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Abstract
Results from a discrete-event simulation of a recent single-neutron experiment that tests Ozawaʼs
generalization of Heisenbergʼs uncertainty relation are presented. The event-based simulation
algorithm reproduces the results of the quantum theoretical description of the experiment but
does not require the knowledge of the solution of a wave equation, nor does it rely on detailed
concepts of quantum theory. In particular, the data from these non-quantum simulations satisfy
uncertainty relations derived in the context of quantum theory.
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Introduction

Quantum theory has proven extraordinarily powerful for
describing a vast number of laboratory experiments, but it
offers no rational, logically consistent explanation of how
individual outcomes are produced. Of course, it is the human
brain rather than a mathematical formalism which decides, on
the basis of what it perceives through our senses and cogni-
tive capabilities, what constitutes a definite answer. Accord-
ing to Bohr [1], ‘Physics is to be regarded not so much as the
study of something a priori given, but rather as the devel-
opment of methods of ordering and surveying human
experience. In this respect our task must be to account for
such experience in a manner independent of individual sub-
jective judgment and therefore objective in the sense that it
can be unambiguously communicated in ordinary human
language’. This quote suggests to constructing a description
in terms of events, some of which are directly related to
human experience, and the cause-and-effect relations among
them. If such an event-based description reproduces the sta-
tistical results of experiments, it also provides a description on
a level to which quantum theory has no access.

For many interference and entanglement phenomena
observed in optics and neutron experiments, such an event-
based description has already been constructed; see [2–4] for
recent reviews. The event-based simulation models reproduce
the statistical distributions of quantum theory without solving
a wave equation, but by modeling physical phenomena as a
chronological sequence of events. Here, events can be actions
of an experimenter, particle emissions by a source, signal
generations by a detector, interactions of a particle with a
material and so on [2–4].

The basic premise of our event-based simulation
approach is that current scientific knowledge derives from the
discrete events which are observed in laboratory experiments
and from relations between those events. Hence, the event-
based simulation approach is concerned with how we can
model these experimental observations, but not with what
‘really’ happens in Nature.

The general idea of the event-based simulation method is
that simple rules define discrete-event processes which may
lead to the behavior that is observed in experiments. The basic
strategy in designing these rules is to carefully examine the
experimental procedure and to devise rules such that they
produce the same kind of data as those recorded in experi-
ment, while avoiding the trap of simulating thought
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experiments that are difficult to realize in the laboratory.
Evidently, mainly because of the lack of knowledge, the rules
are not unique. Hence, it makes sense to use the simplest rules
until a new experiment indicates that the rules should be
modified. The method may be considered as entirely ‘classi-
cal’, since it only uses concepts which are directly related to
our perception of the macroscopic world, but the rules
themselves are not necessarily those of classical Newtonian
dynamics.

The event-based approach has been successfully used for
discrete-event simulations of the experiments with a single
beam splitter and a Mach–Zehnder interferometer [2, 5, 6],
Wheelerʼs delayed choice experiments [2, 7, 8], a quantum
eraser experiment [2, 9], two-beam single-photon interference
experiments and the single-photon interference experiment
with a Fresnel biprism [2, 3, 10], quantum cryptography
protocols [11], the Hanbury Brown–Twiss experiments
[2, 12], universal quantum computation [13, 14], Ein-
stein–Podolsky–Rosen–Bohm (EPRB) experiments
[2, 3, 15–20], the propagation of electromagnetic plane waves
through homogeneous thin films and stratified media [2, 21],
and several single-neutron interferometry experiments [3, 4].

In this paper, we demonstrate that the same approach
provides an event-by-event description of recent neutron
experiments [22, 23] devised to test (generalizations of)
Heisenbergʼs uncertainty principle. As the event-by-event
simulation generates data consistent with the statistical pre-
dictions of quantum theory, they also satisfy the inequalities
that are generalizations of Heisenbergʼs uncertainty principle.
However, as the event-by-event simulation does not resort to
concepts of quantum theory, it seems to provide support to
the idea that many predictions of quantum theory may be
deduced using a ‘classical’ statistical theory [24–36].

The experiment and the quantum theoretical
description

A block diagram of the neutron experiment designed for
testing uncertainty relations [22, 23] is shown in figure 1.
Conceptually, this experiment exploits two different physical
phenomena: the motion of a magnetic moment in a static

magnetic field and the beam filtering by a spin analyzer
performing a Stern–Gerlach–like selection of the neutrons
based on the direction of their magnetic moments.

A magnetic moment S in an external, static magnetic
field Be experiences a rotation about the direction of the unit
vector e. For a spin-1/2 particle, a unitary transformation that
corresponds to such a rotation is given by

φ = = σγ φ· ·U ( ) e e , (1)tB
b

S e ei i

where γ is the gyromagnetic ratio of the particle, t is the time
of the particle interaction with the magnetic field, the variable
φ γ= tB 2 is the angle of rotation, and σ σ σ σ= ( , , )x y z are the

Pauli-spin operators.
An ideal spin analyzer passes all particles having their

spin polarized ‘up’ in some direction, stops all particles
having their spin ‘down’ and passes only some particles
polarized differently, changing at the same time their polar-
ization to the direction ‘up’. The detailed discussion of suc-
cessive spin filtering experiments may be found on pages
246–252 in [37]. An ideal spin analyzer directed along the
unit vector n is represented by the projection operator

 σ= + ·( )M S
S

n
n

,
2

, (2)

where  is the unit matrix and = ±S 1 selects one of the two
possible alignments of the spin polarizer along n (see
[22, 23]). For S = 1 it passes the particles with spin polarized
‘up’ and for = −S 1 the particles with spin polarized ‘down’.

Using equations (1) and (2), it is straightforward to
construct the quantum theoretical description of each of the
three stages in the experimental setup. By choosing appro-
priate configurations of various devices used in the neutron
experiment, we may estimate various joint filtering prob-

abilities in four experiments labeled ( )S S1, 2 : ( )1, 1 , −( )1, 1 ,

−( )1, 1 and −( )1, 1 .

For configurations chosen in [22, 23] the following
quantum theoretical description may be given. Neutrons are
prepared in an initial state represented by the density matrix

 σρ = + · a
2

. (3)

Taking account of all components of the setup of the
neutron experiment [22, 23] and the quantum theoretical
description of successive filtering experiments [37], one can
show that

ϕ

ϕ ϕ ϕ

=
+

+
+ +( )

( )
( )

P S S
S S

S S a a

a,
1 sin

4

sin cos sin

4
. (4)

x y

1 2
1 2

1 2

One may say that the neutron experiment performs successive
measurements of the operators σ σ ϕ σ ϕ= +ϕ cos sinx y and

σ ,y their eigenvalues being S1 and S2, respectively. Note that

these two operators do not commute unless ϕ =cos 0 and
that the observed eigenvalues S1 and S2 of these two operators
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Figure 1. Functional block diagram of the neutron experiment
[22, 23] for testing uncertainty relations; see also figure 2 in [22, 23].
Monochromatic neutrons enter from the left. SA1, SA2, SA3: spin
analyzers (see the text); SF1, SF2, SF3, SF4: spin flippers (see the
text). The positions of SF1 and the pair (SF2, SF3) are variable.



are correlated, as is evident from the contribution ϕS Ssin 41 2

in equation (4).
From equation (4), the expectation values of the various

spin operators follow immediately. Specifically, we have

∑

∑

σ ϕ ϕ

σ ϕ σ

= = +

= =

ϕ

ϕ

=±

=±

( )

( )

S P S S a a

S P S S

a

a

, cos sin ,

, sin , (5)

S S

x y

y

S S

a

a a

, 1

1 1 2

, 1

2 1 2

1 2

1 2

and as σ σ= =ϕ 1y
2 2 , the variances σ σ−ϕ ϕ

a a

2 2
and

σ σ−y y
a a

2 2
are completely determined by equation (5).

Event-by-event simulation

A minimal, discrete-event simulation model of single-neutron
experiments requires a specification of the information carried
by the neutrons, of the algorithm that simulates the source and
the devices used in the experimental setup (see figure 1), and
of the procedure for analyzing the data.

The messenger: A neutron is regarded as a messenger
carrying a message. In principle, there is a lot of freedom for
specifying the content of the message, the only criterion being
that in the end, the simulation should reproduce the results of
real laboratory experiments. We adopt Occamʼs razor as a
guiding principle to determine which kinds of data the mes-
senger should carry and we use the minimal amount of data.

The pictorial description that will be used in the fol-
lowing should not be taken literally: it is only meant to help
visualize, in terms of concepts familiar from macroscopic
physics, the minimal amount of data that the messenger
should carry.

Picturing the neutron as a tiny magnet, we can use the
spherical coordinates θ and φ to specify the direction of its
magnetic moment

φ θ φ θ θ= ( )m cos sin , sin sin , cos , (6)
T

relative to the fixed frame of reference defined by the static
magnetic field B z0 . The messenger should also be aware of
the time that it takes to move from one point in space to
another. The time of flight and the direction of the magnetic
moment are conveniently encoded in a message of the type
[3, 4]

θ θ= ψ ψ( )( ) ( )u e cos 2 , e sin 2 , (7)
( ) ( )i i

T
1 2

where ψ ω δ= +t( )i
i, for i = 1, 2, and

φ δ δ ψ ψ= − = −( ) ( )
1 2

1 2 . Within the present model, the state
of the neutron, that is the message, is completely described by

the angles ψ ( )1 , ψ ( )2 and θ and by rules (to be specified) by
which these angles change as the neutron travels through the
network of devices. This model suffices for reproducing the
results of single-neutron interference and entanglement
experiments and of their idealized quantum theoretical
descriptions [3, 4].

In specifying the message of equation (7), we exploited
the isomorphism between the algebra of Pauli matrices and
rotations in three-dimensional space, not because the former
connects to quantum mechanics but just because we find this
representation most convenient for our simulation work [2–4].
The direction of the magnetic moment follows from equation
(7) through

σ=m u u. (8)T

A messenger with message u at time t and position r that
travels with velocity v, along the direction q during a time
interval ′ −t t, changes its message according to

′ψ ψ ω← + −( )t t( ) ( )i i for i = 1, 2, where ω is an angular

frequency which is characteristic for a neutron that moves
with a fixed velocity v. In a monochromatic beam of neutrons,
all neutrons have the same value of ω [38].

In the presence of a magnetic field = ( )B B BB , ,x y z , the

magnetic moment rotates about the direction of B according
to the classical equation of motion

= ×
t

m
m B

d

d
. (9)

Hence, as the messenger passes a region in which a magnetic
field is present, the message u changes into the message

← μ σ·u ue , (10)g T B 2i N

where g denotes the neutron g-factor, μ
N
the nuclear mag-

neton, and T the time during which the messenger experiences
the magnetic field.

In the event-based simulation of the experiment shown in
figure 1, the time of flight T determines the angle of rotation
of the magnetic moment through equation (10) and can, so to
speak, be eliminated by expressing all operations in terms of
rotation angles. However, this simplification is no longer
possible in the event-based simulation of single-neutron
interference and entanglement experiments [3, 4].

The source: When the source creates a messenger, its
message needs to be initialized. This means that three angles

ψ ( )1 , ψ ( )2 and θ need to be specified. In practice, instead of
implementing stage 1 it is more efficient to prepare the
messengers such that the corresponding magnetic moments
are along a specified fixed direction. For instance, to mimic
fully coherent, spin-polarized neutrons that enter stage 2 with
their spin along the x-axis, the source would create messen-
gers with θ π= 2, and without loss of generality,

ψ ψ= = 0( ) ( )1 2 .
The spin flipper: The spin flipper rotates the magnetic

moment by an angle π 2 about the x-axis.
The spin analyzer: The simulation model of this com-

ponent is very simple: it lets the messenger pass if

⩽
+

r
m S1

2
, (11)z

where < <r0 1 is a uniform pseudo-random number and, as
before, = ±S 1 labels the orientation of the spin analyzer. If
equation (11) is not satisfied, the messenger is destroyed.
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The detector: As a messenger enters the detector, the
detection count is increased by 1 and the messenger is
destroyed. The detector counts all incoming messengers.
Hence, we assume that the detector has a detection efficiency
of 100%. This is a good model of real neutron detectors,
which can have a detection efficiency of 99% or more [39].

The simulation procedure and data analysis: First, we
establish the correspondence between the initial message
uinitial and the description in terms of the density matrix
equation (3). For instance we remove all devices from stages
1 and 2 and simply count the number of messages that pass
SA3 with =S 12 . It follows from equation (11) that the
relative frequency of counts is given by mz, the projection of
the message onto the z-axis. In other words, we would infer
from the data that in a quantum theoretical description, the z-
component of the density matrix az is equal to mz. By per-
forming rotations of the original message, it follows by the
same argument that =a minitial.

For each pair of settings ( )S S,1 2 of the spin analyzers

(SA2, SA3) and each position of the pair of spin flippers
(SF2, SF3) represented by a rotation of ϕ about the z-axis, the
source sends N messengers through the network of devices
shown in figure 1. The source only creates a new messenger if
(i) the previous messenger has been processed by the detector
or (ii) the messenger was destroyed by one of the spin ana-
lyzers. In other words, direct communication between mes-
sengers is excluded. As a device in the network receives a
messenger, it processes the message according to the rules
specified earlier and sends the messengers with the new
message to the next device in the network. If the device is a
spin analyzer, it may happen that the messenger is destroyed.
The detector counts all messengers that pass SA3 and
destroys these messengers.

For a sequence of N messengers all carrying the same
initial message =a minitial, this procedure yields a count

( )N S S a,1 2 (recall that ϕ is fixed during each sequence of N

events). Repeating the procedure for the four pairs of settings
yields the relative frequencies

=
∑ =±

( ) ( )
( )

F S S
N S S

N S S
a

a

a
,

,

,
. (12)

S S

1 2

1 2

, 1 1 21 2

Note that the numerator in equation (12) is not necessarily
equal to N because messengers may be destroyed when they
enter a spin analyzer. From equation (12) we compute

∑=
=±

( )S S F S S a, , (13)
S S

1

, 1

1 1 2

1 2

∑=
=±

( )S S F S S a, , (14)
S S

2

, 1

2 1 2

1 2

∑=
=±

( )S S S S F S S a, . (15)
S S

1 2

, 1

1 2 1 2

1 2

Validation: The event-based model reproduces the
results of the quantum theoretical description if, within
the usual statistical fluctuations, we find that

≈( ) ( )F S S P S Sa a, ,1 2 1 2 with ( )P S S a,1 2 given by equation

(4). This correspondence is most easily established by noting
that for fixed ϕ and a, the three expectations of equations
(13)–(15) completely determine equation (12) and that, like-
wise, the quantum theoretical distribution of equation (4) is
completely determined by the expectations of equations

(13)–(15) with ( )F S S a,1 2 replaced by ( )P S S a,1 2 . In other

words, for the event-based model to reproduce the results
of the quantum theoretical description of the neutron
experiment [22, 23], it is necessary and sufficient that
the simulation results for equations (13)–(15) are in
agreement with the quantum theoretical results (see

equation (5)) ϕ ϕ= +S a acos sinx y1 , ϕ=S Ssin2 1 ,

and ϕ=S S sin1 2 . As figure 2 shows, the results of
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Figure 2. Results for the expectations 〈 〉S1 (red solid circles), 〈 〉S2

(green solid squares), and 〈 〉S S1 2 (blue open circles) as obtained by
the event-by-event simulation of the neutron experiment [22, 23].
The solid lines represent the corresponding quantum theoretical
prediction. Top: incoming particles have magnetization

=a (1, 0, 0). Bottom: incoming particles have magnetization
=a (0, 1, 0). For each pair of settings S S( , )1 2 of the spin analyzers

(SA2, SA3) and each position of the pair of spin flippers (SF2, SF3)
represented by a rotation of ϕ about the z-axis, referred to as the
detuning angle in [22, 23], the simulation consists of sending
N = 1000 000 messengers (‘neutrons’) into stage 2.



event-based simulations are in excellent agreement with the
predictions of the quantum theoretical description of equation
(4) of the neutron experiment [22, 23]. Using the root mean
square error as a measure for the difference between the
simulation data and the quantum theoretical prediction, we
find that for each of the expectations shown in figure 2 the
root mean square error is less than 0.01 and 0.001 for
N = 10 000 and N = 1000 000 events, respectively.

Summarizing: the event-based simulation model of the
neutron experiment [22, 23] presented in this section does not
rely, in any sense, on concepts of quantum theory, yet it
reproduces all features of the quantum theoretical description
of the experiment. Although the event-based model is clas-
sical in nature, it is not classical in the sense that it can be
described by classical Hamiltonian dynamics, the reason
being that the operation of the spin analyzers requires a
probabilistic description.

Uncertainty relations

The purpose of the neutron experiment [22, 23] was to test an
error–disturbance uncertainty relation proposed by Ozawa
[40]. By introducing particular definitions of the measurement

error ε ( )A of an operator A and the disturbance η ( )B of an

operator B, Ozawa showed that

ε η ε Δ Δ η+ + ⩾ [ ]( ) ( ) ( ) ( ) ( ) ( )A B A B A B A B
1

2
, ,(16)

where

ε = −( ) ( )A M A , (17)A
2 2

η = −( ) ( )B M B , (18)B
2 2

Δ = −( )A A A , (19)2 2 2

Δ = −( )B B B , (20)2 2 2

and MA and MB represent the operators of different measuring

devices (implying that ⎡⎣ ⎤⎦ =M M, 0A B ) that allow us to read off

the value of the measurement for A and B, respectively.

Thereby it is assumed that =M AA and =M BB , that

is that the measurements of A and B are unbiased, implying

that ε Δ= −( ) ( )A M AA and η Δ= −( ) ( )B M BB .

If the state of the spin-1/2 system is described by the

density matrix ρ = z z , for appropriate choice of the

operators A, MA, B and MB one obtains

∑

∑

ε

η

= − =

= − =
=±

=±

( )

( )

( ) ( )

( ) ( )

A S P S S

B S P S S

a

a

2 2 , 1, 0, 0

2 2 , 0, 1, 0 , (21)

S S

S S

2

, 1

1 1 2

2

, 1

2 1 2

1 2

1 2

where ( )P S S a,1 2 is given by equation (4).

In the neutron experiment [22, 23] and therefore also in

our event-based simulation, the numerical values of ε ( )A and

η ( )B are obtained by counting detection events. We have

∑

∑

∑

∑

ε

η

≈ −

≈ −

=±

=±

=±

=±

( )

( )

( )

( )

( )

( )

A

S N S S

N S S

B

S N S S

N S S

x

x

y

y

2 2

,

,

2 2

,

,
, (22)

S S

S S

S S

S S

2 , 1

1 1 2

, 1

1 2

2 , 1

2 1 2

, 1

1 2

1 2

1 2

1 2

1 2

where ( )N S S a,1 2 denotes the count for the case in which the

direction of the magnetic moment of the incoming neutrons
(after stage 1) is a and the analyzers SA2 and SA3 are along
the directions S1 and S2, respectively.

As shown in [22, 23], the neutron counts observed in the
single-neutron experiment yield numerical values of

ε η ε σ σ η+ +( ) ( ) ( ) ( ) ( ) ( )A B A B A B which are in excellent

agreement with the quantum theoretical prediction.
We already checked that the ‘classical’ event-based

simulation model produces results which, within the statistical
errors, agree with the probabilities predicted by quantum
theory. Therefore it is to be expected that the data generated
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Figure 3. Simulation results for the uncertainties
ε η ε σ σ η+ +( ) ( ) ( ) ( ) ( ) ( )A B A B A B (blue solid circles) and

ε η( ) ( )A B (red open circles) as obtained from the event-by-event
simulations of the single-neutron experiment [22, 23]. The lines
through the data points represent the corresponding quantum
theoretical prediction. The solid horizontal line represents the lower
bound in equation (16). It is clear that the naive application of the
Heisenberg uncertainty relation, ε η ⩾( ) ( )A B 1, is at odds with the
prediction of quantum theory and the event-based simulation, and
with the experimental data (not shown, but see [22, 23]). On the
other hand, the results of the event-based simulation and the
experimental data (not shown, but see [22, 23]) comply with the
inequality equation (16). For each initial state, each pair of settings

( )S S,1 2 of the spin analyzers (SA2, SA3) and each position of the
pair of spin flippers (SF2, SF3) represented by a rotation of ϕ about
the z-axis, referred to as the detuning angle in [22, 23], the
simulation consists of sending N = 10 000 messengers (‘neutrons’)
into stage 2.



by the event-by-event simulation also satisfy the universally
valid error–disturbance uncertainty relation equation (16). As
shown in figure 3, this is indeed the case and, also as
expected, the data produced by the event-based simulation
also violate the naively interpreted Heisenberg uncertainty
relation

ε η ⩾ [ ]( ) ( )A B A B
1

2
, . (23)

Finally, for the sake of completeness, we show that the
event-by-event simulation produces data which comply with
the standard Heisenberg–Robertson uncertainty relation

Δ σ Δ σ σ⩾( ) ( )x y z which also should be universally valid.

Without loss of generality, the state of the spin-1/2 particle
may be represented by the density matrix equation (3) also if
it is interacting with other degrees of freedom. More expli-

citly, the inequality Δ σ Δ σ σ⩾( ) ( )x y z reads

σ σ σ− − ⩾( )( )1 1 , (24)x y z

2 2 2

or, using equation (3),

− − ⩾( ) ( )a a a1 1 . (25)x y z
2 2 2

The last inequality also trivially follows from the constraint

+ + ⩽a a a 1x y z
2 2 2 .

The simulation procedure that we use is as follows.

1. Loop over the values = = − …am( ) 1, , 1z zinitial in small
steps, e.g. in steps of 0.05.

2. Generate a uniform pseudo-random number < <r0 1.

Compute π= = − ( )a a rm( ) 1 cos 2x x zinitial
2 and

π= = − ( )a a rm( ) 1 sin 2y y zinitial
2 . This step yields a

direction of the magnetization minitial which is chosen
randomly in the x–y plane.

3. Generate N messengers with message minitial and send
them through a spin analyzer aligned along the x-
direction. Count the messengers that pass the spin
analyzer. Repeat this procedure for spin analyzers aligned
along the −x-, ±y- and ±z-directions. Processing the N

messengers yields the counts ( )N x a , −( )N x a , etc.

4. Compute the averages

σ ≈ − − + −( ( ) ( )) ( ( ) ( ))N N N Nx a x a x a x ax

, etc.
5. Go to the next step as long as ⩽a 1z .

6. Plot the results for σ σ− −( )( )1 1x y

2 2
and σz

2
as

a function of az.

The results of the event-based simulation are shown in
figure 4. Within the usual statistical errors, the classical, sta-
tistical model produces data which comply with the Hei-
senberg–Robertson uncertainty relation, equation (25).

Discussion

We have shown that a genuine classical event-based model
can produce events such that their statistics satisfies the
(generalized) Heisenberg–Robertson uncertainty relation
which is often associated with truly quantum mechanical
behavior.

The argument that in the non-quantum, event-based
model, the direction of the magnetic moment is known
exactly and therefore cannot be subject to uncertainty is
incorrect in that it ignores the fact that the model of the spin
analyzers introduces (through the use of pseudo-random
numbers) uncertainty in the outcomes.

In fact, as is well-known, the variance of any statistical
experiment (including those that are interpreted in terms of
quantum theory) satisfies the Cramér–Rao bound, a lower
bound on the variance of estimators of a parameter of the
probability distribution in terms of the Fisher information
[41]. The Cramér–Rao bound contains, as a special case,
Robertsonʼs inequality Δ Δ ⩾x p( ) ( ) 2
[24, 27, 31–33, 42]. The observation that a classical statistical
model produces data that comply with ‘quantum theoretical’
uncertainty relations is a manifestation of this general math-
ematical result. From the viewpoint of real data sets, the
uncertainty relations provide theoretical bounds on the sta-
tistical uncertainties in the data and, as shown by our event-
based simulation of the neutron experiment [22, 23], are not
necessarily a signature of quantum fluctuations, wave–particle
duality, etc. Uncertainty relations seem to express only a
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Figure 4. Event-based simulation results for σ σ− −(1 ) (1 )x y

2 2

(blue circles) and σz

2
(red squares) for different values of

− ⩽ ⩽a1 1z . The solid black line represents the quantum theoretical

lower bound az
2. For each value of az, the initial direction of the

magnetic moments is a a a( , , )x y z , where a a( , )x y is a point on the

circle with radius − a1 z
2 chosen using a uniform pseudo-random

number. The fluctuations of the data σ σ− −(1 ) (1 )x y

2 2
reflect

the fact that the initial states with different values of az are
uncorrelated. For each value of az, N = 100 000 messengers were
created. The dotted line is a guide to the eyes only.



general property of probability distributions describing the
results of incompatible experimental setups used to measure
two incompatible random variables in any domain of science.
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