accurate approxima-
tion of current autocorrelation functions. This approximation
then provides the basis for the numerical technique used
throughout our work. The central idea is to replace the trace
operation Tr{•} = ∑

i〈i| • |i〉 in Eq. (10) by a single scalar
product 〈ψ | • |ψ〉, where |ψ〉 is a single pure state drawn at
random. Since we aim at describing the current dynamics in
the full Hilbert space, |ψ〉 is drawn at random in the full basis.
Conveniently, |ψ〉 is randomly chosen in the eigenbasis of the
particle number,

|ψ〉 =
∑
N

|ψN 〉, |ψN 〉 =
dN∑
s

(as + ı bs) |s〉, (17)

where s = s(N ) is a label for the eigenstates with particle
number N . The coefficients as and bs are random real numbers.
To be precise, these coefficients are chosen according to a
Gaussian distribution with zero mean. Thus, the pure state
|ψ〉 is chosen according to the unitary invariant Haar measure
[68,69] and, according to typicality [70–75], a representative
of the statistical ensemble.

The pure state |ψ〉, and each |ψN 〉, correspond to the limit
of high temperatures β → 0. We incorporate finite tempera-
tures β �= 0 by introducing |ψN (β)〉 = exp(−βH/2) |ψN 〉 and
rewriting the current autocorrelation function in Eq. (10) in the
form [33,47,68,69,76,77] (skipping the index σ for clarity),

C(t) = Re
∑

N 〈ψN (β)|j (t) j |ψN (β)〉
L

∑
N 〈ψN (β)|ψN (β)〉 + ε(|ψ〉), (18)

where ε(|ψ〉) is a statistical error resulting from the random
choice of |ψ〉. This error vanishes when sampling over several
|ψ〉 is performed, i.e., ε̄ = 0.

However, the central advantage of Eq. (18) is not the
vanishing mean error ε̄ = 0 but the knowledge about the
standard deviation of errors �(ε). This standard deviation is
bounded from above by [33,68,69,77],

�(ε) � O
(√

Re 〈j (t) j j (t) j 〉
L

√
deff

)
, (19)

where deff is the effective dimension of the Hilbert space.
In the limit of high temperatures β → 0, deff = 4L is the
full Hilbert-space dimension. Consequently, if the length
L is increased, �(ε) decreases exponentially fast with L.
At arbitrary β, deff = Tr{exp[−β(H − E0)]} is the partition
function with ground-state energy E0, reflecting the number
of thermally occupied states, and also scales exponentially fast
with L [33]. Therefore, while the error is exactly zero in the
thermodynamic limit L → ∞, this error can be already very
small at finite but large L and sampling is unnecessary, as is
the case for all examples considered in our work.

B. Numerical implementation

Most importantly, the approximation in Eq. (18) can be
calculated without knowing the eigenstates and eigenvalues of
the Hamiltonian. This calculation is based on the two auxiliary

pure states,

|�N (β,t)〉 = e−ıH t−βH/2 |ψN 〉, (20)

|ϕN (β,t)〉 = e−ıH t j e−βH/2 |ψN 〉. (21)

Both states are time- and temperature-dependent and the only
difference between the two states is the additional current
operator j in the right-hand side of Eq. (21). Using these
states, the approximation in Eq. (18) reads

C(t) = Re
∑

N 〈�N (β,t)|j |ϕN (β,t)〉
L

∑
N 〈�N (β,0)|�N (β,0)〉 . (22)

Apparently, the full time and temperature dependence in
Eq. (22) results from the evolution of the pure states only,
i.e., there the current operator j is simply applied to the initial
or time-evolved states.

For, e.g., |�N (β,t)〉, the β dependence is generated by an
imaginary-time Schrödinger equation,

ı
∂

∂(ıβ)
|�N (β,0)〉 = H

2
|�N (β,0)〉, (23)

and the t dependence by the usual real-time Schrödinger
equation,

ı
∂

∂t
|�N (β,t)〉 = H |�N (β,t)〉. (24)

These differential equations can be solved by the use of
straightforward iterative methods such as, e.g., Runge-Kutta
[33,47,77]. We use a massively parallel implementation of
a Suzuki-Trotter product formula or Chebyshev polynomial
algorithm [78,79], allowing us to study quantum systems with
as many as 2L = 36 lattice sites (L = 18 in the fermionic
language), where the Hilbert-space dimension is d = O(1011).
As compared to exact diagonalization, this dimension is larger
by orders of magnitude. Yet, we do not exploit translation
invariance of Hamiltonian and current. This symmetry adds
momentum as a good quantum number and an additional layer
of parallelization [47].

In practice, we use the Chebyshev polynomial algorithm to
compute e−βH/2|ψN 〉. The results of this algorithm are exact
to at least ten digits. For the propagation in real time, we
mostly use a unitary, second-order product formula algorithm
with a time step δt th = 0.02, which is sufficiently small
to guarantee that the total energy is conserved up to at
least six digits. Occasionally, we have used the Chebyshev
polynomial algorithm to compute the real-time evolution: No
significant differences between these and the product-formula
results were found. Most of the simulations were carried out
on JUQUEEN, the IBM Blue Gene/Q located at the Jülich
Supercomputer Centre. A simulation of the largest system
studied in the present paper (36 spins) required 3 TB of
memory, the computation was distributed over 131 072 (MPI)
processes, and the total elapsed time to carry out 400 times
steps was about 10 h (1.3 million core hours).

IV. RESULTS FOR THE HUBBARD MODEL

This section contains our results for the charge transport in
the 1D Hubbard model, focusing at half filling. We consider
infinite temperature β = 1/T → 0 unless stated otherwise.
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First, we discuss the overall time dependence of the current
autocorrelation function for various values of U/th. Second,
we extract the Drude weight D from the long-time behavior
of C(t). Finally, we discuss the frequency dependence of the
regular part and its zero-frequency limit.

A. Time dependence of autocorrelation functions

Figures 1(a)–1(c) show typical results for the real-time
decay of the current autocorrelation function C(t) for U/th =
4,8,16, respectively, and several system sizes L � 18. The
figures show C(t) for times up to t th � 8, where the dominant
decay of C(t) from its initial value occurs. Typically, the
data from these different L coincide for t th � 2.5. Beyond
t th = 2.5, C(t) is a monotonically decreasing function of
system size as indicated by the arrow in Fig. 1(b). The figures
further include real-time density matrix renormalization group
(tDMRG) data from [26] for comparison. Our DQT results are
in excellent agreement with the tDMRG data.

As U/th increases, C(t) approaches small values increas-
ingly faster as a function of time. On the other hand, the
larger U/th, the more high-frequent and pronounced are the
oscillations in C(t). These are inherited from the large U/th
limit, in which the spectrum consists of bands of eigenstates

0

0.4

C
(t

) 
/ t

h2

0

0.4

C
(t

) 
/ t

h2

0 8
t t

h

0

0.4

C
(t

) 
/ t

h2

(b) U/t
h
=8

L=9,11,13,15,18

(a) U/t
h
=4

(c) U/t
h
=16

tDMRG

initial states (L=9)

FIG. 1. (Color online) Real-time decay of the current autocorre-
lation function C(t) for (a) U/th = 4, (b) U/th = 8, (c) U/th = 16
for various L = 9,11,13,15,18 and at infinite temperature β th → 0
(solid curves and circles). For the largest L = 15 and 18, convergence
to system-size independent values is reached at times t th ∼ 5. For
comparison, tDMRG data from [26] are included in (a) and (b)
(dashed curves). The inset in (a) shows the L = 9 result for two
different initial random states (solid curve, first state; squares, second
state), which demonstrates small statistical errors for this L already.

separated by gaps of order U . These bands correspond to
excitations with multiple doublons. Thus, the oscillatory
dynamics in C(t) at large U/th is quite similar to the behavior
in the spin-1/2 XXZ chain in the strong Ising limit [67] and
spin-1/2 XX ladders in the strong rung-coupling limit [47].

B. Drude weight

In order to extract the nondecaying portion of C(t), which
equals the Drude weight, much longer times than t th ∼ 12
need to be considered [33]. Therefore, we display C(t) for
t th � 25 in Fig. 2(a) for the example of U/th = 4,8,16
and for L = 15. At times t th � 10, the oscillations in C(t)
have decayed to a sufficiently small amplitude and hence
we estimate the Drude weight by averaging C(t) in the time
window t ∈ [t1 th = 12.5,t2 th = 25], yielding C̄(t1,t2). Note
that C̄(t1,t2) does not depend on this specific choice of t2 [see
the inset of Fig. 2(b)].

The resulting, L-dependent C̄(t1,t2) are shown in Fig. 2(b)
in a log-log plot. The system-size dependence of C̄(t1,t2) is
consistent with a 1/L decay of the Drude weight to zero as
system size increases. This scaling of D with system size is
typical for integrable systems: It has been observed for the spin
Drude weight of the spin-1/2 XXZ chain as well [29,30,32,33].

0 50t
2
 t

h

0

0.1

10
-1

10
0

10
1

t t
h

0

0.4

C
(t

) 
/ t

h2

U/t
h
=4

U/t
h
=8

U/t
h
=16

8 9 10 15
L

0.1

0.2

0.3

C
(t 1,t 2) 

/ C
(0

)

[t
1,t 2]

(a) long times

1/L

(b) Drude weight

(L=15)

U/t
h
=4,8,16 U/t

h
=16, L=16

FIG. 2. (Color online) (a) Long-time limit of the current auto-
correlation function C(t) for different U/th = 4,8,16, fixed L = 15,
and high temperatures β th → 0. (b) Finite-size scaling of the Drude
weight C̄(t1,t2), as extracted from the time interval [t1 th,t2 th] =
[12.5,25], in a log-log plot. As a guide to the eyes, power laws
(dashed lines) and a function ∝ 1/L (solid line) are indicated. The
inset in (b) shows, for U/th = 16 and L = 16, that C̄(t1,t2) does not
depend on the specific choice of t2.
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FIG. 3. (Color online) The same information as shown in
Fig. 2(b) but for fixed U/th = 8 and different β th = 0,0.1,0.5. Data
for β th = 0.0 and 0.1 almost coincide.

Moreover, the Drude weight approximately measures the fluc-
tuations of diagonal matrix elements of the associated current
operator [50]. Such system-size-dependent fluctuations are
commonly investigated to access the validity of the eigenstate
thermalization hypothesis [80–82]. For integrable systems,
most numerical studies indicate a slow, power-law decay
of these fluctuations [50,57,83]. Most notably, our data are
consistent with a vanishing Drude weight D = 0 at infinite
temperature, in agreement with [25].

In principle, if the infinite-temperature Drude weight
vanishes, this does not necessarily imply that D(T ) = 0 at
any finite T . To see this, one can write the Drude weight in a
high-temperature expansion,

D(T ) = D1

T
+ D2

T 2
+ . . . , (25)

where D1 is the infinite-temperature Drude weight studied in
Fig. 2(b). To substantiate that in the Hubbard model at half
filling D(T ) = 0 at any finite T , we have also computed D(T )
at T/th = 2,10, where D also seems to vanish as L increases.
This is illustrated in Fig. 3.

C. Optical conductivity

Since the Drude weight appears to vanish as L → ∞, all
weight in Re σ (ω) will ultimately be in the regular part σreg(ω).
This optical conductivity has recently been studied using
tDMRG [26], where a finite dc conductivity was observed
that diverges as σdc ∼ 1/T as temperature decreases.

We here first demonstrate that it is indeed possible to extract
the dc conductivity from our time-dependent data for C(t). At
infinite temperature, the dc conductivity σdc/χ is simply equal
to the integral D(t) over C(t) as defined in Eq. (15), i.e.,
connected to the diffusion constant by an Einstein relation.

At large U/th, D increases quickly and then settles into a
plateau, as is evident from the example presented in Fig. 4(a).
At large times, D further increases, which is due to both the
nonzero Drude weight on finite systems and other finite-size
effects. Plotting data for D for several system sizes clearly
suggests that finite-size data gradually approach the plateau
value at longer times as well; see Fig. 4(a).

The presence of such a plateau, following the reasoning of
[64], suggests a finite dc conductivity and diffusion constant.
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"full-time FT"

FIG. 4. (Color online) (a) Time-dependent diffusion constant
D(t) for U/th = 16, various L = 9,11,13,15,16, and high temper-
atures β th → 0. A plateau is clearly visible at intermediate times
before the finite-size Drude weight yields a linear increase in the
long-time limit. The plateau height is independent of L and the plateau
width increases with L. (This behavior is almost identical to the XXZ
chain at � > 1.) (b) and (c) Frequency dependence of the optical
conductivity Re σ (ω), as resulting from tmax th = 4,100. (c) Does not
respect the “better” limit of L → ∞ first and tmax th → ∞ afterward.
Apparently, (c) shows strong finite-size effects at both ω = 0 and
ω �= 0. However, in the thermodynamic limit L → ∞, (c) seems to
approach (b).

As shown in Fig. 5, the diffusion constant exhibits a peculiar
behavior at T = ∞: As U/th increases, it saturates at a U -
independent value. This saturation results from the structure
of the energy spectrum in the large-U/th limit: It consists of
bands separated by U that have a band width given by th.
Since we are taking the limit U/th → ∞ after taking the limit
T → ∞, the dominant contribution to scattering comes from
interband processes. This behavior appears to be generic for
systems with an emergent ladderlike spectrum and has also
been observed in the Ising regime of spin-1/2 XXZ chains
[67] and in spin-1/2 XX ladders [47]. The independence of
the diffusion constant on U observed in Fig. 5 also unveils that
the lower bound of [45], as given in Eq. (5), is not exhaustive
in the large-U/th regime.

For the purpose of computing Re σ (ω), the existence of the
plateau implies that the asymptotic behavior has been reached.
Moreover, the value of the plateau in D(t) is independent of
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FIG. 5. (Color online) Time-dependent diffusion constant D(t)
for various U/th = 4,16,32,64, fixed L = 15, and high temperatures
β th → 0. Clearly, the plateau value of D(t) becomes independent of
U in the limit of large U .

system size for the parameters of Fig. 4. Thus, we will compare
two ways of computing Re σ (ω): (i) The first version uses the
full-time dependence of C(t), up to and including times where
we clearly observe finite-size effects (later dubbed full-time
FT); (ii) in the second, we restrict the time window for the
Fourier transformation to times at which we have system-size
independent data for C(t) (later referred to as L-independent
FT).

The results of both approaches are presented in Figs. 4(b)
and 4(c), respectively. The full-time FT resolves the strong
finite-size dependent structures that were known to exist from
Ref. [38]. The positions of these sharp peaks shift to smaller
frequencies as system size increases. An extrapolation of
σreg(ω) to zero frequency is thus difficult to control.

The behavior of σreg(ω) computed using the L-independent
FT strategy, by contrast, is a very smooth function that strongly
resembles the optical conductivity of a typical diffusive
system. This is clearly related to the fast initial decay of
C(t) [see the data shown in Fig. 1(b)], and the corresponding
establishment of the plateau in the integrated quantity D(t),
which consequently allows us to estimate the dc limit under
the assumption that no additional time dependence emerges in
C(t) at very long times and large systems. We thus propose
that whenever such a plateau is present in D(t), the cleanest
way of computing σreg(ω) is the L-independent FT, in line with
the reasoning of Refs. [64,67,84].

Figure 6 shows data for U/th = 4 as an example for a
case, in which no clear plateau in D(t) can be resolved with
the accessible system sizes. Here, we thus compute σreg(ω)
from the full available time series of C(t), which is shown in
Fig. 6(b). The optical conductivity has a broad maximum at
ω/th ∼ U/th and an additional low-frequency peak at ω/th ∼
1 whose position shifts to small frequencies as L increases. The
data would suggest a small or vanishing dc conductivity, which
we believe does not reflect the behavior of an infinitely large
system [compare Fig. 4(b)], since the low-frequency finite-size
effects likely screen the correct low-frequency dependence.

V. RESULTS FOR THE MASS-IMBALANCED CASE

In this section, we present our results for the mass-
imbalanced cases η = t↓/t↑ < 1, where the model is nonin-
tegrable. We start with the case η = 0, the Falicov-Kimball
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FIG. 6. (Color online) The same information as shown in Fig. 4,
yet here for U/th = 4. Extracting Re σ (ω) via the L-independent FT
strategy is not applicable here, since D(t) does not exhibit a clear
plateau [see (a)], due to the long-time tail in C(t). This plateau will
also not occur for L = 18. Thus, in (b), we present Re σ (ω) obtained
from a full-time FT, which thus results in strong finite-size effects at
small frequencies.

limit, and discuss the emergence of Anderson localization in
this limit. Then we turn to the case of η ∼ 1/2 and study both
Drude weight and optical conductivity. Finally, we summarize
the scaling of the diffusion constant as a function of η in the η

region accessible to our numerical method.

A. Falicov-Kimball limit

In the Falicov-Kimball limit η = 0 the model simplifies to

hl = −t↑(c†l,↑cl+1,↑ + H.c.)

+U

(
nl,↑ − 1

2

)(
nl,↓ − 1

2

)
. (26)

For this simplified model all nl,↓ commute with all local
Hamiltonians hl and with each other,

[hl,nk,↓] = [nl,↓,nk,↓] = 0, (27)

l,k = 1, . . . ,L. Each (nl,↓ − 1/2) is thus conserved and
yields a good quantum number εl = ±1/2, with 2L different
sequences,

ε(m) = (ε1(m), . . . ,εL(m)), (28)

m = 1, . . . ,2L. As a consequence, the full Hamiltonian H =∑
l hl can be rewritten as a sum of 2L uncoupled Hamiltonians

H (m) = ∑
l hl(m), where

hl(m) = −t↑(c†l,↑cl+1,↑ + H.c.) + U εl(m)

(
nl,↑ − 1

2

)
, (29)

and the U part becomes a site-dependent potential given by
the sequence ε(m). For many m, ε(m) can be understood as a
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FIG. 7. (Color online) (a) Real-time decay of the current auto-
correlation function C↑(t) of the light ↑ component for U/t↑ = 4,
strong imbalance η = t↓/t↑ = 0, L = 9,11,15, and high temperatures
β t↑ → 0. Since C↑(t) is highly oscillating after the initial decay,
also the time-dependent diffusion constant D↑(t) does so in (b).
Consequently, the usual extraction of a diffusion constant would
depend on the specific point in time considered. However, the time
average still yields a reasonable diffusion constant. (c) Finite-size
scaling of the time average for U/t↑ = 4,8, as resulting from the
time interval [t1 t↑,t2 t↑] = [12.5,75], in a semi-log plot. Apparently,
the scaling is nontrivial, but the decrease is consistent with insulating
behavior in the thermodynamic limit L → ∞.

sequence of random numbers drawn from a binary distribution
[−1/2,1/2]. Therefore, remarkably, many uncoupled Hamil-
tonians H (m) can be interpreted also as the single-particle,
Anderson problem for on-site disorder of strength U . Note
that translation invariance is typically broken for a given m but
restored by sampling over m. Note further that all m contribute
at finite temperatures.

Due to the analogy to the single-particle, Anderson problem
and the strict one-dimensionality of the lattice, one expects
perfectly insulating behavior in the thermodynamic limit L →
∞ at all temperatures. Early on, this expectation has been
verified in numerical calculations of the optical conductivity
[85,86] for β t↑ > 0 and values of U where the localization
length does not exceed lattice sizes accessible. Yet, the high-
temperature limit β t↑ → 0 has not been studied.

In Fig. 7(a) we show our results for the time-dependent
current autocorrelation function C↑(t) for β t↑ → 0, U/t↑ =
4, and different L = 9,11,15. Clearly, C↑(t) decays rapidly
on a rather short time scale t t↑ ∼ 1. After this initial decay
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FIG. 8. (Color online) Frequency dependence of the optical con-
ductivity Re σ↑(ω) for (a) tmax t↑ = 25, (b) tmax t↑ = 50 for U/t↑ = 4,
strong imbalance η = t↓/t↑ = 0, different L = 11,13,15, and high
temperatures β t↑ → 0. (c) Shows (a) for U/t↑ = 8. The overall
structure is independent of tmax and L. For the dependence of the
dc limit Re σ↑(ω → 0) on L and tmax, see D̄↑(t1,t2) discussed before.

C↑(t) approaches zero from the negative side but still shows
small oscillations. Note that these oscillations are no finite-
size effects since curves for L = 11 and 15 are practically
identical to each other for the long times t t↑ ∼ 75 depicted
in the figure. This curve for C↑(t) yields the time-dependent
diffusion constant D↑(t) shown in Fig. 7(b). After the initial
increase ofD↑(t) we find a strong decrease related to the region
where C↑(t) is negative. Necessarily, D↑(t) also shows small
oscillations not related to finite-size effects, as evident from
comparing L = 11 and 15 again.

The long-time oscillations ofD↑(t) indicate that the dynam-
ical process cannot be described by a diffusion constant in the
strict sense. However, to extract an effective diffusion constant,
we average D↑(t) over the long-time interval [t1 t↑,t2 t↑] =
[12.5,75]. In Fig. 7(c) we depict the resulting D̄↑(t1,t2) as a
function of L for U/t↑ = 4,8 in a semi-log plot. Apparently,
this time-averaged quantity decreases as system size increases
and may eventually become zero in the thermodynamic limit
L → ∞. Note that the scaling for small L is partially related
to tiny finite-size Drude weights D↑, entering D↑(t) via the
relation D↑(t) ∝ D↑ t in the long-time limit.

Next we turn to the optical conductivity. Since C↑(t)
and D↑(t) do not become constant in the long-time limit,
the finite-time Fourier transform necessarily depends on the
specific time interval chosen. Thus, we show in Figs. 8(a) and
8(b) the Fourier transform of U/t↑ = 4 data for tmax t↑ = 25
and 50, where times t � tmax were considered in the Fourier
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FIG. 9. (Color online) Real-time decay of the current autocorre-
lation function Cσ (t) for (a) U/t↑ = 4, (b) U/t↑ = 8 for η = t↓/t↑ =
0.4, both components σ = ↑,↓, two L = 9,15, and high temperatures
β t↑ → 0. (c) Finite-size scaling of the Drude weight C̄σ (t1,t2), as
extracted from the time interval [t1 t↑,t2 t↑] = [25,50], in a semi-log
plot. As a guide to the eyes, exponentials (dashed lines) are indicated.

transformation. While Figs. 8(a) and 8(b) differ with respect
to details, the overall structure does not depend on the specific
choice of tmax. In particular, the limit ω → 0 is consistent with
a vanishing dc conductivity. Note that this limit coincides with
D↑(t) evaluated at t t↑ = 25 and 50, respectively. Similarly,
our results indicate a vanishing dc conductivity for U/t↑ = 8,
as shown in Fig. 8(c). The small negative spectral weight is an
artifact of the finite-time Fourier transform used and depends
on the specific choice of tmax.

To summarize, our β t↑ → 0 results are consistent with
the interpretation of the model in terms of the single-particle,
Anderson problem in one spatial dimension.

B. Intermediate imbalance

Next we discuss the region 0 < η < 1, where the model still
is nonintegrable but the interpretation of the model in terms
of the single-particle Anderson problem is not possible any
more. In fact, in this η region, we deal with a many-particle
problem.

We start with intermediate imbalance η = 0.4. In Fig. 9(a)
we depict our results for the time-dependent current autocor-
relation function Cσ (t) for the light (σ =↑) and the heavy
(σ =↓) component for U/t↑ = 4 and L = 9,15, still in the
high-temperature limit β t↑ → 0. In Fig. 9(b) we additionally

show results for U/t↑ = 8. For both components, Cσ (t) decays
fast on a time scale t t↑ ∼ 1 but revivals appear afterward.
While these revivals are equally pronounced for σ =↑ and ↓,
only C↑(t) becomes negative in the time interval t t↑ ∼ 2.5.
However, any revivals eventually disappear and Cσ (t) decays
fully to approximately zero for σ =↑ and ↓. When comparing
curves for L = 9 and 15, it is also evident that finite-size effects
are small on the physically relevant time scale. Thus, we are
able to obtain information on Cσ (t) in the thermodynamic limit
L → ∞ without invoking intricate extrapolations.

It is also evident from Figs. 9(a) and 9(b) that Drude weights
Dσ are small, i.e., there is no long-time saturation of Cσ (t) at a
significant positive value. However, it is instructive to discuss
the actual value of the Drude weights in more detail. In Fig. 9(c)
we show the finite-size scaling of C̄σ (t1,t2), as extracted
from the time interval [t1 t↑,t2 t↑] = [25,50], for σ =↑ , ↓ and
U/t↑ = 4,8 in a semi-log plot. Interestingly, C̄σ is larger for
σ =↓ and does not depend on U . In all cases, the finite-size
scaling of C̄σ is remarkably well described by a simple
exponential decrease over three orders of magnitude, with a
relative value C̄σ /Cσ (0) < 10−3 at L = 15. This exponential
decrease is expected for strongly nonintegrable models [47,56]
and, moreover, is in accord with the eigenstate thermalization
hypothesis [50,57].

Since finite-size effects are small and Cσ (t) decays to
approximately zero, we can accurately determine the optical
conductivity by Fourier transforming data for finite L and
t . In Figs. 10(a) and 10(b) we show the finite-time optical
conductivity Re σσ (ω) at U/t↑ = 8 for the light and heavy
component, respectively. As expected, Re σσ (ω) does neither
depend on tmax nor L and is a smooth function of frequency
ω. Similarly to the integrable case η = 0, we find a broad
maximum at ω/t↑ ∼ U/t↑ for both σ . In contrast, the position
of the additional peak at low ω depends on σ but is roughly
independent of U , as shown in Fig. 10(c). Most importantly,
the dc conductivity is finite and its actual value is, relative to the
amplitude of the low-ω peak, larger for the heavy component
σ =↓. As a function of U , this dc conductivity decreases but
is still finite for all U depicted; see Fig. 10(c). Therefore, at
η = 0.4, we can exclude the existence of an insulator in the
high-temperature limit β t↑ → 0.

C. Scaling of diffusion constant and dc conductivity

We eventually discuss the scaling of transport coefficients
as a function of imbalance η = t↓/t↑. For the η discussed
below, extracting the dc conductivity σσ,dc as Re σσ (ω → 0)
for finite L is equivalent to determining the plateau value of the
time-dependent diffusion constant Dσ (t). Therefore, we focus
on an analysis of Dσ (t), which can be concisely summarized
for various η.

In Fig. 11(a) we show the time-dependent diffusion constant
D↑(t) of the light component for different η = 0.7, . . . ,0.2, a
single U/t↑ = 8, and fixed system size L = 14. In Fig. 11(b)
we show D↓(t) of the heavy component for the same set of
parameters. Several comments are in order. First, for both
σ = ↑,↓, a plateau of Dσ (t) is clearly visible at times t t↑ ∼
15 for imbalances 0.3 � η � 0.6. We have checked that the
plateau values Dσ χ coincide with the dc conductivity σσ,dc,
cf. Fig. 10 for η = 0.4, even though not shown explicitly for all
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FIG. 10. (Color online) Frequency dependence of the optical
conductivity Re σσ (ω) for the (a) light component σ =↑, (b)
heavy component σ =↓ for U/t↑ = 8, η = t↓/t↑ = 0.4, and high
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tmax t↑ = 10,20. The independence of L and tmax is evident. (c) U

dependence of Re σσ (ω) for a large L = 15 and long tmax t↑ = 20. A
peak at ω/t↑ = U/t↑ is clearly visible.

η. Second, for η > 0.6, Dσ (t) ∝ Dσ t due to strong finite-size
Drude weights Dσ in the vicinity of the integrable point η = 1;
cf. Fig. 6. These finite-size effects prevent us from determining
the diffusion constant in the thermodynamic limit L → ∞.
Third, for η < 0.3, D↑(t) of the light component develops
the small oscillations around zero discussed in the context of
the Falicov-Kimball limit η = 0. These oscillations prevent us
from determining the diffusion constant with sufficiently high
accuracy. Fourth, D↑(t) is much more sensitive to varying η

than D↓(t). Note, however, that we depict D↓(t)/t2
↓ rather than

D↓(t). In this way, we do not show the trivial scaling D↓(t) ∝
t2
↓ resulting from the static scaling of the current operator
j↓ ∝ t↓.

In Fig. 11(c) we depict the η dependence of the plateau
values Dσ , visible for L = 14, in a semi-log plot. While
we find D↓/t2

↓ ≈ const., we observe a decrease of D↑ as η

decreases, consistent with a simple exponential function. If
we assume that this scaling continues to small η beyond the η

range accessible, this assumption would imply the absence
of a diffusion-localization transition at η �= 0, consistent
with the conclusions of [63]. However, based on our results
in Fig. 11(c), we cannot exclude the onset of many-body
localization and a sudden drop of D↑ to zero at finite but
small η, as suggested in previous works [60,61]. Nevertheless,
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FIG. 11. (Color online) Time dependence of the diffusion con-
stant Dσ (t) for (a) σ =↑, (b) σ =↓ for various η = t↓/t↑ =
0.7, . . . ,0.2, a single U/t↑ = 8, fixed L = 14, and high temperature
β t↑ → 0. Apparently, D↑(t) is very sensitive to varying η, in contrast
to D↓(t). For imbalance η � 0.6, a plateau of Dσ (t) already can be
seen for the L depicted. (c) η scaling of the plateau value for both
components, as extracted at the point t t↑ = 15, in a semi-log plot. As
a guide to the eyes, an exponential (dashed line) is indicated. Note
that Dσ χ = σσ,dc.

we can constrain the existence of a possibly localized regime
to η � 0.25.

VI. SUMMARY AND OUTLOOK

In this work we studied finite-temperature charge transport
in the one-dimensional repulsive Hubbard model at half
filling. Using the method of dynamical quantum typicality,
we were able to access system sizes much larger than what
can be reached with full exact diagonalization, and with no
restriction on the accessible time scales. This allowed us to
extract the finite-size dependent Drude weight from the time
dependence of current autocorrelation functions. The analysis
of the finite-size dependencies indicated a vanishing Drude
weight in the thermodynamic limit, in agreement with [25].
We further computed the optical conductivity and provided
evidence that it is (i) a smooth function of ω at low frequencies
and in the thermodynamic limit and (ii) that the dc conductivity
is indeed finite, the latter in agreement with [26].

As an example of a nonintegrable model, we considered
the mass-imbalanced Hubbard chain. This model has recently
been discussed in the context of many-body localization in
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translationally invariant systems [60,61,63]. We demonstrated
the absence of a Drude weight for large L, as expected for
a nonintegrable system. Our results for inverse mass ratios
of η � 0.25 indicated a small dc conductivity, that appears
to vanish exponentially fast as a function of decreasing η. At
intermediate η, the system is thus a normal diffusive conductor,
while at small η, the emergence of small long-time oscillations
in the current autocorrelation function give rise to slightly
anomalous transport, in line with the conclusions of Ref. [63].

Extensions of our work comprise the study of finite-
temperature charge and spin transport in one-dimensional
strongly correlated electron systems. For instance, there is an
intriguing prediction on the role of spin drag in one dimension,
which has been claimed to give rise to diffusive spin transport,
while charge transport remains ballistic at finite temperature

[87]. Such questions as well as other effects due to a coupling
of the various transport channels in the Hubbard model and its
variants constitute a rich playground for future work.
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[54] M. Žnidarič, Phys. Rev. Lett. 110, 070602 (2013).
[55] M. Žnidarič, Phys. Rev. B 88, 205135 (2013).
[56] F. Heidrich-Meisner, A. Honecker, D. C. Cabra, and W. Brenig,

Phys. Rev. Lett. 92, 069703 (2004).
[57] W. Beugeling, R. Moessner, and M. Haque, Phys. Rev. E 89,

042112 (2014).
[58] R. Vosk and E. Altman, Annu. Rev. Condens. Matter Phys. 6,

383 (2015).
[59] R. Nandikishore and D. Huse, Annu. Rev. Condens. Matter Phys.

6, 15 (2015).
[60] M. Schiulaz and M. Müller, AIP Conf. Proc. 1610, 11 (2014).
[61] T. Grover and M. P. A. Fisher, J. Stat. Mech. (2014) P10010.
[62] W. De Roeck and F. Huveneers, Commun. Math. Phys. 332,

1017 (2014).
[63] N. Y. Yao, C. R. Laumann, J. I. Cirac, M. D. Lukin, and J. E.

Moore, arXiv:1410.7407.
[64] R. Steinigeweg and J. Gemmer, Phys. Rev. B 80, 184402 (2009).

[65] S. Langer, F. Heidrich-Meisner, J. Gemmer, I. P. McCulloch,
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