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Abstract
A corpuscular simulation model of optical phenomena that does not require knowledge of the
solution of a wave equation of the whole system and reproduces the results of Maxwell’s
theory by generating detection events one by one is discussed. The event-based corpuscular
model gives a unified description of multiple-beam fringes of a plane parallel plate and a
single-photon Mach–Zehnder interferometer, Wheeler’s delayed choice, photon tunneling,
quantum eraser, two-beam interference, Einstein–Podolsky–Rosen–Bohm and Hanbury
Brown–Twiss experiments. The approach is illustrated by applying it to a recent proposal for a
quantum-controlled delayed choice experiment, demonstrating that also this thought
experiment can be understood in terms of particle processes only.

PACS numbers: 03.65.−w, 03.65.Ta, 02.70.−c

(Some figures may appear in color only in the online journal)

1. Introduction

Quantum theory has proven extraordinarily powerful in
describing the statistical properties of a large number of
laboratory experiments. Conceptually, it is straightforward to
use the quantum theoretical formalism to calculate numbers
that can be compared with experimental data, at least if these
numbers refer to statistical averages. However, a fundamental
problem appears if an experiment provides access to
the individual events that collectively build the statistical
average. Prime examples are the single-electron two-slit
experiment [1], neutron interferometry experiments [2] and
similar experiments in optics where the click of the detector
is identified with the arrival of a single photon [3]. Although

quantum theory provides a recipe to compute the frequencies
for observing events, it does not account for the observation of
the individual detection events themselves [4, 5]. For a recent
review of various approaches to the quantum measurement
problem and an explanation of it within the statistical
interpretation, see [6].

From the viewpoint of quantum theory, the central issue
is how it can be that experiments yield definite answers. As
stated by Leggett [7]: ‘In the final analysis, physics cannot
forever refuse to give an account of how it is that we obtain
definite results whenever we do a particular measurement’.

This paper is not about interpretations or extensions
of quantum theory. It provides a brief account of a very
different approach for dealing with the fact that experiments
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yield definite results. The latter, which is intimately linked
to human perception, is considered as fundamental. We call
these definite results ‘events’. Instead of trying to fit the
existence of these events into some formal, mathematical
theory, we change the paradigm by directly searching for the
rules that transform events into other events and, by repeated
application, yield frequency distributions of events that agree
with those predicted by quantum theory. Obviously, such rules
cannot be derived from quantum theory or, as a matter of fact,
any theory that is probabilistic in nature simply because these
theories do not entail a procedure (= algorithm) to produce
events themselves.

The event-based approach has successfully been used
to perform discrete-event simulations of the single beam
splitter and Mach–Zehnder interferometer experiment of
Grangier et al [8] (see [9–11]), Wheeler’s delayed choice
experiment of Jacques et al [12] (see [11, 13, 14]),
the quantum eraser experiment of Schwindt et al [15]
(see [11, 16]), double-slit and two-beam single-photon
interference experiments and the single-photon interference
experiment with a Fresnel biprism of Jacques et al [17]
(see [11, 18]), quantum cryptography protocols (see [19]),
the Hanbury Brown–Twiss experiment of Agafonov et al [20]
(see [11, 21]), universal quantum computation (see [22, 23]),
Einstein–Podolsky–Rosen–Bohm-type experiments of Aspect
et al [24, 25] and Weihs et al [26] (see [11, 27–32]) and
the propagation of electromagnetic plane waves through
homogeneous thin films and stratified media (see [11, 33]). An
extensive review of the simulation method and its applications
is given in [11].

A detailed discussion of the discrete-event approach
cannot be fitted into this short paper. Therefore, we have
chosen to illustrate the approach by applying it to a recent
proposal for a quantum-controlled Wheeler delayed choice
experiment [34]. We demonstrate that also this thought
experiment can be understood in terms of event-based,
particle-like processes only. The presentation is sufficiently
detailed such that the reader who is interested can reproduce
our results.

2. Wheeler’s delayed-choice experiment

Particle–wave duality, a concept of quantum theory, attributes
to photons the properties of both wave and particle behaviors
depending on the circumstances of the experiment [4].
The particle behavior of photons has been shown in an
experiment composed of a single beam splitter (BS) and a
source emitting single photons and pairs of photons [8]. The
wave character has been demonstrated in a single-photon
Mach–Zehnder interferometer (MZI) experiment [8]. The
layout of such an experiment is shown in figure 1. By adding
a device which controls the presence or absence of the second
beam splitter BS2, this setup can be used to perform a
delayed-choice experiment. Originally, Wheeler proposed a
double-slit gedanken experiment in which the decision to
observe wave or particle behavior is made after the photon
has passed the slits [35]. Similarly, in the MZI experiment,
the decision to remove and place BS2 at the intersection of
paths 0 and 1 can, in principle, be made after the photon has
passed BS1. The conclusion is that the pictorial description

Figure 1. Diagram of a standard Wheeler delayed-choice
experiment with a Mach–Zehnder interferometer. Photons enter the
interferometer via 50–50 beam splitter 1 (BS1). In the wave picture,
the partial wave traveling along path 0 (1) acquires a phase shift φ0

(φ1). The variable x = 0, 1 controls the presence of 50–50 beam
splitter 2 (BS2). If BS2 is not in place (x = 0, indicated by the
dashed rectangle) the partial waves do not interfere and the
probability to observe the photon in path 0 or 1 does not depend on
the phase shifts. If BS2 is in place (x = 1, indicated by a solid
rectangle) the partial waves interfere and the probability to observe
the photon in path 0 or 1 is given by (1 + cos(φ0−φ1))/2 or
(1− cos(φ0−φ1))/2, respectively.

Figure 2. Quantum gate representation of the standard Wheeler
delayed-choice experiment with a Mach–Zehnder interferometer
(see figure 1). The first Hadamard gate H acts as a 50–50 beam
splitter, changing the state |0〉 into the state (|0〉+ |1〉)/

√
2. The

phase gate ϕ changes the amplitude of the state |1〉 by eiϕ . The
second (controlled) Hadamard gate H act as a 50–50 beam splitter if
the control variable x = 1 or passes the photons unaltered if x = 0.
The angle α determines the probability that the control variable x
is 1. A pair of detectors (not shown) signals the presence of a
photon in the state |0〉 or |1〉 and with each detected photon the
value of x is being recorded.

of this experiment defies common sense: the behavior of the
photon in the past is said to be changing from a particle to a
wave or vice versa.

3. Quantum-controlled delayed-choice experiment

It is of interest to enquire what happens if the variable
x that controls the presence of BS2 (see figure 1) or,
equivalently, the controlled Hadamard gate (see figure 2) is
replaced by a quantum two-state system [34]. In a sense, one
could then view the experiment as a simple example of a
quantum-controlled experiment [34]. The original proposal
of the quantum-controlled delayed-choice experiment [34]
is formulated in a notation that is commonly used in the
quantum computer literature [36]. To facilitate a comparison
with this work, we also adopt this notation from now on.
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Figure 3. Quantum gate representation of the quantum version of
the Wheeler delayed-choice experiment with a Mach–Zehnder
interferometer [34]. Reading from left to right, the first Hadamard
gate H on the top line acts as a 50–50 beam splitter and the phase
gate ϕ changes the amplitude of the state |1〉 by eiϕ . The second
(controlled) Hadamard gate H on the top line acts as a 50–50 beam
splitter if the state of the ancilla is |1〉 or passes the photons
unaltered if that state is |0〉. Initially in the state |0〉, the ancilla is
prepared in a uniform superposition of the states |0〉 and |1〉 by
another interferometer circuit (bottom line) in which the phase gate
α changes the amplitude of the ancilla state |1〉 by eiα . The angle α
determines the probabilities of the states |0〉 and |1〉. A pair of
detectors (not shown) signals the presence of the photon in the state
|0〉 or |1〉. Similarly, another pair of detectors (not shown) signals
the presence of the ancilla in the state |0〉 or |1〉.

First, in figure 2 we show the quantum gate diagram that is
equivalent to the standard delayed-choice experiment depicted
in figure 1. The main change, irrelevant from a conceptual
point of view, is to replace the beam splitters by Hadamard
gates. In [34], it is proposed to replace the classical random
variable x in figure 2 by a qubit, conventionally called ancilla,
that can be in a superposition of the states |0〉 and |1〉.
As shown in figure 3, the state of the ancilla controls the
operation of the last Hadamard gate on the top line. In our
implementation, we have chosen to include a preparation
procedure for the state of the ancilla, as indicated in figure 3.

For completeness and comparison with the event-by-
event simulation data, we give the quantum-theoretical
description of this experiment in terms of the state |vu〉 =
|v〉⊗ |u〉 where u, v = 0, 1 label the basis states and |u〉 and
|v〉 denote the state of the ancilla and photon, respectively.
The amplitudes at the input a= (a00, a01, a10, a11)

T and the
output b= (b00, b01, b10, b11)

T of the experiment depicted in
figure 3 are related by

b=


1 0 a 0
0 a 0 a
1 0 1 0
0 −a 0 a




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiϕ



×


a 0 a 0
0 a 0 a
−a 0 a 0

0 −a 0 a




a a 0 0
−a a 0 0

0 0 a a
0 0 −a a



×


1 0 0 0
0 eiα 0 0
0 0 1 0
0 0 0 1




a a 0 0
−a a 0 0

0 0 a a
0 0 −a a

 a, (1)

where a = 1/
√

2.
Reading from right to left, the matrices in equation (1)

represent the action of a Hadamard operation on the ancilla, a
phase shift (by α) operation on the ancilla, another Hadamard
operation on the ancilla, a Hadamard operation on the photon,

a phase shift (by ϕ) operation on the photon and a controlled
(by the ancilla) Hadamard operation on the photon. Note that
all these operations only affect the state, i.e. the wave function,
which describes the statistical properties of the whole system
and cannot be interpreted as having causal effects on a
particular particle without running into conceptual and logical
problems [4].

For the case at hand, a00 = 1 and all other a’s are zero.
Then it follows from equation (1) that the probability to detect
a pair (photon, ancilla) in the state |vu〉 is given by p(v, u)=
|bv,u |2. More explicitly, we have [34]

p(v = 0, u = 0)= 1
2 cos2 α,

p(v = 1, u = 0)= 1
2 cos2 α,

p(v = 0, u = 1)= sin2 α cos2 ϕ

2
,

p(v = 1, u = 1)= sin2 α sin2 ϕ

2
.

(2)

Note that equation (2) is identical to the corresponding result
for the standard delayed-choice experiment.

4. The simulation model

The model presented in this paper builds on earlier
work [9–11, 22, 23, 27–30, 32] in which we have
demonstrated that it may be possible to simulate quantum
phenomena on the level of individual events without invoking
concepts of quantum theory.

In our simulation approach, a messenger (representing
the photon or the ancilla) carries a message (representing the
phase) and is routed through the network and the various units
that process the messages.

We now explicitly describe our simulation model, that
is, we specify the message carried by the messengers, the
algorithms that simulate the processing units and the data
analysis procedure.

4.1. The messenger

Particles carry a message represented by a two-dimensional
unit vector yk,n =

(
cosψk,n, sinψk,n

)
, where ψk,n refers to

the phase of the photon. The subscript n > 0 labels the
consecutive messages and k = 0, 1 labels the port of the beam
splitter at which the message arrives. Every time a messenger
is created, the message is initialized to yk,n = (1, 0).

4.2. The Hadamard gate

The key element of the event-by-event approach is a
processing unit that is adaptive, that is, it can learn from the
messengers that arrive at its input ports [9–11]. The processing
unit consists of an input stage called a deterministic learning
machine (DLM) [9, 10], a transformation stage and an output
stage. In experiments with single particles, the input stage
receives a message on either input port k = 0 or k = 1,
but never on both ports simultaneously. The arrival of a
message on port 0 (1) corresponds to an event of type 0 (1).
The input events are represented by the vectors en = (1, 0)
or en = (0, 1) if the nth event occurred on port 0 or 1,

3
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respectively. The DLM has two sets of internal registers
(Ck,n, Sk,n) and one internal vector xn = (x0,n, x1,n), where
x0,n + x1,n = 1 and xi,n > 0. These three two-dimensional
vectors are labeled by the message number n because their
content is updated every time the DLM receives a message.
Thus, the DLM can only store six numbers, not more. Before
the simulation starts we set x0 = (x0,0, x1,0)= (R, 1−R),
where R is a uniform pseudo-random number. In a similar
way, we use pseudo-random numbers to set (Ck,0, Sk,0) for
k = 0, 1. Upon receiving the (n + 1)th input event, the DLM
performs the following steps: (i) it stores the message yk,n+1 =

(cosψk,n+1, sinψk,n+1) in its internal register (Ck,n+1, Sk,n+1)

and (ii) it updates its internal vector according to the rule

xi,n+1 = γ xi,n + (1− γ )δi,k, (3)

where 0< γ < 1 is a parameter that controls the learning
process. By construction, x0,n+1 + x1,n+1 = 1 and xi,n+1 > 0.

The parameter γ affects the time the machine needs for
adapting to a new situation, that is, when the ratio of particles
on paths 0 and 1 changes. By reducing γ , the time to adapt
decreases but the accuracy with which the machine reproduces
the ratio also decreases. In the limit γ = 0, the machine learns
nothing: it simply echoes the last message that it received
[9, 10]. If γ → 1−, the machine learns slowly and accurately
reproduces the ratio of particles that enter via paths 0 and 1.
It is in this case that the machine can be used to reproduce,
event by event, the interference patterns that are characteristic
of quantum phenomena [9–11].

The transformation stage implements the specific
functionality of the unit, the Hadamard operation for the case
at hand. It takes as input the data stored in the two internal
registers (Ck,n+1, Sk,n+1) (k = 0, 1) and in the internal vector
xn+1 = (x0,n+1, x1,n+1) and constructs the four-dimensional
vector

V=
1
√

2


C1,n+1

√
x1,n+1 + C0,n+1

√
x0,n+1

S1,n+1
√

x1,n+1 + S0,n+1
√

x0,n+1

C1,n+1
√

x1,n+1−C0,n+1
√

x0,n+1

S1,n+1
√

x1,n+1− S0,n+1
√

x0,n+1

 . (4)

Rewriting this vector as a two-dimensional vector with
complex-valued entries, it is easy to show that V corresponds
to the matrix–vector multiplication in the quantum theoretical
description of the Hadamard gate [23].

The vector V is then passed on to the output stage which
determines the output port through which the messenger
leaves the unit. The output stage sends the message

w0,n+1 = (V0 + V1)/(V2
0 + V2

1)
1/2, (5)

through output port 0 if w2
0,n+1 <R where 0<R < 1 is a

uniform pseudo-random number. Otherwise, the output stage
sends the message

w1,n+1 = (V2 + V3)/(V2
2 + V2

3)
1/2, (6)

through output port 1.

4.3. The controlled Hadamard gate

The event-based processor of this device is identical to that of
the Hadamard gate itself except that the vector V is computed
according to equation (4) if the control bit (called x) is 1 only.
If the control bit is 0, V is given by

V=


C0,n+1

√
x0,n+1

S0,n+1
√

x0,n+1

C1,n+1
√

x1,n+1

S1,n+1
√

x1,n+1

 . (7)

4.4. The phase gate

The unit that performs the phase shift by an angle φ changes
the message yk,n according to the rule

y0,n←

(
1 0

0 1

)
,

y1,n←

(
cosφ sinφ

− sinφ cosφ

)
y1,n. (8)

As a result the message is rotated by φ if the particle traveled
via path 1.

4.5. The simulation procedure

For each pair (α, ϕ), N = 10 000 pairs of messengers (one
for the photon, and one for the ancilla) are sent through the
network (see figure 3) of processing units. A messenger that
appears on an output line of the network exits either via port
0 or via port 1 and never via both ports simultaneously. With
each pair of messengers that emerges from the network, the
corresponding counter is incremented, that is, no events are
being discarded. In other words, we assume that the efficiency
of the detectors is 100%. After all pairs have been processed,
dividing the value of one of the counters by N yields the
normalized frequency for observing a pair (photon, ancilla)
in the corresponding output ports.

5. Simulation results

In figure 4, we show the results of the event-based simulation
of the quantum-controlled delayed-choice experiment for a
fixed value (α = π/3) of the parameter that determines the
probability (sin2 α) that the ancilla is in the state |1〉. As
the solid lines in figure 4 are predictions of quantum theory,
see equation (2), it is clear that the event-based simulation
reproduces the results of quantum theory for this particular
value of α.

In figure 5, we plot the difference between the event-
based simulation results and the prediction of quantum theory,
given by equation (2). The differences are at the 1% level,
as it should be on the basis of standard statistical arguments.
Therefore, we may conclude that the event-by-event approach
reproduces the statistical distributions of quantum theory for
the quantum-controlled delayed choice experiment.

4
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Figure 4. The normalized frequency of observing a photon in path
0 (squares) or 1 (circles) conditioned on the observation of the
ancilla in path 0 (open symbols) or 1 (closed symbols) for the case
in which α = π/3. The solid lines are the prediction of quantum
theory, see equation (2). The number of emitted and detected events
per ϕ is 10 000. The DLM control parameter γ = 0.99.

 0
 90

 180
 270

 360  0
 90

 180
 270

 360

-0.1

-0.05

 0

 0.05

 0.1

Δ(α,ϕ)

α (degrees)

ϕ (degrees)

Δ(α,ϕ)

Figure 5. The difference 1(α, ϕ) between the quantum theoretical
result equation (2) and the data obtained from an event-by-event
simulation of the quantum circuit shown in figure 3. The number of
emitted and detected events per pair (α, ϕ) is 10 000. The DLM
control parameter γ = 0.99. The differences fluctuate at the 1%
level. Open squares: photon detected in path 0, ancilla detected in
path 0; closed squares: photon detected in path 1, ancilla detected in
path 0; open circles: photon detected in path 0, ancilla detected in
path 1; closed circles: photon detected in path 1, ancilla detected in
path 1. Lines connecting markers are a guide to the eye.

6. Discussion

Instead of discussing our event-by-event simulation approach
for optical phenomena in full generality, in this paper we
have opted to explain in detail how the approach is applied
to a specific example, a quantum-controlled delayed-choice
experiment [34]. We hope that this helps us to understand
the key feature of our approach, namely that it builds, one
by one, the statistical distributions of quantum theory without
knowing about the latter.

The successful simulation of the quantum-controlled
delayed-choice experiment [34] adds to the many examples
for which the event-by-event simulation method yields the
correct statistical distributions. Of course, the event-based
approach, being free from concepts such as particle–wave
duality, does not suffer from the conflicts with everyday
logic that arise in the quantum-theoretical description of the
delayed-choice experiment. In particular, there is no need to
invoke the thought that in this experiment, the character of the
photon needs to be changed in the past.

Finally, it should be noted that although the discrete-event
algorithm can be given an interpretation as a realistic
cause-and-effect description that is free of logical difficulties
and reproduces the statistical results of quantum theory, at
present the lack of relevant data makes it impossible to decide
whether or not such algorithms are realized by nature. Only
new, dedicated experiments that provide information beyond
the statistics can teach us more about this intriguing question.
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