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Abstract
A corpuscular simulation model for second-order intensity interference phenomena is
discussed. It is shown that both the visibility V = 1/2 predicted for two-photon interference
experiments with two independent sources and the visibility V = 1 predicted for two-photon
interference experiments with a parametric down-conversion source can be explained in terms
of a locally causal, modular, adaptive, corpuscular, classical (non-Hamiltonian) dynamical
system. Hence, there is no need to invoke quantum theory to explain the so-called nonclassical
effects in the interference of signal and idler photons in parametric down conversion. A
revision of the commonly accepted criterion of the nonclassical nature of light is needed.

PACS numbers: 03.65.−w, 42.50.St, 07.05.Tp

(Some figures may appear in color only in the online journal)

1. Introduction

In classical optics, interference is known to be a phenomenon
in which two waves are superimposed, resulting in a wave
with bigger or smaller amplitude. Observed for the first time
in Young’s two-slit experiment in 1803 [1], it played an
important role in the general acceptance of the wave character
of light. In quantum theory, interference in the two-slit
experiment with electrons, large molecules, photons and other
so-called quantum particles is considered to demonstrate the
wave–particle duality of these quantum particles. In fact,
according to Feynman the observation that the interference
pattern in the two-slit experiment with electrons is built up
detection event by detection event is a phenomenon which is
‘impossible, absolutely impossible, to explain in any classical
way, and which has in it the heart of quantum mechanics’ [2].
He referred to the interference of single electrons as ‘the only
mystery’ of quantum mechanics [2].

In general, a classical optical interference experiment
consists of several classical light sources (not necessarily
primary sources) and several detectors which measure
the resulting light intensity at various positions. Adding
equipment that accumulates the time average of the product of
the detector signals allows for the measurement of the second
and higher order intensity correlations. In quantum optics, the
sources are replaced by single-photon sources (the primary
source commonly said to create single-photons or N -photon
entangled states with N > 2) and single-photon detectors.
A coincidence circuit is added to the experimental setup to
measure coincidences in the photon counts.

In this paper we limit the number of sources and the
number of detectors to two. Interference is then characterized
by the dependence of the resulting light intensity or of
the second-order intensity correlations on certain phase
shifts. The Hanbury Brown–Twiss (HBT) effect was one of
the first observations that demonstrated interference in the
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intensity–intensity correlation functions [3]. HBT showed that
under conditions for which the usual two-beam interference
fringes measured by each of the two detectors vanish, the
correlated intensities of the two detectors can still show
interference fringes. For two completely independent sources,
be it classical light sources or single-photon sources, the
visibility of this second-order intensity interference has
an upperbound of 1/2 [4]. For primary sources producing
correlated photon pairs, such as parametric down-converting
sources, the two sources in an HBT-type of experiment
can no longer be considered to be independent. In that
case the two sources are considered to emit exactly one
photon of the correlated pair simultaneously. Such sources
provide a 100% visibility of the second-order intensity
correlation, exceeding the 50% limit which is a commonly
accepted criterion of nonclassicality [4]. The first experiment
devoted to demonstrate nonclassical second-order intensity
interference effects in the absence of first-order intensity
interference is probably the Ghosh–Mandel two-photon
interference experiment of 1987 [5]. However, the effect is
not limited to photons. Second-order intensity interference
effects have also been observed in two-atom interference
experiments [6–9] in which an expanding cloud of cooled
atoms acts as a source, multi-channel plate(s) detect the arrival
and position of a particle, and time-coincidence techniques
are employed to obtain the two-particle correlations. Also
in HBT type of experiments with electrons second-order
intensity interference effects have been observed [10, 11].
As well intensity interference in the two-slit experiment
as second-order intensity interference in HBT-type of
experiments is attributed to the dual wave–particle character
of the quantum particles.

In previous work [12–20] we have demonstrated, using
an event-based corpuscular model, that interference is not
necessarily a signature of the presence of waves of some kind
but can also appear as the collective result of particles which
at any time do not directly interact with each other. In general,
the event-based approach deals with the fact that experiments
yield definite results, such as for example the individual
detector clicks that build up an interference pattern. We call
these definite results ‘events’. Instead of trying to fit the
existence of these events in some formal, mathematical theory,
in the event-based approach the paradigm is changed by
directly searching for the rules that transform events into other
events and, which by repeated application, yield frequency
distributions of events that agree with those predicted by
classical wave or quantum theory. Obviously, such rules
cannot be derived from quantum theory or, as a matter of fact,
of any theory that is probabilistic in nature simply because
these theories do not entail a procedure (= algorithm) to
produce events themselves.

The event-based approach has successfully been used to
perform discrete-event simulations of the single beam splitter
and Mach–Zehnder interferometer experiment of Grangier
et al [21] (see [12–14]), Wheeler’s delayed choice experiment
of Jacques et al [22] (see [14–16]), the quantum eraser
experiment of Schwindt et al [23] (see [14, 17]), double-slit
and two-beam single-photon interference experiments and the
single-photon interference experiment with a Fresnel biprism
of Jacques et al [24] (see [14, 18]), quantum cryptography

Figure 1. Diagram of the Ghosh–Mandel interference
experiment [5]. A source emits pairs of single photons through
spontaneous down conversion in a LiIO3 crystal. These photons
leave the source in different directions. Mirrors redirect the photons
to the interference filter and a lens. The two beams overlap at a
distance of about 1 m from the crystal. The resulting image is
magnified by a lens and two movable glass pieces are used to collect
and redirect the photons to the single-photon detectors D0 and D1,
the signals of which are fed into a coincidence counter CC.

protocols (see [25]), the HBT experiment of Agafonov
et al [26] (see [14, 19]), universal quantum computation
(see [27, 28]), Einstein–Podolsky–Rosen–Bohm-type of
experiments of Aspect et al [29, 30] and Weihs et al [31]
(see [14, 32–37]), and the propagation of electromagnetic
plane waves through homogeneous thin films and stratified
media (see [14, 38]). An extensive review of the simulation
method and its applications is given in [14]. Proposals for
single-particle experiments to test specific aspects of the
event-based approach are discussed in [18, 20].

In this paper, we demonstrate that the second-order
intensity interference with visibility 1/2 in a HBT experiment
with two independent single-photon sources and with
visibility 1 in the Ghosh–Mandel experiment can be entirely
explained in terms of an event-based model, that is in
terms of a locally causal, modular, adaptive, classical
(non-Hamiltonian) dynamical system. Hence, there is no need
to invoke quantum theory to explain the observations and the
commonly accepted criterion of the nonclassical nature of
light needs to be revised.

2. Second-order intensity interference

In the context of the Ghosh–Mandel experiment, see figure 1,
we may view the two mirrors as the two sources that produce
two overlapping beams of photons. Hence, conceptually, this
experiment can be simplified as shown in figure 2, which is
the schematic diagram of a HBT experiment [4].

A HBT experiment is nothing but a two-beam experiment
with two independent sources and two detectors. The two
sources are positioned along the y-axis and are separated by
a center-to-center distance d . The two detectors are placed on
a line at a distance X from the y-axis. Assume that source Sm

(m = 0, 1) emits coherent light of frequency f and produces a
wave with amplitude Ameiφm (Am and φm real). For simplicity
of presentation, we assume that A0 = A1 = A. According to
Maxwell’s theory, the total wave amplitude Bn on detector n
is

Bn = A
(
ei(φ0+2π f T0,n) + ei(φ1+2π f T1,n)

)
, (1)
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Figure 2. Schematic diagram of the Ghosh–Mandel experiment.
Single photons emitted from point sources S0 and S1 positioned at
the y-axis and separated by a center-to-center distance d are
registered by two detectors D0 and D1 positioned on a line at a
distance X from the y-axis. The time of flight for each of the four
possible paths from source Sm to detector Dn is denoted by Tm,n

where m, n = 0, 1.

where the time of flight for each of the four possible paths
from source Sm to detector Dn is denoted by Tm,n where
m, n = 0, 1. The light intensity In = |Bn|

2 on detector Dn is
given by

In = 2A2
{1 + cos[φ0−φ1 + 2π f (T0,n − T1,n)]}. (2)

If the phase difference φ0−φ1 in equation (2) is fixed, the
usual two-beam (first-order) interference fringes are observed.

The essence of the HBT experiment is that if the phase
difference φ0−φ1 is a random variable (uniformly distributed
over the interval [0, 2π [) as a function of observation time,
these first-order interference fringes vanish because

〈In〉 = 2A2, (3)

where 〈.〉 denotes the average over the variables φ0 and φ1.
However, the average of the product of the intensities I0 and
I1 is given by

〈I0 I1〉 = 4A4
(
1 + 1

2 cos 2π f1T
)
, (4)

where 1T = (T0,0− T1,0)− (T0,1− T1,1). Accordingly, the
intensity–intensity correlation equation (4) exhibits second-
order interference fringes, a manifestation of the so-called
HBT effect. From equations (3) and (4), it follows that the
visibility of the signal I , defined by

V =
max(I )−min(I )

max(I )+ min(I )
(5)

is given by V = 0 and V = 1/2 for the first-order and
second-order intensity interference, respectively.

Treating the electromagnetic field as a collection of
bosons changes equation (4) into [4]

〈I0 I1〉
bosons

= 4A4 (1 + cos 2π f1T ) . (6)

Clearly, for bosons, the visibility of the second-order intensity
interference is V = 1.

Considering the situation in which the two independent
sources S0 and S1 are replaced by sources that emit
simultaneously exactly one photon of a correlated photon

pair emitted by a parametric down-conversion source gives
a similar expression for the average of the product of the
intensities I0 and I1 as given by equation (6). Hence, also in
this case V = 1 for the second-order intensity interference.

In the two-beam experiment interference appears in its
most pure form because the phenomenon of diffraction is
absent. If we assume that the detectors cannot communicate
with each other, that there is no direct communication between
the particles involved and that it is indeed true that individual
pairs of particles build up the interference pattern one by one,
just looking at figure 2 leads to the logically unescapable
conclusion that the interference can only be due to the internal
operation of the detector [39]. Detectors that simply count the
incoming photons are not sufficient to explain the appearance
of an interference pattern and apart from the detectors there is
nothing else that can cause the interference pattern to appear.
We now discuss an event-based model of a detector that can
cope with this problem [14].

3. Simulation model

The model discussed in this paper builds on our earlier
work [12–14, 27]. In short, in our simulation approach, a
photon is viewed as a messenger that carries a message
and material is regarded as a message processor. Evidently,
the messenger itself can be thought of as a particle. For the
present purpose, it suffices to encode in the message, the
time of flight of the particle. The interaction of the photons
with material translates into a processing unit receiving,
manipulating and sending out messages. Note that we
explicitly prohibit two particles from communicating directly
and that interference results from the processing of individual
particles only [12–14, 18, 19, 27].

We now explicitly describe the model, that is we specify
the message carried by the messengers, the algorithm for
simulating a detector (= processing unit), and the simulation
procedure itself.

Messenger. The messenger can be regarded as a particle
which travels with velocity c in the direction q/q. Each
messenger carries with it a harmonic oscillator which vibrates
with frequency f . It may be tempting to view the messenger
with its message as a plane wave with wave vector q, the
oscillator being one of the two electric field components
in the plane orthogonal to q. However, this analogy is
superfluous and should not be stretched too far. As there is
no communication/interaction between the messengers there
is no wave equation (i.e. no partial differential equation) that
enforces a relation between the messages carried by different
messengers. Indeed, the oscillator carried by a messenger
never interacts with the oscillator of another messenger, hence
the motion of these pairs of oscillators is not governed by
a wave equation. Naively, one might imagine the oscillators
tracing out a wavy pattern as they travel through space.
However, as there is no relation between the times at which the
messengers leave the source, it is impossible to characterize
all these traces by a field that depends on one set of
space–time coordinates, as required for a wave theory. It is
convenient (though not essential) to represent the message,
that is the oscillator, by a two-dimensional unit vector y=
(cosψ, sinψ) where ψ = 2π f t + δ. Here, t is the time of
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flight of the particle and δ is a phase shift. Pictorially, the
message is nothing but a representation of the hand of a clock
which rotates with period 1/ f and is running ahead by a time
related to the phase δ. A processing unit has access to this data
and may use the messenger’s internal clock to determine how
long it took for the messenger to reach the unit.

Source. A source creates a messenger with its phase δ
set to some randomly chosen value. Initially its time of flight
t is zero as it is determined by the arrival of the messenger
at a processing unit. A pseudo-random number determines to
which detector the messenger travels.

Single-photon detector. In reality, photon detection is
the result of a complicated interplay of different physical
processes [40].

In essence, a light detector consists of material that
absorbs light. The electric charges that result from the absorp-
tion process are then amplified, chemically in the case of a
photographic plate or electronically in the case of photodiodes
or photomultipliers. In the case of photomultipliers or
photodiodes, once a photon has been absorbed (and its
energy ‘dissipated’ in the detector material) an amplification
mechanism (which requires external power/energy) generates
an electric current (provided by an external current source)
[40, 41]. The resulting signal is compared with a threshold
that is set by the experimenter and the photon is said to have
been detected if the signal exceeds this threshold [40, 41].
In the case of photographic plates, the chemical process
that occurs when photons are absorbed and the subsequent
chemical reactions that renders visible the image serve similar
purposes.

Photon detectors, such as a photographic plate of
charge-coupled device arrays, consist of many identical
detection units each having a predefined spatial window in
which they can detect photons. In what follows, each of these
identical detection units will be referred to as a detector.
By construction, these detector units operate completely
independently from and also do not communicate with each
other.

An event-based model for the detector cannot be
‘derived’ from quantum theory simply because quantum
theory has nothing to say about individual events but predicts
the frequencies of their observation only [42]. Therefore, any
model for the detector that operates on the level of single
events must necessarily appear as ‘ad hoc’ from the viewpoint
of quantum theory. The event-based detector model that we
employ in this paper should not be regarded as a realistic
model for say, a photomultiplier or a photographic plate and
the chemical process that renders the image. In the spirit of
Occam’s razor, the very simple event-based model captures
the salient features of ideal (i.e. 100% efficient) single-photon
detectors.

The key element of the event-by-event approach is a
processing unit that is adaptive, that is it can learn from the
messengers that arrive at its input ports [12–14]. The diagram
of an event-based detection unit is depicted in figure 3.
It consists of an input stage called deterministic learning
machine (DLM) [12, 13], a transformation stage and an
output stage. The processing unit should act as a detector for
individual messengers which may come from several different
directions. Therefore, as can be seen from the schematic

Figure 3. Diagram of the event-based detector model defined by
equations (7)–(10). The detection unit consists of an input stage,
which is a DLM, a transformation stage and an output stage. The
input stage has K input channels at which a message y, being a
two-component vector, can arrive, K corresponding internal
registers Yk in which the incoming message can be stored and one
internal K -component vector x, responsible for the learning. The
transformation stage generates a message T, a two-component
vector, based on all information available in the input stage. The
output stage takes the message T as input and generates an output
signal z representing a ‘click’ or ‘no click’ on output channel 0 or 1,
respectively. The detection unit processes one message at a time.
The solid lines indicate the input and output channels of the
processing unit and the dashed lines indicate the data flow within
the processing unit.

diagram depicted in figure 3 this processing unit has K input
ports, a parameter that allows the machine to resolve K
different directions.

Input stage. Representing the arrival of a messenger at
port 16 k 6 K by the vector v= (v1, . . . , vK )

T with vi = δi,k

(i = 1, . . . , K ) the internal vector is updated according to the
rule

x← γ x + (1− γ )v, (7)

where x= (x1, . . . , xK )
T,

∑K
k=1 xk = 1 and 06 γ < 1. The

elements of the incoming message y are written in internal
register Yk ,

Yk← y, (8)

while all the other Yi (i 6= k) registers remain unchanged.
Thus, each time a messenger arrives at one of the input ports,
say k, the DLM updates all the elements of the internal vector
x, overwrites the data in the register Yk while the content of
all other Y registers remains the same.

Transformation stage.: The output message generated by
the transformation stage is

T= x ·Y=
K∑

k=1

xkYk, (9)

which is a two-component vector. Note that |T|6 1.
Output stage. As in all previous event-based models

for the optical components, the output stage generates a
binary output signal z = 0, 1 but the output message does
not represent a photon: it represents a ‘no click’ or ‘click’ if
z = 0 or z = 1, respectively. To implement this functionality,
we define

z =2(|T|2−R), (10)

where 2(.) is the unit step function and 06R < 1 are
uniform pseudo-random numbers (which are different for
each event). The parameter 06 γ < 1 can be used to control
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the operational mode of the unit. From equation (10) it follows
that the frequency of z = 1 events depends on the length of the
internal vector T.

Note that in contrast to experiment, in a simulation, we
could register both the z = 0 and 1 events. Then the sum of the
z = 0 and 1 events is equal to the number of input messages.
In real experiments, only z = 1 events are taken as evidence
that a photon has been detected. Therefore, we define the total
detector count by

Ncount =

N∑
l=1

zl , (11)

where N is the number of messages received and l labels the
events. In other words, Ncount is the total number of one’s
generated by the detector unit.

Comparing the number of ad hoc assumptions and
unknown functions that enter quantum theoretical treatments
of photon detectors [41] with the two parameters γ and K
of the event-based detector model, the latter has the virtue of
being extremely simple while providing a description of the
detection process at the level of detail, the single events, which
in any case is outside the scope of quantum theory.

Simulation procedure. Before the simulation starts we
set x= (1, 0, . . . , 0)T and we use pseudo-random numbers R
to set Yk = (cos 2πR, sin 2πR) for k = 1, . . . , K . Next, we
generate Ntot pairs of messengers, send them to the detectors,
determine the detector count Ncount at D0 and D1 and count the
coincidences. In the simulation always two messengers travel
to the detectors, one generated at source S0 and one at source
S1. Hence, once a pair of messengers is generated a detector
can generate no click, one click or two clicks. Only when both
detectors generate a click the coincidence count Ncoincindence is
enhanced by one.

4. Simulation results

4.1. Detection efficiency

The efficiency of the detector model is determined by
simulating an experiment that measures the detector
efficiency, which for a single-photon detector is defined as
the overall probability of registering a count if a photon
arrives at the detector [40]. In such an experiment a point
source emitting single particles is placed far away from a
single detector. As all particles that reach the detector have
the same time of flight (to a very good approximation), all the
particles that arrive at the detector will carry nearly the same
message y which is encoding the time of flight. Furthermore,
they arrive at the same input port, say q . As a result x (see
equation (7)) rapidly converges to the vector with xi → δi,q

and, as y is a unit vector, we have |T| ≈ 1, implying that the
detector clicks almost every time a photon arrives. Thus, for
our detector model, the detection efficiency as defined for real
detectors [40] is very close to 100% (results not shown).

4.2. HBT experiment

In figure 4 we present the simulation results for the HBT
experiment depicted in figure 2. For simplicity, we have
put detector D0 at (X, 0) and plot the single detector
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Figure 4. Simulation data of the single-particle and two-particle
counts for the HBT experiment depicted in figure 2. Red open
circles (blue open triangles): results for the counts Ncount of detector
D0 (D1), showing that there is no second-order intensity
interference. Red closed circles: results for the coincidence counts
Ncoincidence. The dashed and solid lines represent the theoretical
predictions Ntot/2 and equation (13) for the single detector and
coincidence counts, respectively. Simulation parameters:
Ntot = 2× 106 events per y1 f/c-value, NF = 50, X = 100000c/ f ,
d = 2000c/ f , γ = 0.99 and K = 2.

and coincidence counts as a function of the y-position of
detector D1. In each simulation step, both sources S0 and S1

create a messenger with some randomly chosen phase being
the only initial content of the messages ym (m = 0, 1). The
phases are kept fixed for NF successive pairs of messengers.
The total number of emitted pairs is denoted by Ntot. Two
pseudo-random numbers are used to determine whether the
messengers travel to detector D0 or D1. The time of flight
for the messenger travelling from source Sm to detector Dn is
given by

Tm,n =

√
X2 + ((1− 2m)d/2− yn)2

c
, (12)

where m, n = 0, 1. The time of flight Tm,n is added to
the message ym before the message is processed by the
corresponding detector Dn . The messages are the only input
to the event-based model. As figure 4 shows, averaging over
the randomness in the initial messages (random phases) wipes
out all interference fringes in the single-detector counts, in
agreement with Maxwell’s theory. We find that the number
of single-detector counts Ncount fluctuates around Ntot/2,
as expected from wave theory. Similarly, the data for the
coincidence counts are in excellent agreement with the
theoretical prediction for the simulation model

Ncoincidence =
Ntot

8

(
1 +

1

2
cos 2π f1T

)
, (13)

and, disregarding the prefactor Ntot/8, also in qualitative
agreement with the predictions of wave theory.

For simplicity, we have confined the above presentation to
the case of a definite polarization. Simulations with randomly
varying polarization (results not shown) are also in concert
with Maxwell’s theory.

5
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4.3. Ghosh–Mandel experiment

From equation (13), it follows that the visibility of the
interference fringes, defined by

V =
max(Ncoincidence)−min(Ncoincidence)

max(Ncoincidence)+ min(Ncoincidence)
, (14)

cannot exceed 1/2. It seems commonly accepted that the
visibility of a two-photon interference experiment exceeding
1/2 is a signature of the nonclassical nature of light.

As two-photon interference experiments, such as the
Gosh–Mandel experiment [5], employ time coincidence to
measure the intensity–intensity correlations, it is quite natural
to expect that a model that purports to explain the observations
accounts for the time delay that occurs between the time at
which a particle arrives at a detector and the actual click of
that detector. In quantum theory, time is not an observable
and can therefore not be computed within the theory proper.
Hence there is no way that these time delays, which are
being measured, can be accounted for by quantum theory.
Consequently, any phenomenon that depends on these time
delays must find an explanation outside the realm of quantum
theory (as it is formulated to date).

It is straightforward to add a time-delay mechanism to
the event-based model of the detector. For simplicity, let us
assume that the time delay for the detector click is given by

tdelay = Tm,n − Tmax(1− |T|2)h ln R, (15)

where 0<R < 1 is a pseudo-random number, and T is given
by equation (9). The time scale Tmax and the exponent h are
free parameters of the time-delay model. Note that tdelay−

Tm,n is a pseudo-random variable drawn from an exponential
distribution with mean Tmax(1− |T|2)h . Coincidences are
counted by comparing the difference between the delay times
of detectors D0 and D1 with a time window W .

From the simulation results presented in figure 5, it is
clear that by taking into account that there are fluctuations in
the time delay that depend on the time of flight and the internal
state of the detector, the visibility changes from V = 1/2
to V ≈ 1. The simulation data is represented (very) well by
N ′count ≈ Ntot/2 and

N ′coincidence ≈ a′4 Ntot (1 + cos 2π f1T ) , (16)

where the prime indicates that the model incorporates the
time-delay mechanism and a′4 is a fitting parameter which
depends on the details of the time-delay mechanism. As
expected, the use of a narrow time window leads to a
significant reduction (by a factor a′4 = 0.077) of the total
coincidence count. These results demonstrate that a purely
classical corpuscular model of a two-photon interference
experiment can yield visibilities that are close to one. Hence,
the commonly accepted criterion of the nonclassical nature of
light needs to be revised.

The time-delay model equation (15) is perhaps one of the
simplest that yields interesting results but it is by no means
unique and can only be scrutinized on the basis of accurate
experimental data which, unfortunately, do not seem to be
available thus far.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-30 -20 -10  0  10  20  30

C
ou

nt
s 

/ 1
06

y1f/c

Figure 5. Simulation data of the single-particle and two-particle
counts for the HBT experiment depicted in figure 2, generated by
the same event-based model that produced the data of figure 4
extended with the time-delay model equation (15). Simulation
parameters: Tmax/ f = 1000, W/ f = 1, h = 8. The dashed and solid
lines are least-square fits to a′2 Ntot and a′4 Ntot(1 + b′4cos2π f1t) for
the single detector and coincidence counts, Ncount and Ncoincidence,
respectively. The values of the fitting parameters are a′2 = 0.502,
a′4 = 0.077 and b′4 = 0.974.
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Figure 6. Same as figure 5 except that the two sources never send
their particles to the same detector, mimicking bosons (see text).
The values of the fitting parameters are a′′2 = 0.502, a′′4 = 0.154 and
b′′4 = 0.985.

4.4. Bosons

If we exclude the possibility that the two sources send
their particles to the same detector, the event-based approach
produces results that are reminiscent of the quantum
theoretical description in terms of bosons. In figure 6, we
present the results of such a simulation, using the same model
parameters as those used to produce the results of figure 5.
From figures 5 and 6, it is clear that the maximum amplitude
of the two-particle interference signal of the latter is two times
larger than that of the former (the ‘classical’ case), as expected
for bosons. The simulation data is represented (very) well by
N ′′count ≈ Ntot/2

N ′′coincidence ≈ a′′4 Ntot (1 + cos 2π f1T ) , (17)

where the double prime indicates that the model incorporates
the time-delay mechanism and that the possibility that the
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two sources send their particles to the same detector has been
excluded.

4.5. Nonmonochromatic sources

All the results presented above have been obtained
by assuming that the beams of particles are strictly
monochromatic, meaning that the frequency f of the
oscillators carried by the particles is fixed. A more realistic
simulation of the pairs of photons created by the parametric
down-conversion process requires that the frequencies f1

and f2 of the messages carried by the pair of particles
satisfy energy conservation, meaning that f1 + f2 = f0 where
f0 is the frequency of the pump beam [41, 43–45]. It is
straightforward to draw the frequencies f1 (and therefore
f2 = f0− f1) from a specified distribution, such as a
Lorentzian [41, 43]. In the simulation, each created particle
pair would then correspond to one message characterized by a
frequency f1 and another one by frequency f2. The detectors
simply sum all the contributions (taking into account the
differences in the factors fm Tm,n), resulting in a reduction of
the visibility, just as in the wave mechanical picture.

5. Conclusion

We have shown that the so-called nonclassical effects
observed in two-photon interference experiments with a
parametric down-conversion source can be explained in terms
of a locally causal, modular, adaptive, corpuscular, classical
(non-Hamiltonian) dynamical system. The high visibility,
V = 1, in this type of experiment is commonly considered as a
signature of two-photon light, in contrast to the visibility V =
1/2 obtained in a similar experiment with a classical light
source. On the other hand, according to [26], the existence
of high-visibility interference in the third and higher orders in
the intensity cannot be considered as a signature of three- or
four-photon interference, because high-visibility interference
is also observed in HBT type interference experiments with
classical light. Hence, although the case of second-order
intensity interference seemed to be different from the higher
orders, we have demonstrated that also for the second-order
intensity interference the value of the visibility cannot be used
to say anything about the quantum character of the source.
As well the interference experiment with a classical light
source as the interference experiment with the parametric
down-conversion source can be explained entirely in terms of
a classical corpuscular model.

Elsewhere, we have shown that third-order intensity
interference in a HBT type of experiment with two sources
emitting uncorrelated single photons can be modeled by an
event-based model as well [19]. Simulation of an interference
experiment with a three-photon source is left for future
research.
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[8] Öttl A, Ritter S, Köhl M and Esslinger T 2005 Phys. Rev. Lett.

95 090404
[9] Schellekens M, Hoppeler R, Perrin A, Viana Gomes J, Boiron

D, Aspect A and Westbrook C 2005 Science 310 648
[10] Oliver W, Kim J, Liu R and Yamamoto Y 1999 Science

284 299
[11] Kiesel H, Renz A and Hasselbach F 2002 Nature 418 392
[12] De Raedt H, De Raedt K and Michielsen K 2005 Europhys.

Lett. 69 861
[13] De Raedt K, De Raedt H and Michielsen K 2005 Comp. Phys.

Commun. 171 19
[14] Michielsen K, Jin F and De Raedt H 2011 J. Comp. Theor.

Nanosci. 8 1052
[15] Zhao S, Yuan S, De Raedt H and Michielsen K 2008

Europhys. Lett. 82 40004
[16] Michielsen K, Yuan S, Zhao S, Jin F and De Raedt H 2010

Physica E 42 348
[17] Jin F, Zhao S, Yuan S, De Raedt H and Michielsen K 2010

J. Comp. Theor. Nanosci. 7 1771
[18] Jin F, Yuan S, De Raedt H, Michielsen K and Miyashita S

2010 J. Phys. Soc. Japan 79 074401
[19] Jin F, De Raedt H and Michielsen K 2010 Commun. Comput.

Phys. 7 813
[20] Michielsen K, Lippert T, Richter M, Barbara B, Miyashita S

and De Raedt H 2012 J. Phys. Soc. Japan 81 034001
[21] Grangier P, Roger G and Aspect A 1986 Europhys. Lett. 1 173
[22] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P,

Aspect A and Roch J-F 2007 Science 315 966
[23] Schwindt P D D, Kwiat P G and Englert B-G 1999 Phys. Rev.

A 60 4285
[24] Jacques V, Wu E, Toury T, Treussart F, Aspect A, Grangier P

and Roch J-F 2005 Eur. Phys. J. D 35 561
[25] Zhao S and De Raedt H 2008 J. Comp. Theor. Nanosci. 5 490
[26] Agafonov I N, Chekhova M V, Iskhakov T S and Penin A N

2008 Phys. Rev. A 77 053801
[27] De Raedt H, De Raedt K and Michielsen K 2005 J. Phys. Soc.

Japan Suppl. 76 16
[28] Michielsen K, De Raedt K and De Raedt H 2005 J. Comput.

Theor. Nanosci. 2 227
[29] Aspect A, Grangier P and Roger G 1982 Phys. Rev. Lett. 49 91
[30] Aspect A, Dalibard J and Roger G 1982 Phys. Rev. Lett.

49 1804
[31] Weihs G, Jennewein T, Simon C, Weinfurther H and Zeilinger

A 1998 Phys. Rev. Lett. 81 5039
[32] De Raedt K, Keimpema K, De Raedt H, Michielsen K and

Miyashita S 2006 Eur. Phys. J. B 53 139
[33] De Raedt H, De Raedt K, Michielsen K, Keimpema K and

Miyashita S 2007 J. Phys. Soc. Japan 76 104005
[34] De Raedt K, De Raedt H and Michielsen K 2007 Comp. Phys.

Commun. 176 642
[35] De Raedt H, De Raedt K, Michielsen K, Keimpema K and

Miyashita S 2007 J. Comp. Theor. Nanosci. 4 957
[36] De Raedt H, Michielsen K, Miyashita S and Keimpema K

2007 Eur. Phys. J. B 58 55
[37] Zhao S, De Raedt H and Michielsen K 2008 Found. Phys.

38 322
[38] Trieu B, Michielsen K and De Raedt H 2011 Comp. Phys.

Commun. 182 726
[39] Pfleegor R and Mandel L 1967 Phys. Rev. 159 1084
[40] Hadfield R H 2009 Nature Photon. 3 696
[41] Garrison J C and Chiao R Y 2009 Quantum Optics (Oxford:

Oxford University Press)
[42] Home D 1997 Conceptual Foundations of Quantum Physics

(New York: Plenum)
[43] Rubin M and Shih Y H 1992 Phys. Rev. A 45 8138
[44] Shih Y H, Sergienko A V and Rubin M H 1993 Phys. Rev. A

47 1288
[45] Shih Y H, Sergienko A V, Rubin M H, Kiess T E and Alley C

O 1994 Phys. Rev. A 49 4243

7

http://dx.doi.org/10.1098/rstl.1804.0001
http://dx.doi.org/10.1038/177027a0
http://dx.doi.org/10.1103/RevModPhys.71.S274
http://dx.doi.org/10.1103/PhysRevLett.59.1903
http://dx.doi.org/10.1103/PhysRevLett.77.3090
http://dx.doi.org/10.1038/nature05513
http://dx.doi.org/10.1103/PhysRevLett.95.090404
http://dx.doi.org/10.1126/science.1118024
http://dx.doi.org/10.1126/science.284.5412.299
http://dx.doi.org/10.1038/nature00911
http://dx.doi.org/10.1209/epl/i2004-10443-7
http://dx.doi.org/10.1016/j.cpc.2005.04.012
http://dx.doi.org/10.1166/jctn.2011.1783
http://dx.doi.org/10.1209/0295-5075/82/40004
http://dx.doi.org/10.1016/j.physe.2009.06.072
http://dx.doi.org/10.1166/jctn.2010.1542
http://dx.doi.org/10.1143/JPSJ.79.074401
http://dx.doi.org/10.4208/cicp.2009.09.131
http://dx.doi.org/10.1143/JPSJ.81.034001
http://dx.doi.org/10.1209/0295-5075/1/4/004
http://dx.doi.org/10.1126/science.1136303
http://dx.doi.org/10.1103/PhysRevA.60.4285
http://dx.doi.org/10.1140/epjd/e2005-00201-y
http://dx.doi.org/10.1166/jctn.2008.007
http://dx.doi.org/10.1103/PhysRevA.77.053801
http://dx.doi.org/10.1143/JPSJS.74S.16
http://dx.doi.org/10.1166/jctn.2005.106
http://dx.doi.org/10.1103/PhysRevLett.49.91
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.81.5039
http://dx.doi.org/10.1140/epjb/e2006-00364-9
http://dx.doi.org/10.1143/JPSJ.76.104005
http://dx.doi.org/10.1016/j.cpc.2007.01.007
http://dx.doi.org/10.1166/jctn.2007.007
http://dx.doi.org/10.1140/epjb/e2007-00195-2
http://dx.doi.org/10.1007/s10701-008-9205-5
http://dx.doi.org/10.1016/j.cpc.2010.12.017
http://dx.doi.org/10.1103/PhysRev.159.1084
http://dx.doi.org/10.1038/nphoton.2009.230
http://dx.doi.org/10.1103/PhysRevA.45.8138
http://dx.doi.org/10.1103/PhysRevA.47.1288
http://dx.doi.org/10.1103/PhysRevA.49.4243

	1. Introduction
	2. Second-order intensity interference
	3. Simulation model
	4. Simulation results
	4.1. Detection efficiency
	4.2. HBT experiment
	4.3. Ghosh--Mandel experiment
	4.4. Bosons
	4.5. Nonmonochromatic sources

	5. Conclusion
	References

