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Optical bistability in a low-photon-density regime
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We give a microscopic description of the optical bistability, where the transmission coefficient has two
different values as a function of input light intensity, and the system exhibits a discontinuous jump with
a hysteresis loop. We developed an efficient numerical algorithm to treat the quantum master equation for
hybridized systems of many photons and a large number of two-level atoms. By using this method, we
characterize the bistability from the viewpoint of eigenmodes and eigenvalues of the time-evolution operator
of the quantum master equation. We classify types of optical bistability according to the photon number density
in the cavity. In contrast to previous studies of optical bistability in the high-photon-density regime where the
photons can be treated as a classical electromagnetic field and the resonance spectrum has a single-peak structure,
we study the nature of optical bistability in the low-photon-density regime where the hybridization of photon
and atom degrees of freedom occurs and the resonance spectrum has a double-peak structure. Unraveling the
nature of the optical bistability in the latter regime may be important for the manipulation of quantum systems.
Concretely, we discuss the steady-state properties of the optical bistability: dependencies of the photon number
density on the intensity and the double-peak structure of the photon number distribution inside the bistable
region. As for the dynamical properties, we find that the relaxation timescale shows an exponential growth with
the system size and reveal how the hysteresis loop of the optical bistability depends on the size of the system
and the sweeping rate of the driving amplitude. Finally, by investigating the effects of detuning frequency of the
input field, we clarify the characteristic properties of the present optical bistability within the low-photon-density
regime, which are qualitatively different from the standard optical bistable phenomena.
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I. INTRODUCTION

The interplay of atom degrees of freedom and photon
degrees of freedom in a microcavity attracts much inter-
est for decades. The cavity system can be modeled by the
Rabi model or the Dicke model [1], consisting of one or a
number of two-level atoms coupled to a boson mode. And
often, by adopting the rotational wave approximation (RWA),
the Jaynes-Cummings model [2,3] or the Tavis-Cummings
model [4] has been studied well in order to elucidate the
interplay between photons and atoms.

The optical response of atomic systems is qualitatively
different depending on whether the photon density is low or
high compared with that of atoms. It has been pointed out
that the crossover between the two regimes occurs when the
number of atoms, N , is about the same as the number of
cavity photons, n [5]. When the number of photons inside
the cavity is small, i.e., n < N , a hybridization of photon and
atom degrees of freedoms appears in the emission spectrum
as a double-peak structure. The Agarwal vacuum-field Rabi
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splitting is a typical example [6]. Such double-peak struc-
tures due to the hybridization have been found in various
experiments [7–11] and drawn a lot of attention as a possible
memory mechanism to store the photon quantum state in a
state of material (quantum RAM) [12]. We call this region
a “low-photon-density regime.” On the other hand, when the
number of photons is large, i.e., n > N , photons behave as
a classical electromagnetic field. In this case, the population
dynamics of the atomic system is given by the standard Rabi
oscillation, which gives a single peak in the ESR spectrum
of photon absorption. We call this region the “high-photon-
density regime.”

In the high-photon-density regime, due to the interplay
between photons and atoms, the system exhibits various
dynamical phase transitions depending on the strength of
the driving field [13], optical bistability being one of the
well-known examples [14]. The optical bistability manifests
itself as a discontinuous transition between a state with high
transmission and a state with low transmission. The bistable
nature of the transmission was first observed in experiments in
continuum materials such as atomic gases and semiconductor
solid-state systems [15,16]. In these systems, classical electro-
magnetic theories, such as the Maxwell-Bloch equation [17],
describe the phenomenon well.

The finite-size, i.e., finite-N , effects of the optical bista-
bility have also been investigated in experiments. Progress
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in cavity quantum electrodynamics (QED) and circuit QED
experiments has realized systems with N < 100. There, dis-
continuous behavior of the transmission and size dependence
of the hysteresis loop were investigated [18]. Besides the
bistable nature of the transmission on the driving amplitude, it
was found that the transmission spectrum for detuned driving
frequency changes from a double-peak structure to a single
peak. Furthermore, metastable structures of the spectrum were
also studied [19]. Recently, systems with a few atoms have
been realized, and there the system is controlled with single-
atom resolution. Optically bistable states have been observed
even in such small systems [20].

Extensive efforts have also been devoted to the theoretical
side. The microscopic description of optically bistable phe-
nomena was proposed in Ref. [17]. The dynamics is described
by the quantum master equation (QME), in which the coherent
atom-photon coupling and dissipative effects are taken into
account. The bistable features have been explained by a
mean-field (MF) treatment. Indeed, the long-range nature of
the interaction between atoms via photons justifies the MF
treatment in the limit of N → ∞ [21]. Finite-size effects
have been taken into account by mapping the QME onto a
classical equation, such as the Fokker-Planck equation [22]
or the Langevin equation [23]. However, in these mappings,
the expansion about the inverse system size is truncated up
to the second order or the quantum noise is replaced by a
white Gaussian noise. Therefore these approximations are
valid for the timescale of the order of N2. In such treatments,
the transition process between the optically bistable states
is not fully taken into account since its timescale is ex-
pected to be exp[O(N )]. Thus, in order to capture the system
size dependence of the optical bistability correctly, a fully
quantum description without using such approximations is
necessary.

There are a few numerical studies on the optical bistability
using the QME for relatively small systems. Even in the
case of a single atom, a double-peak structure of photon
number distribution was observed [24], the position of two
peaks being associated to the bistability. In Ref. [25], the size
dependence has been investigated up to N = 8 with the upper
limit of the photon number, nmax = 200. In these works, one
of the peaks is located at n < N and the other is at n > N .
This indicates that the transition occurs between the low-
photon-density regime and the high-photon-density regime.
We call this case “the standard optical bistability.”

The optical bistability is expected from the MF theory even
in a system with lower photon density, in which the high
photon-density branch of the optical bistability is still in the
low-photon-density regime, n < N . In this case, for small
systems the signature of the bistability is smeared out. Indeed,
the double-peak structure of the photon number distribution
was not reported so far [26,27], though this case would be
also important for the manipulation of the photon state in
the ultralow radiation regime. The larger number of atoms is
necessary to observe the optical bistability in this regime.

In the present paper, we propose different types of optical
bistability depending on the density of photons. Although
the optical bistability occurs in the same way as in the MF
analysis, the optical bistability exhibits different natures of
metastabilities. In particular, we present the occurrence of

the optical bistability in the low-photon-density regime. This
regime would be of interest for quantum information process-
ing, in which the size dependence is an important factor. To
this end, we have developed a computational scheme to solve
the QME that treats systems with a large number of atoms.
The scheme consists of the parallelization in photon space by
making use of the fact that the time-evolution operator of the
QME, L, is a sparse matrix. For the Hilbert space representing
the atom, we use the permutation symmetry of L, by which
we can reduce the number of dimensions drastically from 22N

to O(N3) [26,28,29]. In this scheme, we could in principle
study up to the system with N = 100 and nmax = 800 by
using state-of-the-art supercomputers (see Appendix A). The
photon number n should be infinite in principle, but we found
that the system is well described if we set nmax to be larger
than a few times of N , as we will see later.

We first study the steady-state properties of the bistability
in the low-photon-density regime. We obtain the photon num-
ber density as a function of the amplitude of the driving field
and find that it converges to the MF result as N is increased.
We also investigate the steady-state density matrix and find a
double-peak structure in the photon number distribution. To
clarify the bistable nature, we also analyze the steady-state
density matrix by the eigenmode decomposition.

In addition, we study the dynamical aspects of the optical
bistability. The relaxation time is evaluated from the eigen-
value spectrum of L, and it is found that in the bistable region,
the relaxation time exhibits an exponential growth with the
system size. We also study the hysteresis associated with the
optical bistability and obtain its dependence on N and on the
sweeping rate of the driving field amplitude. We show that
the relaxation time and the hysteresis loop show the same size
dependencies.

We also point out a characteristic of the optical bistability
in the low-photon-density regime by studying the transmis-
sion spectrum for the detuned driving frequency. In contrast
to the standard case, it is found that the spectrum still has a
double peak even in the high-photon-density branch of the
optical bistability. And the size dependence of the spectrum
is also studied.

The rest of this paper is organized as follows: Section II
gives the microscopic model to describe the optical bistability.
In Sec. III, the scaling of quantities and the MF method
are explained. In Sec. IV, we explain our numerical method,
which allows us to investigate systems with a large number
of atoms. In Sec. V, we study the size dependencies of static
properties of the optical bistability. In Sec. VI, we study the
size dependencies of dynamic properties and show the relation
with the hysteresis loop. In Sec. VII, we further investigate an
effect of the detuned driving frequency, which is a characteris-
tic of the optical bistability in the low-photon-density regime.
Finally, the paper is summarized in Sec. VIII.

II. MICROSCOPIC MODEL

The optical bistability appears in a cavity system with
a coherent driving and dissipation (see Fig. 1). In order to
describe the quantum dynamics of the system, we consider
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FIG. 1. Schematic picture of a cavity system. The ensemble of
two-level atoms interacts with a single quantized mode of the cavity
field, which is driven by a laser field. Transmission of light from the
cavity and spontaneous emission of atoms are taken into account as
dissipation.

the following QME:

dρ(t )

dt
= −i[H (t ), ρ(t )] + D[ρ(t )]. (1)

The first term represents the time evolution of the density
matrix ρ(t ) under the system Hamiltonian H (t ), and the
second term describes dissipative effects. In this paper we
omit h̄ for simplicity.

The Hamiltonian for the cavity system is divided into a
static part H0 and a driving part Hex(t ):

H (t ) = H0 + Hex(t ). (2)

The static part represents the cavity system consisting of pho-
tons and N atoms with discrete energy levels and is described
by the Dicke model [1]:

H0 = ωpha
†a +

N∑
i=1

ωaS
z
i + ig̃(a† − a)

N∑
i=1

(S+
i + S−

i ), (3)

where ωph is the frequency of the cavity mode. Here, we
confine ourselves to the case of two energy levels per atom
and represent the atomic state by a spin-1/2 operator, Si =
{Sx

i , S
y

i , Sz
i }. The raising and lowering operators are defined

by S±
i = Sx

i ± iS
y

i . Hereafter, we call the atom with the
discrete energy levels “spin.” The energy gap between the two
states is denoted by ωa. The interaction between photons and
spins is given by the third term in Eq. (3). The coefficient g̃ is
the strength of the interaction.

For the driving part, we adopt the following form:

Hex(t ) = iξ̃ (a†e−i�t − aei�t ), (4)

where ξ̃ and � are the amplitude and the frequency of the
driving field, respectively. In the present work, we suppose
that the energy of a cavity photon and a two-level atom to be
the same,

ωa = ωph ≡ ω, (5)

and set ω as the unit of energy. However, the driving frequency
may be detuned by �ω:

� = ω − �ω. (6)

We mainly consider the resonant case, �ω = 0, except in
Sec. VII.

For the dissipative term in Eq. (1), we adopt a standard
Lindblad form:

D[ρ(t )] = κ[2aρa† − (a†aρ + ρa†a)]

+ γ

N∑
i=1

[2S−
i ρS+

i − (S+
i S−

i ρ + ρS+
i S−

i )], (7)

where the first term is for the photon transmission from the
cavity, and the second term is for the spontaneous emission of
each atom. We consider independent baths for each atom and
photons, and therefore the total angular momentum,

∑N
i=1 Si ,

is not conserved.
The Lindblad terms are derived by combining the Born-

Markov approximation and the secular approximation, which
are justified as long as g̃ and ξ̃ are comparable with the dissi-
pative strength, κ and γ , and much smaller than the resonance
frequency, ω. The optical bistability has been observed in the
regime where the above approximations are applicable, and
thus we expect that the Lindblad form suffices to describe
the qualitative nature of the bistable phenomena, though for
general cases where g̃ and/or ξ̃ are comparable with ω, the
effects of the atom-photon coupling and the driving field
should be incorporated in the dissipation in order to describe
the steady state even qualitatively [13].

In the present model, we assume uniform couplings be-
tween photons and spins, the same dissipative effect for each
spin, and no direct interaction among spins. This property is
useful to reduce the size of the density matrix ρ(t ), as we will
see in Sec. IV [26,28,29].

In order to simplify the equation further, we use the RWA.
Namely, we work in the rotating frame, in which the density
matrix ρR(t ) is given by

ρR(t ) = U (t )ρ(t )U †(t ), U (t ) = e−iωt (a†a+∑N
i=1 Sz

i ). (8)

The Hamiltonian in the rotating frame reads

HR(t ) = U †(t )

(
H (t ) − i

∂

∂t

)
U (t ),

= ig̃

N∑
i=1

(a†S−
i − aS+

i ) + iξ̃ (a† − a)

+ ig̃

N∑
i=1

(a†S+
i e2iωt − aS−

i e−2iωt ). (9)

In the RWA, we drop the last term in HR(t ). The RWA is not
valid in the ultrastrong coupling regime, g̃ ∼ ω, and/or under
strong driving field, ξ̃ ∼ ω [13], but it gives a qualitatively
correct behavior in the parameter region for the optical bista-
bility. Then, the Hamiltonian in the rotating frame becomes
time independent,

HR = ig̃

N∑
i=1

(a†S−
i − aS+

i ) + iξ̃ (a† − a), (10)

and the QME in the rotating frame reads

dρR(t )

dt
= −i[HR, ρR(t )] + D[ρR(t )] ≡ LρR(t ). (11)
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It is noted that the form of the dissipative term does not change
under the RWA. In the following, we use ρ instead of ρR for
simplicity. Equation (11) defines the linear operator L, and
due to the time independence of L the steady state is defined
by

Lρss = 0. (12)

III. MEAN-FIELD ANALYSIS

In the present model, due to the uniform coupling between
photons and spins, the MF approximation becomes exact for
N → ∞ with an appropriate scaling of g̃ and ξ̃ [21]. For the
scaling of the coupling constant g̃, it is noted that g̃ is usually
proportional to 1/

√
V , where V is the volume of the cavity.

When the atoms distribute uniformly inside the cavity with a
fixed number density ρ = N/V , g̃ is proportional to 1/

√
N .

Thus we set

g̃ ≡ g√
N

(13)

with an O(1) parameter, g. For the scaling of the driving
amplitude ξ̃ , on the other hand, it should be scaled as

√
N

in the large-N limit, and thus we set

ξ̃ ≡
√

N ξ, (14)

where ξ is independent of N , i.e., O(1). The expectation value
of the photon number in the steady state is given by

n = Tr(a†aρss ). (15)

In this scaling, the photon number density n/N is proportional
to ξ 2, which is independent of N .

In the MF approximation, the density matrix is assumed to
be given in the product form:

ρ(t ) = ρph(t ) ⊗ ρ⊗N

s (t ), (16)

where ρph(t ) and ρs(t ) are the density matrices of the photon
and spin, respectively. Here we assume the density matrix
of each spin to be the same for all the spins. Substituting
this product form into Eq. (11), we obtain the closed set of
equations:

∂α

∂t
= (gm + ξ ) − κα,

∂m

∂t
= 2gαmz − γm,

∂mz

∂t
= −g(α∗m + αm∗) − γ (2mz + 1),

(17)

where

α(t ) ≡ Tr[aρ(t )]√
N

(18)

and

m = Tr[S−
i ρ(t )], mz = Tr

[
Sz

i ρ(t )
]
. (19)

This is the MF equation for the optical bistability originally
given in Ref. [17].

The MF solution for the steady state is obtained by setting
the right-hand side of these equations to be zero, from which
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FIG. 2. Dependence of photon number density n/N on the driv-
ing amplitude ξ for various values of N for g = 0.1, κ = 0.05,
and γ = 0.002 (C = 50). The solid line denotes the MF solution
[Eq. (20)], which exhibits multiple stationary solutions in the bistable
regime, ξl < ξ < ξu. The symbols show values obtained by the
numerical method (explained in Sec. IV) for N = 1, 5, 10, . . . , 25.

the following relation between ξ and α is obtained:

ξ =
(

κ + γg2

2g2α2 + γ 2

)
α. (20)

With the scaled parameters,

αs =
√

2g

γ
α, ξs =

√
2g

κγ
ξ, (21)

the relation reads

ξs =
(

1 + 2C

α2
s + 1

)
αs, (22)

where C is the cavity cooperativity parameter:

C = g2

2κγ
. (23)

It should be noted that the cases with the same C give the same
dependence between ξs and αs, and the bistable states appear
when C > 4. However, the photon number density n/N itself
depends on κ and γ as

n

N
= α2 = γ

4κC
α2

s . (24)

It is noted that the relation between n and α is valid only in the
MF approximation, where the photon state can be treated as a
coherent state [30]. The solution is depicted by the solid line
in Fig. 2 for the case g = 0.1, κ = 0.05, and γ = 0.002 (C =
50). According to the MF theory the bistability occurs in the
interval ξ ∈ (ξl, ξu), where

ξl = κγ

2g

√
(C2 + 10C − 2) − (C − 4)

√
C(C − 4),

ξu = κγ

2g

√
(C2 + 10C − 2) + (C − 4)

√
C(C − 4),

(25)

and thus in the present case,

ξl = 1.41 × 10−2, ξu = 3.61 × 10−2. (26)

It is noted that with the present set of parameters the
high-photon-density branch is still in the low-photon-density
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regime, i.e., n/N < 1. In the figure, we also plot the data
obtained by the numerical method, to be discussed later.

IV. NUMERICAL METHODS

In this section we explain our numerical methods to study
the properties of the system given by the QME [Eq. (11)].
The QME is a linear equation of the density matrix ρ(t )
and therefore all the properties are obtained by solving the
eigenvalue problem of the linear operator L. The steady state
corresponds to the eigenmode ρ1 with zero eigenvalue (λ1 ≡
0) of L. We denote the mode ρ1 by ρss because it obeys the
equation for the steady-state density matrix, i.e., Eq. (12).

In the present numerical calculation, we rewrite ρ as a
vector 
ρ. Since ρ is a matrix of [(nmax + 1)�spin] × [(nmax +
1)�spin], where nmax is a cutoff for the photon number, 
ρ is
a [(nmax + 1)�spin]2-dimensional vector. Here �2

spin is 22N for
general cases, but in the present case it is reduced to be O(N3)
by using the symmetry, as we will see in Eq. (29). In the vector
representation, the time-evolution operator L is expressed as
a [(nmax + 1)�spin]2 × [(nmax + 1)�spin]2 matrix L, and then
the QME is expressed as

d

dt

ρ = L 
ρ. (27)

The number of nonzero matrix elements of L is the order
of [(nmax + 1)�spin]2. In our simulation, we prepare a list
of nonzero elements to perform the product of the sparse
matrix L and the vector 
ρ efficiently. Moreover, the amount
of required memory for L can also be reduced to the order of
[(nmax + 1)�spin]2.

The photon space is labeled by the photon number n, i.e.,

a†a |n〉 = n |n〉 . (28)

In principle, the photon number n runs from 0 to ∞, but in
numerical calculations, we find that if we take the photon
number cutoff nmax sufficiently large, the numerical data
converges. It is noted that nmax becomes larger as N increases.
We found that it is necessary to set nmax larger than a few times
of N . In Fig. 3, we show the dependence of the photon number
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FIG. 3. Photon number density n/N in a restricted photon space
which is specified by the photon number cutoff nmax for N = 10 (red
squares) and N = 20 (blue circles). The values of parameters are
given by (g, ξ, κ, γ ) = (0.1, 0.05, 0.05, 0.002).
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FIG. 4. Data exchange among neighboring cores necessary for
the multiplication of L on 
ρ in the parallelization method.

density n/N [see Eq. (15)] as a function of nmax for N = 10
and 20.

It should be noted that the present model has a permutation
symmetry of spins: all the spins interact with each other via
a common photon field, and g and γ are the same for all the
spins. In such a case, we can reduce the dimension of spin
space by making use of the symmetry [26,28,29], i.e.,

�2
spin = 22N

→ Ndim ≡ (N + 1)(N + 2)(N + 3)

6
= O(N3). (29)

Thus, the total dimension of 
ρ becomes (nmax + 1)2Ndim,
which is still too large to fit in a single core of a typical
computer. In the present work, we adopt the distributed-
memory parallelization on a supercomputer, which enables us
to reduce the memory requirement on each core significantly.
Specifically, we label the elements of 
ρ by two photon num-
bers n1 and n2, which corresponds to 〈n1| ρ |n2〉, and assign
them to different cores. Each core stores Ndim elements for
spin states. In the present system, L is sparse in the photon
space. Indeed, the multiplication of L and L† to 
ρ only
requires exchange of data between the neighboring cores (see
Fig. 4), because the operations change the photon number only
by ±1, e.g., for the calculation of (n1, n2) elements of aρ,
only the (n1 + 1, n2) elements of ρ are necessary. In this way,
we can achieve good efficiency by the present parallelization
scheme (see Appendix A).

A. Steady state

We obtain ρss as the eigenmode with zero eigenvalue of L

in the space with a finite cutoff of the photon number nmax.
We solve

L 
ρss = 0 (30)

by the biconjugate gradient (Bi-CG) method [31].1 It is noted
that this equation is homogeneous. However, we can obtain

1We may obtain the steady state by the Lanczos method for L†L.
But the convergence takes a much longer time, since the gap of
eigenvalues between the steady state and the subdominant state
becomes much smaller than that for L.
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the steady-state solution with this method because the steady
state ρss satisfies

Trρss = 1, (31)

and the trace of the density matrix is preserved through the
iteration process of the Bi-CG method.

B. Relaxation process

The dynamic properties are related to the subdominant
eigenmodes {ρi} with nonzero eigenvalues {λi}i=2,3..., which
are generally complex since the matrix L is a non-Hermitian
matrix. The real part of eigenvalues expressing the relaxation
rate satisfies Re λi < 0 for i � 2. We order the eigenmodes
according to

0 > Re λ2 � Re λ3 � · · · . (32)

In general, the dynamics of the density matrix is given by

ρ(t ) = ρss +
∑

i=2,3.···
cie

λi tρi, (33)

where the coefficients {ci} are determined by the initial state.
The contribution of each eigenmode with i � 2 decays as
e(Re λi )t in time.

The slowest relaxation is governed by the mode with i = 2,
and therefore we define the relaxation time τ by

τ = −(Re λ2)−1. (34)

The value of λ2 is estimated by the inverse power method.
In this method, we first set an initial density matrix x0 and
subtract from it the component proportional to the steady
state,

x1 = x0 − (Trx0)ρss. (35)

Here it is noted that x1 is a traceless matrix, and thus x1 is
expanded by {ρi} with i � 2 2. We then repeatedly solve the
following linear equation:

Lxk+1 = xk for k = 1, 2, . . . . (36)

In order to solve Eq. (36), we again use the Bi-CG method
in the vector representation. The relaxation time is then given
by3

τ = lim
k→∞

( ||xk||F
||xk+1||F

)−1

, (37)

where || · ||F denotes the Frobenius norm.

V. STEADY-STATE PROPERTIES

We performed simulations with the method mentioned
above. We adopt ω [see Eq. (5)] as a unit of the energy, and we
fix the parameters (g, κ, γ ) = (0.1, 0.05, 0.002) as a typical
set to study the optical bistability in the low-photon-density
regime.

2The trace-preservation property of ρ(t ) in Eq. (33) indicates that
the eigenmodes {ρi} of L are a traceless operator except for ρ1 ≡ ρss.

3We assume that λ2 is real, which is confirmed by exact diagonal-
ization of L for small N .

A. Photon number density

We first study the ξ dependence of the photon number
density n/N for various system sizes N . As clearly seen
in Fig. 2, the steady-state value outside the bistable region
quickly converges to the MF value. On the other hand, deeply
inside the bistable region, n/N takes a value between those
of the optically bistable states obtained by the MF, and the
ξ dependence of n/N becomes shaper and sharper as N

is increased. We also find that the data with different N

cross at almost the same point ξc 
 0.029. The steady-state
value of n/N for ξ < ξc approaches the low-photon-density
branch of the MF solution as N is increased, while that for
ξ > ξc approaches the high-photon-density branch. Thus it
is expected that the steady-state value shows a discontinuous
jump at the crossing point in the limit of N → ∞.

This behavior is similar to the size dependence of physical
quantities of the thermodynamic first-order phase transition,
and thus we call the present observed phenomenon the dy-
namical first-order phase transition. In what follows, we
will study this transition from a viewpoint of an effective
potential function (a kind of phenomenological free energy)
by analyzing the distribution function of quantities which
reflect this potential.

B. Photon number distribution in the steady state

From Fig. 2, we expect a double-peak structure of the
photon number distribution in the bistable region. In this
section, we study how the photon number distributes in ρss.

We define the probability pn to observe n photons inside
the cavity as

pn = Trs 〈n| ρss |n〉 = 〈n| ρphoton |n〉 , (38)

where Trs denotes the trace over the spin degrees of freedom,
and the reduced density matrix for photons is defined by

ρphoton ≡ Trs(ρss). (39)

Note that the average number of photons is given by

n =
nmax∑
m=0

pmm. (40)

We find a double-peak structure in the photon number
distribution around the crossing point ξc. We plot pn as a
function of the photon number density n/N at ξ = 0.0275 <

ξc [Fig. 5(a)] and ξ = 0.0325 > ξc [Fig. 5(b)]. In both cases,
one of the peaks is located at n/N = 0 and the other is located
at a finite photon number density.

However, we find that the size dependencies of the two
peaks differ from each other. In case (a), the peak at n/N = 0
increases and the other peak at finite n/N decreases with N . In
contrast, in case (b), the peak at n = 0 decreases and the other
peak increases with N . This indicates that in the thermody-
namic limit, N → ∞, the peak with low-photon-number den-
sity dominates for ξ < ξc, while the peak with high-photon-
number density dominates for ξ > ξc. The double-peak struc-
ture has been observed in “the standard optical bistability,”
e.g., Refs. [20,28]. In these cases, the photon number density
n/N in the high-photon-density branch is larger than 1. In
the present work, we are studying the case where n/N in the
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FIG. 5. Photon number distribution pn = Trs 〈n| ρss |n〉 at (a)
ξ = 0.0275 < ξc and (b) ξ = 0.0325 > ξc for N = 10 (open
squares), 15 (closed squares), 20 (open circles), and 25 (closed
circles). The inset of (a) shows the detailed size dependence of p0.
Note that 1 − p0 is plotted instead of p0 in the inset.

high-photon-density branch is still in the low-photon-density
regime, i.e., n/N < 1. In order to resolve the structure in the
probability, we need to perform calculations of systems with
large N , which requires an appropriate parallel algorithm in
supercomputer.

We find that the double-peak structure becomes more and
more clear as N is increased.

C. Relevant states of the density matrix

In order to grasp the nature of the bistable structure of the
steady state of the density matrix, we perform the eigenmode
decomposition

ρphoton =
nmax+1∑

i=1

�i |i〉 〈i| , (41)

where |i〉 〈i| denotes the ith mode with eigenvalue �i . Here,
the index i runs from 1 to nmax + 1, and we order the eigen-
modes in the following manner:

�1 � �2 � · · · � �nmax+1. (42)

FIG. 6. Eigenvalue of each mode, �i , is plotted as a function
of the photon number density ni/N at (a) ξ = 0.0275 < ξc and (b)
ξ = 0.0325 > ξc for N = 10 (open squares), 15 (closed squares), 20
(open circles), and 25 (closed circles). The inset of (a) shows the
detailed size dependence of the eigenvalue �1 located at n/N 
 0.
Note that 1 − �1 is plotted instead of �1 in the inset.

The photon number in each mode is given by

ni ≡ 〈i| a†a |i〉 . (43)

In Fig. 6, we plot �i as a function of ni/N for various
system sizes. In Fig. 6(a), we find that for ξ = 0.0275 < ξc,
the most dominant mode (i = 1) with �i 
 1 has almost
zero photons (ni/N 
 5 × 10−5). The other modes (i � 2)
have a finite photon number density (ni/N 
 0.2), but the
eigenvalues of the modes decrease with N . In contrast, in
Fig. 6(b) for ξ = 0.0325 > ξc, the eigenvalue of the mode
with zero photon decreases with N , and the eigenvalues of
the modes with finite photon number density increase. For
N = 25, the eigenvalue at a finite photon number becomes
larger than that at zero photon number density, which indicates
that in this regime, the most dominant mode is on the high-
photon-density side. These size dependencies of the double-
peak structure are consistent with the picture of a first-order
phase transition.

D. Effective free energy for dynamical first-order transition

From the analogy with the static first-order phase transi-
tion, we may consider an effective free energy f (α), from
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which the equation of motion of the order parameter, corre-
sponding to the MF self-consistent equation (20), is given by

df

dα
= 0. (44)

Naively, one might expect that from Eq. (20) we can obtain
a candidate of the free-energy landscape f̃ (α) by integrating
the equation

df̃ (α)

dα
=

(
κ + γg2

2g2α2 + γ 2

)
α − ξ. (45)

The minima of f̃ (α) reproduce the stable MF solutions α1 and
α2 in the bistable region. However, f̃ (α) does not correctly
predict the transition point ξc. At ξc, the values of f̃ (α) for
α1 and α2 are different. Indeed, the value of ξ where the
two minima f̃ (α1) and f̃ (α2) are equal with each other is
around ξ 
 0.018, which is different from the crossing point,
ξc 
 0.029. In addition, Maxwell’s equal area law does not
work either. In this way, the free-energy picture using the MF
equation (20) does not work as discussed in Ref. [14].

It should be noted that if we multiply the right-hand side of
Eq. (45) by a nonzero smooth function I (α), i.e.,

df (α)

dα
=

[(
κ + γg2

2g2α2 + γ 2

)
α − ξ

]
× I (α), (46)

the position of the minima does not change but the values of
the minima do change. Therefore, there is an ambiguity to find
I (α). We leave the problem to obtain an effective free-energy
landscape,

f (α) ∝ − 1

N
ln(Tr[δ(

√
a†a − α)ρss]), (47)

which is a large deviation function of the photon number
distribution, for future study.

VI. DYNAMIC PROPERTIES

A. Relaxation time

From the double-peak structure in the steady-state density
matrix, we expect that the transition probability between the
two optically stable states is small. The smallest transition
rate is given by λ2, and the relaxation time was defined in
Eq. (34). If the system has a metastable state, we expect that
the relaxation time increases exponentially with N as

τ ∼ ecN . (48)

In Fig. 7, we plot the relaxation time τ as a function of ξ .
Around the crossing point ξc, we find that the relaxation time
indeed increases exponentially with N . In the inset of the
figure, we plot the size dependence of τ at ξ = 0.03, which
clearly shows the exponential growth with

c 
 0.166 (ξ 
 ξc). (49)

This type of exponential dependence is found to hold at
around ξ 
 ξc, but the value of c changes with ξ . This size
dependence of the relaxation time is again consistent with the
picture of a first-order phase transition.

FIG. 7. ξ dependence of the relaxation time τ for N = 10 (open
squares), 15 (closed squares), 20 (open circles), and 25 (closed
circles). Inset: N dependence of τ at ξ = 0.03.

B. Hysteresis

The hysteresis behavior appears when ξ is increased and
then decreased at a finite sweeping rate, though we do not
see it in the steady state (see Fig. 2). Here we demonstrate
the hysteresis by sweeping ξ . We change ξ from ξi = 0.02 to
ξf = 0.045 at a constant sweeping rate v, and then return back
to ξi at the same sweeping rate. That is, the time dependence
of ξ is given by

ξ (t ) =
{
ξi + vt for 0 � t � T ≡ (ξf − ξi )/v
ξf − v(t − T ) for T � t � 2T .

(50)

We set the initial state at t = 0 to be the steady state for ξ = ξi.
We depict the dynamics of photon number density n(t )/N in
this protocol by the solid line in Fig. 8. Here we define the
photon number by

n(t ) = Tr[a†aρ(t )], (51)

where ρ(t ) is obtained numerically by solving the QME
[Eq. (11)] using the parallelized algorithm described above.

10-4

10-2

100
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Δξ

P
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(t)
/N

Driving amplitude ξ

Finite v
v → 0 

FIG. 8. An example of the hysteresis loop of photon number
density for N = 25 and v = 2 × 10−7. The photon number densities
in the increasing ξ process and in the deceasing ξ process are
depicted by solid lines. The steady-state values are plotted by filled
dots for comparison.
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FIG. 9. (a) N dependence of the width of the hysteresis loop
�ξ for v = 2 × 10−7. Inset: the hysteresis loops for N = 10 (red)
and N = 20 (blue). (b) v dependence of �ξ for N = 15. Inset: the
hysteresis loops for v = 4 × 10−7 (red) and v = 1 × 10−7 (blue).

The shape of the hysteresis loop depends on the size of
the system N and also on the sweeping rate v. In order to
give a quantitative description, we define the width of the
hysteresis loop �ξ by the difference of ξ at n(t )/N = 0.01
in the increasing ξ process and the decreasing ξ process. In
principle, we should define it as the maximum width of the
hysteresis loop, but we find that the maximum value is always
near n(t )/N = 0.01, as shown in the insets of Figs. 9(a) and
9(b).

The dependencies of �ξ on N and v are depicted in
Figs. 9(a) and 9(b), respectively. We find that �ξ increases
with N , see Fig. 9(a), and also with v, see Fig. 9(b). We
find good linear dependencies in the coordinate (N, log �ξ )
as depicted in Fig. 9(a), and also in (v,�ξ ) as depicted in
Fig. 9(b). Thus we conclude that the scaling form

�ξ ∼ vec′N (52)

with c′ 
 0.168 describes the data quite well. The exponent c′
is close to c 
 0.166 [see Eq. (49)], which indicates that the
growth of the relaxation time τ is reflected in the hysteresis
loop, and the width of the hysteresis is governed by the slow-
est relaxation at ξc, where the exponent c becomes maximum.

VII. DETUNING EFFECTS

In the present paper, we have studied the property of the
optical bistability in the low-photon-density regime. In this
section, we study the spectrum for detuning frequency �ω

[see Eq. (6)], in which we clearly see the difference between

the standard optical bistability and the optical bistability in
the present study. The spectrum in the low-photon-density
regime has a double-peak structure, while it has a single-peak
structure in the high-photon-density regime, and therefore the
spectrum changes from the double peak to the single peak in
the standard case [19]. In contrast, we expect that the spectrum
has the double-peak structure in both branches of the optical
bistability in the present case. To investigate this property, we
study the dependencies of the spectrum by analyzing the MF
steady-state solutions as a function of the detuning frequency
�ω, and also study the finite-size effect on the spectrum.

In Sec. III, we obtained the relation between ξ and α for
the resonant case ω = �. For the case with detuning, we need
to extend the relation including �ω. For nonzero �ω, the
relation between ξs and αs in the MF analysis is given by (see
Appendix B for the derivation)(

ξs

αs

)2

=
(

1 + 2C

1 + α2
s + ( �ω

γ
)2

)2

+
(

�ω

κ

)2
(

1 − κ

γ

2C

1 + α2
s + ( �ω

γ
)2

)2

, (53)

which is reduced to Eq. (22) in the resonant case, i.e., �ω = 0.
The photon number density in the MF treatment is given by

n(�ω)

N
≡ 1

N
Tr(a†aρss ) = γ

4κC
α2

s . (54)

In contrast to the resonant case, the dependencies between αs

and ξs at finite �ω are not only determined by C but by all
the parameters: κ, γ , and C. Thus the structures of the MF
steady-state solutions in the �ω-n plane depend on κ and γ

even when C is the same.
We study how the structures of n(�ω) in the MF anal-

ysis depend on the dissipation rates, κ and γ , which con-
trols the photon number density. The transmission spectrum,
i.e., n(�ω), shows a single peak in the high-photon-density
regime, while it shows a double peak in the low-photon-
density regime. Thus, it is expected that the MF steady-
state solutions extend to �ω direction in a different manner
depending on whether the state is in the high- or the low-
photon-density regime.

We consider three cases: (i) the standard case (κ, γ, C) =
(0.01, 0.01, 50), (ii) the present case (κ, γ, C) = (0.05,

0.002, 50), and (iii) the low-photon-density case (κ, γ, C) =
(0.1, 0.001, 50). In case (i), the high-photon-density branch
of the optical bistability is in the high-photon-density regime,
i.e., n/N > 1 [see Fig. 10(f)]. On the other hand, in cases (ii)
and (iii) [see Figs. 12(f) and 11(f)], they are in the low-photon-
density regime, i.e., n/N < 1. The structures of n(�ω) are
qualitatively different in the three cases (i), (ii), and (iii), as is
shown below. It is noted that we set C and κγ to be the same
and therefore for all three cases, the bistable MF solutions
appear at ξ = ξl and disappear at ξu in the resonant case, i.e.,
�ω = 0 [see Eqs. (21)–(23), and Fig. 2].

The transmission spectrum in case (i) [the standard case,
(κ, γ, C) = (0.01, 0.01, 50)] is depicted in Fig. 10. From
the low-photon-density regime [Fig. 10(a)] to the high-
photon-density regime [Fig. 10(f)], the double peak changes
to the single peak, which was observed in a cavity QED
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FIG. 10. Dependence of the photon number density n/N on
the detuning frequency �ω in the standard case, (κ, γ, C ) =
(0.01, 0.01, 50), where the single peak appears at ξ = 0.04. The
transition of the structures from (a) ξ = 0.01 to (f) ξ = 0.04 is
shown in the box: (b) ξ = 0.014, (c) ξ = 0.015, (d) ξ = 0.02, and
(e) ξ = 0.03. The stable and unstable MF steady-state solutions are
denoted by solid lines (black) and dotted lines (green), respectively.

experiment [19]. Between them, first the two branches of the
double peak develop with ξ and then the branches merge at
�ω = 0 at ξl [Fig. 10(b)]. At the merging point a loop appears,
and consequently, the topological structure of n(�ω) changes.
As ξ further increases, the loop shrinks and then disappears at
ξu [Figs. 10(b)–10(f)].

The transmission spectrum in case (iii) [the low-photon-
density case, (κ, γ, C) = (0.1, 0.001, 50)] is depicted in
Fig. 11. The double peak at ξ = 0.01 [Fig. 11(a)] remains

FIG. 11. Dependence of the photon number density n/N on the
detuning frequency �ω in the low-photon-density case, (κ, γ, C ) =
(0.1, 0.001, 50), where the two clear peaks at finite �ω remain even
at ξ = 0.04. The transition of the structures from (a) ξ = 0.01 to
(f) ξ = 0.04 is shown in the box: (b) ξ = 0.015, (c) ξ = 0.02, (d)
ξ = 0.03, and (e) ξ = 0.036. The stable and unstable MF steady-
state solutions are denoted by solid lines (black) and dotted lines
(green), respectively.

FIG. 12. Dependence of the photon number density n/N on
the detuning frequency �ω in the present case, (κ, γ, C) =
(0.05, 0.002, 50). The transition of the structures from (a) ξ = 0.01
to (f) ξ = 0.04 is shown in the box: (b) ξ = 0.02, (c) ξ = 0.0275,
(d) ξ = 0.028, and (e) ξ = 0.03. Between (c) and (d), the topology
of n(�ω) changes. The stable and unstable MF steady-state solu-
tions are denoted by solid lines (black) and dotted lines (green),
respectively.

visible even at ξ = 0.04 [Fig. 11(f)]. Between them, first a
narrow loop appears along the n/N axis at ξl [Fig. 11(b)].
Then the width of the loop increases with ξ [Figs. 11(b)–
11(e)], and at last the unstable MF solutions denoted by dotted
lines (green) merge with the double peak at ξu [Fig. 11(e)]. It
is noted that the way of emerging and merging the loop gives
a different topological structure from case (i) (see Fig. 10).

The transmission spectrum in case (ii) [the present case,
(κ, γ, C) = (0.05, 0.002, 50)] is depicted in Fig. 12. The
double peak at ξ = 0.01 [Fig. 12(a)] disappears at ξ = 0.04
[Fig. 12(f)], even though the state is in the low-photon-density
regime. The transition between them shows again another
topological structure. Namely, first a narrow loop appears
along the n/N axis at ξ = ξl [Fig. 12(b)], similar to case
(iii). As ξ increases, the loop merges with the double peak
between ξ = 0.0275 [Fig. 12(c)] and ξ = 0.028 [Fig. 12(d)]
in a different manner as in Fig. 11 and the topology of n(�ω)
changes at this point. It is noted that the point is rather close to
the crossing point ξc 
 0.029 in Fig. 2, although the relation
is so far unclear. After that, the topology of n(�ω) is similar
to that of the standard case, Fig. 10, and the loop shrinks with
the increase of ξ and disappears at ξu [Figs. 12(d)–12(f)].

In experiments, the differences among the three types of
topological structures will appear in the way how n(�ω)
changes from �ω = 0 to a nonzero value of �ω in the
bistable regime, i.e., ξl � ξ � ξu. First, suppose that the
system is in the high-photon-density branch of the optical
bistability at �ω = 0. Here, n(�ω) continuously decreases
with �ω in case (i), while it shows a discontinuous jump
to the low-photon-density branch at a certain value of �ω

in cases (ii) and (iii). On the other hand, when the system
is in the low-photon-density branch at �ω = 0, n(�ω)
shows a discontinuous jump to the high-photon-density
branch in cases (i) and (ii), while it follows a continuous
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FIG. 13. Size dependence of the photon number density on the
detuned driving frequency �ω in systems with N = 5 (triangles), 10
(squares), 20 (circles), and ∞ (MF) at ξ = 0.04, the MF solution of
which was shown in the upper panel of Fig. 12.

curve in case (iii). Whether the state at �ω = 0 is in the
low-photon-density branch or the high-photon-density branch
depends on the value of ξ (see Fig. 2).

Finally, we study the finite-size effect using the QME with
detuning effects [see Eq. (B1)]. In Fig. 13, we show the size
dependence of n/N on �ω for ξ = 0.04. In finite systems, the
double-peak structure is more clearly visible. Although only
a single peak appears in the MF solution [see Fig. 12(f)], we
observe a clear double-peak structure for N = 5. The steady-
state solution approaches the MF result as N increases.

VIII. SUMMARY AND DISCUSSION

In the present paper, we have studied the properties of the
optical bistability in the low-photon-density regime. In this
regime, the photon number density n/N is less than 1 and the
quantum-mechanical hybridization of photon and spin is im-
portant. Although the static properties in the thermodynamic
limit can be obtained by the MF treatment, the phenomena
in finite systems are interesting for microsize quantum ma-
nipulations. We successfully demonstrated the existence of
optical bistability in this regime. In addition, we found that
a characteristic feature of the optical bistability in this regime
is observed in the transmission spectrum. The structure of the
spectrum is qualitatively different depending on the photon
number density in the cavity. We analyzed these phenomena
by extensive numerical calculation and MF theory.

To demonstrate the optical bistability in the low-photon-
density regime, a large number of atoms are necessary, and
thus we developed an efficient numerical scheme to treat the
QME for hybridized systems of photons and a large number of
two-level atoms. This scheme consists of the parallelization in
photon space and the reduction of the Hilbert space of atoms.
We confirmed the good efficiency of the parallelization (see
Appendix A). Note that the limitation of system size up to
N = 25 in the present study is not due to the memory to store
the density matrix but due to the computational time to
estimate the steady-state density matrix in the bistable regime.
The significantly small eigenvalue of L in the bistable regime
makes the convergence of the Bi-CG method worse, which
leads to the increase of the computational time.

We investigated the size dependence of the photon number
density as a function of the amplitude of the driving field, and
there we found that the steady-state values quickly approach
the MF values outside the bistable regime (Fig. 2). Inside the
bistable regime, we found a crossing point for different system
sizes. Around this point, we analyzed the density matrix of
the steady state, which is the eigenmode of L with zero
eigenvalue. We found that the double-peak structure appears
around the crossing point, and the size dependence of the
double-peak structure changes at this point (Figs. 5 and 6).

Furthermore, we also studied dynamical properties. We
characterized the timescale for relaxation by the gap of the
eigenvalues of L [see Eq. (34)] and found the exponential
growth of the relaxation time in the bistable regime as N

increases (Fig. 7). The signature of the long timescale appears
in the scaling form of the hysteresis loop (Fig. 9).

The qualitative difference from the standard optical bista-
bility appears in the transmission spectrum as a function of the
detuning frequency �ω, i.e., n(�ω). We found three different
types of the transmission spectrum, n(�ω), depending on the
dissipation rates, κ and γ (Figs. 10–12).

It would be an interesting problem in the future to study
the crossing point ξc in the limit of N to infinity. We showed
that the free-energy landscape estimated by the MF solution
does not allow one to obtain the crossing point (see Sec. V D).
Moreover, the effect of short-range interaction between spins,
the dipole-dipole interaction, on the steady-state density ma-
trix ρss and the relaxation time τ is an important issue to be
investigated in the near future.
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APPENDIX A: EFFICIENCY OF THE PARALLELIZATION

We study the efficiency of the parallelization in terms of the
photon space. The core labeled by the pair of integers (n1, n2)
stores elements of 〈n1| ρ |n2〉, where {|n〉} are photon number
states and the integer n runs from 0 to the cutoff nmax. Thus
the total number of cores is

ncore = (nmax + 1)2. (A1)

The main part of the numerical calculation is the Bi-CG
method, consisting of the multiplication of L and L† on 
ρ.
The calculation of (n1, n2) elements of L 
ρ and L† 
ρ requires
only six elements of ρ as depicted in Fig. 4. Due to the local
nature of the calculation independent of nmax, good efficiency
should be achieved.
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[Eq. (27)]. Data taken on the ISSP supercomputer system are plotted
by the black squares and those on the K computer are plotted by red
circles. Filled symbols denote the case where the simulation fits in a
single unit of the computers, while empty symbols denote the case
where the data exchanges between the units are necessary. The black
and red vertical dotted lines denote the upper limit of the number
of cores, 3456 for the ISSP supercomputer system and 663 552 for
the K computer, respectively. For each data point, the elapsed time is
measured three times.

We consider the weak scaling to evaluate the efficiency of
the parallelization. Namely, we fix the number of atoms to
be N = 10 while increasing nmax and calculate the elapsed
time for 10 000 multiplications of L and L† to 
ρ. We plot
the result of the benchmark test on the supercomputer system
(SGI ICE XA/UV) at ISSP, University of Tokyo, and the K
computer at RIKEN R-CCS in Fig. 14. In this figure, we use
the filled symbols when ncore is less than the number of cores
in a single unit, i.e., nISSP = 1728 (72 nodes) and nK = 768
(96 nodes) for the ISSP supercomputer system and the K
computer, respectively, and we use open symbols for the cases
with the larger ncore. We run the same jobs for each nmax

three times and plot them. We could simulate up to ncore =
3456 (nmax 
 57) and ncore = 663, 552 (nmax 
 800) on the
ISSP system and the K computer, respectively. In Fig. 14, we
indicate the maximum number of cores for each machine by
the vertical lines.

In Fig. 14, the elapsed time in both machines exhibit a
plateau (filled symbols), i.e., almost ideal weak scaling, as
long as ncore is smaller than or equal to the number of cores
in a single unit, nISSP or nK. However, once nmax exceeds
nISSP, the elapsed time shows a sudden growth in the case of
the ISSP system (open squares). The increase of the elapsed
time may be due to the data exchange between different
units. The elapsed times of the K computer, on the other
hand, stay flat even at ncore = 104 (open circles), even though
ncore is significantly larger than nK. This indicates the higher
performance of communication between different units of the
K computer. The increase of the elapsed time for ncore >

104 may be improved if we use the MPI/OpenMP hybrid
parallelization instead of the present flat MPI scheme, which
is an issue to be examined in the future.

We also find the strong dependencies of the elapsed time
on the way cores labeled by (n1, n2) are allocated on the K
machine, as shown in Fig. 15. We find that the data start to
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FIG. 15. Elapsed time for the 10 000 multiplications of L and L†

[Eq. (27)]. Data taken on the K computer with the one-dimensional
core allocation are plotted by blue diamonds. Those with two-
dimensional core allocation are plotted by green triangles. The red
ones are the results of the case of optimized core allocation. Filled
symbols denote the case where the simulation fits in a single unit of
the computers, while empty symbols denote the case where the data
exchanges between the units are necessary. The red vertical dotted
line denotes the upper limit of the number of cores, 663 552 for the
K computer. For each data point, the elapsed time is measured three
times.

fluctuate considerably when ncore exceeds the number of cores
in a single unit, nK. If we allocate cores in the so-called one-
dimensional way, the average elapsed times are much larger
(blue diamonds). Even if we allocate cores in the so-called
two-dimensional way, the situation is not improved (green
triangles). If we allocate cores so that they are closer when the
indices n1 and n2 are close, the performance is much improved
(red circles, which are also plotted in Fig. 14).

APPENDIX B: MF RELATION BETWEEN ξ AND α IN THE
PRESENCE OF DETUNING EFFECTS

We show how to derive Eq. (53), which gives the MF
relation between ξ and α in the presence of detuning effects.
When �ω �= 0, the quantum dynamics in the rotating frame
[see Eq. (8)] obeys the following QME:

dρR(t )

dt
= −i[HR(�ω), ρR(t )] + D[ρR(t )], (B1)

where

HR(�ω) = HR + �ω

(
a†a +

N∑
i=1

Sz
i

)
. (B2)

In the MF approximation [see Eq. (16)], we obtain the set of
closed equations for α,m, and mz:

∂

∂t

⎛
⎝ α

m

mz

⎞
⎠ =

⎛
⎝ −i�ωα + (gm + ξ ) − κα

−i�ωm + 2gαmz − γm

−g(α∗m + αm∗) − γ (2mz + 1)

⎞
⎠. (B3)

The steady-state solution is obtained by setting the right-hand
side of the equations to zero.

In contrast to the resonance case, α and m are complex
numbers when �ω �= 0. The absolute and the phase of α and
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m are represented by (ᾱ, θα ) and (m̄, θm), respectively, i.e.,

α = ᾱeiθα , m = m̄eiθm . (B4)

Then, the steady-state solution satisfies

gm̄ei(θm−θα ) + ξe−iθα = κ̄eiθκ ᾱ,

2gᾱmz = γ̄ m̄ei(θm−θα+θγ ), (B5)

−2gᾱm̄ cos(θm − θα ) = γ (2mz + 1),

where

κ̄ =
√

κ2 + �ω2, γ̄ =
√

γ 2 + �ω2, (B6)

and

eiθκ ≡ κ + i�ω

κ̄
, eiθγ ≡ γ + i�ω

γ̄
. (B7)

From the second equation of Eqs. (B5), since the left-hand
side is real, we find that

θm − θα = −θγ . (B8)

By using this relation, we obtain three equations for ᾱ, m̄, and
mz as

ξ 2 = (κ̄ ᾱ)2 + (gm̄)2 − 2κ̄gᾱm̄ cos(θκ + θγ ),

2gᾱmz = γ̃ m̄, (B9)

− 2gᾱm̄ cos θγ = γ (2mz + 1),

from which the relation between ξ and ᾱ reads

ξ 2

ᾱ2
=

(
κ + γg2

γ̄ 2 + 2g2ᾱ2

)2

+ �ω2

(
1 − g2

γ̄ 2 + 2g2ᾱ2

)2

.

(B10)
With the scaled parameters,

αs =
√

2g

γ
ᾱ, ξs =

√
2g

κγ
ξ, (B11)

we obtain Eq. (53).
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