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Abstract
John Bell’s inequalities have already been considered by Boole in 1862. Boole established a
one-to-one correspondence between experimental outcomes and mathematical abstractions of
his probability theory. His abstractions are two-valued functions that permit the logical
operations AND, OR and NOT and are the elements of an algebra. Violation of the
inequalities indicated to Boole an inconsistency of definition of the abstractions and/or the
necessity to revise the algebra. It is demonstrated in this paper, that a violation of Bell’s
inequality by Einstein–Podolsky–Rosen type of experiments can be explained by Boole’s
ideas. Violations of Bell’s inequality also call for a revision of the mathematical abstractions
and corresponding algebra. It will be shown that this particular view of Bell’s inequalities
points toward an incompleteness of quantum mechanics, rather than to any superluminal
propagation or influences at a distance.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.65.−w

1. Introduction

We discuss Bell’s inequalities [1] and violations of them in
terms of the work of Boole [2]. Boole had derived inequalities
similar to those of Bell more than 100 years before Bell,
and had traced their violation to an incorrect definition of
the mathematical abstractions that represent experimental
outcomes. We have shown previously that violations of Bell’s
inequalities can be interpreted in a similar fashion [3–5].
We show here further, that Bell’s own interpretation of
violations of his inequalities is based on several unwarranted
assumptions. For example, he assumed that his mathematical
abstractions automatically follow the algebra of real numbers
and he did not permit an explicit time dependence of his
functions. Permitting such explicit time dependence leads
us to a commutative algebra involving stochastic processes.
These processes invalidate what we call Bell’s impossibility
proof: Bell’s notion that ‘quantum mechanics cannot be
embedded in a locally causal theory’ [6]. Our findings
favor the suggestions of ‘incompleteness’ as described in the
Einstein–Podolsky–Rosen (EPR) [7] paper. These findings

confirm and extend numerous mathematical and physical
treatises see e.g. [8–11].

2. Possible experimental outcomes and Boole’s
algebra

Boole [2] discussed a mathematical-logical way to deal
with statistics and probabilities. He dissected experiments
into events that could only assume two values obeying a
calculus that resembled the algebra of real numbers, but
with the operations of multiplication, addition and subtraction
replaced by the respective logical operations of conjunction,
disjunction and negation. The experimental results were
replaced by these mathematical abstractions, as soon as a valid
one-to-one correspondence between the experiments and the
abstractions was established. Consider, for example patients
in the two cities A and B, who have certain different histories
denoted by the bold faced letters a,b, c . . . . These patients are
examined with regard to a certain disease and the results of the
examination are filed in the following way. If a patient from
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city A with history a tests positive a note is made that Aa = +1
and if the test is negative we have Aa = −1. If the patient is
from city B, then we have Ba = ±1, etc. The subscripts a,
b etc. indicate, for example, different levels of fever that the
patients have encountered.

Boole realized, and this is crucial, that the mathematical
abstractions that are chosen in correspondence to the
experiments are not necessarily elements of an algebra. It
is possible, that the disease that is investigated in the above
example depends on factors other than the fever of the patients
and their place of residence. It could also depend on the
date of their birth. Boole, therefore, tried to establish criteria
that could be used in order to determine whether the chosen
correspondence of experiments and mathematical abstractions
was a valid one, and whether the abstractions therefore did
follow the rules of logic. His idea was to employ the algebra
of real numbers to the mathematical abstractions, to deduce
in this way nontrivial inequalities and to see whether these
inequalities were consistent with all experimental results; in
our example with the data from the patients. One type of
inequality that he considered was

Aa Ab + Aa Ac + Ab Ac >−1. (1)

The fact that this sum of products is larger than or equal to
−1 can easily be checked by inserting all possible values of
±1. The inequality is nontrivial, because knowing nothing
about the experiments that are described, and realizing that all
the measured outcomes may derive from different persons, a
possible result is −3. This can immediately be seen by adding
six different birth dates as a superscript. Then we clearly can
have

A1
a A2

b + A3
a A4

c + A5
b A6

c >−3. (2)

Thus, dissecting any experiment into binary functions, does
not necessarily result in mathematical abstractions that follow
the algebra of real numbers. For a given sequence of
experiments, and definition of corresponding mathematical
abstractions, one needs to make sure that these indeed
follow an algebra in order to certify that the experiments
were ‘dissected’ sensibly. Boole’s idea was therefore to take
statistical averages of expressions as given in equation (1). If
a violation of the corresponding inequality for the expectation
values was obtained, then that was an indication that the
experiment could not be fully understood in terms of the
assumed mathematical abstractions. Different abstractions
must then be chosen to correspond to the experiments, e.g.
those shown in equation (2) including the birth dates.

3. Vorob’ev’s cyclicities

Boole’s approach to probability theory can be seen as a
special case of Kolmogorov’s framework that deals with
σ -algebras of countable sets of events. A great review of
Kolmogorov’s probability theory with special emphasis on
physics experiments has been given in [12].

Progress related to Boole’s consistency tests with
inequalities was made by Vorob’ev [13]. He showed,
in a very general way, that nontrivial inequalities and
conditions of the Boole type can be found by constructing
topological–combinatorial ‘cyclicities’ of functions on

σ -algebras. For the purpose of our paper, it is sufficient
to understand these general cyclicities just by the above
example: the Ai Aj with i, j = a,b, c are functions on a
probability space (random variables) and form a closed
loop, meaning that the choices in the first two products of
the inequality determine the third. An infinite number of
such inequalities can, therefore, be composed by arranging
algebraic expressions of functions that determine the value
of other algebraic expressions of the same inequality. Any
violation of such inequalities by the measured averages means
that the mathematical abstractions describing the experiments
are not functions on a σ -algebra.

Indeed, mathematical-logical abstractions constructed for
experiments, by using labels that are derived from sense
impressions (such as Aa), do not necessarily follow the
algebra of Boolean variables, the algebra of real numbers or
any other given algebra. However, within the framework of
special relativity, one can always find consistent abstractions
because of the following general reason. Each experiment,
and each mathematical abstraction, an event as defined by
Kolmogorov [12], corresponds to a different space–time
coordinate stn = (xn, yn, zn, tn), n = 1, 2, 3, . . . , or set of
such coordinates, that represent events as defined by Einstein
in his special relativity for some given inertial system.
Therefore, no matter how many experiments and cyclicities
we consider, the outcomes of the experiments that we register
and record can always be labeled by different space–time
labels st1, st2, . . . , stn, . . . . We can, in general, rewrite the
example of equation (1) as

Astm
a A

st(m+1)

b + A
st(m+2)
a A

st(m+3)
c + A

st(m+4)

b A
st(m+5)
c >−3, (3)

and thus have removed the cyclicity for all inequalities with
m = 1, 7, 13, 19, . . . . The functions that we use have become
more numerous, but they do follow the algebra of real
numbers, and no contradiction of the Boole-, or Vorob’ev-type
can be found, because all inequalities based on topological
combinatorial cyclicities can be removed that way. Note that
the setting labels a,b, c, . . . and space–time labels stm are
used as indices and not as independent variables. As will be
discussed in more detail, this is important because certain
settings cannot occur at certain space–time coordinates, and
these two variables are therefore not independent.

4. Bell’s inequality

More than 100 years after Boole, an inequality similar to
the inequality of equation (1) was re-discovered by John
Bell (see [1, pp 7–12]), who analyzed quantum experiments
that were constructed to investigate work of EPR [7]. Bell did
not refer to Boole’s work, nor to the contemporary work of
Vorob’ev in any of his collected papers [1], and probably did
not know of them. He considered measurements of correlated
spin-pairs at two locations (cities) A and B. The results
of these measurements involve two spin outcomes (A, B =

±1), one on each side. Quantum mechanics predicts that
for certain instrument settings a,b, c, . . . the experimental
outcomes obey Ai = −Bi, i = a,b, c, . . . , where a,b, c, . . .
are now three-dimensional unit vectors related to the settings
of the spin-measurement equipment. Bell also introduced a
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variable λ to be discussed in detail below and constructed
from these facts an inequality equivalent to

Aa(λ)Bb(λ)+ Aa(λ)Bc(λ)+ Ab(λ)Bc(λ)6 +1. (4)

This is again a nontrivial inequality and follows from Boole’s
corresponding equation by replacing some of the A’s by B’s
and multiplying by −1. The equation is nontrivial, because in
general the result could be as large as 3. This equation is now
often called Bell’s inequality, while equation (1) is sometimes
referred to as the Leggett–Garg inequality. Note that Bell
used the slightly different notation of A(a, λ), B(b, λ), etc.
because he treated (mistakenly, as explained below) the
settings a,b, c, . . . and λ as independent variables.

Quantum mechanics provides us also with the result that
the expectation value Eentangled for the spin correlations of
pairs of spins in the singlet state is given by

Eentangled = −i · j with i, j = a,b, c, . . . . (5)

This result violates equation (4), because one can find
a,b, c, . . . such that each of the products in equation (4)
equals 1/

√
2 resulting in a left hand side of 3/

√
2> +2.

5. Bell’s explicit and implicit assumptions

The assumptions, made by Bell in his collected works [1] to
derive his inequalities, are numerous and vary in the different
papers of Bell and his followers. We mention here just some
of the crucial explicit and implicit (or ‘hidden’) assumptions:

(i) Bell treats λ as an element of reality in the sense defined
by EPR and proposes the hypothesis that λ effects a more
complete specification of the ‘state’ of the correlated spin
pair.

(ii) The instrument settings a,b, c, . . . and λ are assumed
to be independent variables. This is often, mistakenly,
deduced from the freedom that the experimenter
undoubtedly has to choose the settings.

(iii) Bell further treats λ as a very general mathematical
variable (see [1, pp 7–12]): ‘It is a matter of indifference
in the following whether λ denotes a single variable or a
set or even a set of functions, and whether the variables
are discrete or continuous.’

(iv) Bell assumes that violations of his inequality are directly
connected to λ and suggests that violations imply
influences of both measurement settings on λ.

This latter suggestion led to the well known
experiments by Aspect et al [14], who changed the
measurement settings of both sides rapidly and more
or less randomly. This rapid switching excludes certain
physical influences of the settings on λ that propagate
with finite speed (slower or equal to that of light
in vacuum). After having received knowledge of the
experimental results of Aspect and others that violated
his inequality, Bell stated that ‘quantum mechanics can
not be embedded in a locally causal theory’ [6].

The attributes of λ listed in (i)–(iii) are, when taken to
the limit of their stated generality, in logical, physical and
mathematical conflict with each other.

Most importantly, space–time variables such as stm and
instrument settings such as a,b, c, . . . are not independent
variables. In the reference frame of the laboratory, any
instrument setting is related to a certain space like variable
because of the location of the instrument, and to a time
like variable because there cannot be two different settings
at the same time and location. As soon as the settings are
(indeed freely) chosen at certain stm , that coordinate-set is not
available for any other settings.

Bell states in [6] that ‘we can imagine these settings being
freely chosen at the last second by two different experimental
physicists. . . if these last second choices are truly free or
random, they are not influenced by the variables λ.’ While
this statement may be true for some λ, Bell’s implicit
assumption that, therefore, λ and the settings a,b, c, . . . are
also mathematically and physically speaking independent
variables, is false in general. If λ represents space–time
variables, then these variables and the setting pairs are not
independent.

Quantum mechanics separates the setting related
variables entirely from space–time by using settings
a,b, c, . . . in connection with operators such as
σa, σb, σc, . . . , and space–time in connection with wave
functions ψ(stm). Classical probability also can not and
must not use all of these variables as independent. Indeed,
Kolmogorov’s stochastic processes add a separate time index
to each measurement A, B and do not explicitly include
equipment settings.

Bell’s functions of both the settings and the λ’s, such as
A(a, λ) are not formulated with the appropriate mathematical
and physical caution, and are either not general or not
functions of independent variables, as both assumed in Bell’s
proof. Even for purely formal reasons, Bell’s λ cannot be
both the independent time variable of physics and a random
variable, simply because time is not a random variable. Time
is also is not an operator in quantum mechanics!

The absorption of independent space–time variables into
Bell’s λ also leads to logical contradictions for yet another
reason. The proofs of Bell and followers often assume,
explicitly or implicitly, that λ occurs in sets of six (sometimes
more) to maintain a Vorob’ev cyclicity. Bell orders the
functions in his initial proof into sums of the three products as
shown in equation (4), all containing the identical variable λ.
This fact looks innocuous in Bell’s paper, because at the point
at which he invokes the appearance of λ in six factors, λ
is treated as a dummy integration variable (see the equation
without number after equation (14) in Bell’s original paper).
To show the problems connected with these choices of λ, we
distinguish now two cases.

First assume that the λ’s are indeed elements of reality
that play a role in the formation of the data that are actually
collected. Such λ’s are in principle all different (naturally
averages over large numbers may still be the same). Consider
now such λ’s formed by a combination of a space–time
variable stm and some other arbitrary element of reality
λ′

m related to spin. Then consider the parameters λm =

(stm, λ′
m) and pick six equal values of λm = λ, for each of

the six different measurements given in equation (4). One
then has equated different times and different spin-related
parameters, which may be physically unreasonable. Consider
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as an example the boiling of an egg and link stm to various
clock-times during the process of boiling, as suggested by
Casimir [6]. Further denote the egg viscosity at various
locations in the egg (settings, such as in the yoke or in the
egg-white) by λ′

m . It certainly is incorrect for this case to
equate a variety of parameters λm = (stm, λ′

m) for different
settings. The yoke stays soft much longer than the white.
Thus, for general Einstein local experiments, λ may have
to depend on both settings and times. Equating the λ’s in
general cases, as Bell has done for his λ’s and also his
‘be-ables’ [1], can therefore lead to logical contradictions.
Space-time coordinates and other general elements of reality
cannot be concatenated into one variable and then regarded as
the same dummy variable for triple (or quadruple) products.
In fact, if we wish to prove Bell’s inequality, the possibility of
ordering all data into the triple products of equation (4) is just
what needs to be shown. Bell, obviously, did not consider the
full implications of Casimir’s counter-example.

Second assume with Mermin [16], that the λ’s of
equation (4) are indeed all the same and the equation
really is written, as Mermin states, only to contemplate
the conjecture that there exist such λ’s that ‘predetermine’
the experimental outcomes. Only one of the experiments
listed in equation (4) is then being performed, according to
Mermin. However, also according to Mermin, if the outcomes
are predetermined by the λ’s, one can imagine obtaining
results as written down in equation (4). This statement is
principally correct, however, such results would have nothing
to do with actually collected data of actual experiments that
are used for the formation of the expectation values. Nor
do the results of equation (4) have anything to do with
Kolmogorov’s or Boole’s probability theory that deal with
possible outcomes of experiments that can be collected as
‘data’ and described by sensible mathematical abstractions.
The hypothesis of possible predetermination of outcomes
is irrelevant to Kolmogorov’s sample space. Consider the
meals on the menu of a variety of restaurants. These are
certainly predetermined. Yet, when we eat in hundreds or
thousands of restaurants of type a = Indian, b = Chinese, c =

Austrian, etc., and eat only one meal at a time, then we do not
necessarily have the expectation of having averages from all
the meals of all the menus in our stomachs, but rather averages
and corresponding correlations arising from one meal at each
place. Bell’s own criticism of von Neumann’s work can be
directly applied here: ‘It was the arbitrary assumption of a
particular (and impossible) relation between the results of
incompatible measurements either of which might be made
on a given occasion but only one of which can in fact be
made’ (see [1, p 5]). Speaking in more precise mathematical
terms, one cannot apply the pointwise ergodic theorem to
the functions of equation (4), because the experiments that
correspond to these functions cannot be performed except for
one pair of settings. In case of a violation of the inequality,
no σ -algebra exists on which these functions can be defined
and, therefore, equation (4) has no consequences for the
expectation values obtained in the actual experiments.

The assumption that λ may not depend on the setting
parameters a,b, c, . . . in a locally causal theory is also in
conflict with the mathematical generality of λ. If we wish
to regard λ as an event in the sense of Kolmogorov, then

we need to be able to identify λ with the event that A
and B with chosen settings assume certain values. Thus
we need to be able to identify the λ’s with events (usually
denoted by ω) of a probability space. The actual event (usually
denoted by ωact [17]) could, for example, be Aa = +1, Bb =

+1. That actual event certainly is not independent of a,b.
This identification has nothing to do with causal theories
but only with the fact that the event is composed of two
different experiments. Whether or not influences at a distance
are present is not a concern of probability theory. If one wishes
to use established probability theory and, therefore, wishes to
identify a specific λ with an event realization ωact, a logical
difficulty arises.

Fortunately, it is not necessary to include all these subtle
points, in order to discuss the relevance and ranges of validity
of Bell’s theorem. The following two incorrect assumptions
of Bell are straightforward to understand and, together with
(ii) sufficient to show how Bell’s proofs and the proofs of his
followers fail:

(v) Bell always assumed or implied that his mathematical
abstractions representing the experiments follow
automatically the algebra of real numbers. This is
actually what needs to be shown by the fulfillment
of all possible inequalities and other consequences of
Vorob’ev’s cyclicities.

(vi) Bell treated λ explicitly as a random variable with well
defined and given probability distribution ρ(λ) (see his
equation (12) in [1, pp 7–12]). Hidden behind this
innocuous assumption is the fact that, therefore, Bell
did not permit an explicit space–time dependence of
the statistical properties of his functions A, B, and has
therefore excluded general stochastic processes! The
perception that Bell and his followers had was that λ
can represent the space–time variables. However, as we
discussed above, then the settings cannot be regarded as
independent variables.

Work of Bell’s followers often implies assumptions and
restrictions of similar nature. For example, Leggett and
Garg [15] and also Mermin [16] always assume that their
symbols follow the algebra of real numbers. They also do
not permit, and this is our crucial point, an explicit time
dependence of the statistical properties of the functions A, B.
Furthermore, whenever they use λ’s, they do use the settings
and λ’s as independent variables by integrating (summing)
independently over them. Mermin even claims toward the
end of his paper [16] ‘. . . times . . . can be independently
varied without altering the distribution.’ At best, however,
the expectation values can stay unchanged by variations of
measurement times. Because of the coincidence counting of
the actual experiments, even this statement is not of general
validity. Nor does quantum theory or any physical theory
tell us that time can be varied without altering probability
distributions. Quantum theory does provide us with time
dependent probability distributions and with expectation
values for large numbers of measurements [18]. Single
outcomes or small sets of outcomes are not the objects of
quantum theory, that most certainly does not forbid an explicit
space–time dependence of the statistical properties of the
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functions A, B. These functions are not even part of quantum
theory.

Removing the assumptions (ii), (v) and (vi) of Bell
and followers does, therefore, open new horizons. One can
envision the violation of Bell–Boole type of inequalities,
or more generally, Vorob’ev cyclicities as prescriptions
for necessary space–time dependencies and, therefore, as
physical rules that are not contained in quantum theory. One
can then construct explicitly space–time dependent functions
on σ -algebras that remove all Vorob’ev type cyclicities that
lead to contradictions. These functions describe then a more
complete physical theory in the sense of EPR.

6. Removing Bell’s assumptions: generalized
stochastic processes

Instead of asking which properties of λ might explain a
violation of equation (4), the more general and crucial
question to ask is: under which circumstances it is possible
to remove the cyclicity in equation (4) in order to obtain
the quantum result of equation (5) within the Kolmogorov
framework? This can indeed be done by using a slightly
generalized version of a stochastic process.

We consider here only a discrete time stochastic process.
Such a process is defined by a finite or countable infinite
sequence of random variables such as At1

a , At2
a , At3

a , . . . .

We add the slight generalization that we use space–time
coordinates instead of time coordinates and thus have Ast1

a ,
Ast2

a , Ast3
a , . . . . This generalization is trivial as long as we

deal with discrete time stochastic processes, because then
the physical meaning of the time related index makes no
difference for the mathematics. For Einstein–Podolski–Rosen
experiments, we also introduce a second stochastic process

B
st′1
b , B

st′2
b , B

st′3
b , . . . for the correlated pair (A

st′1
b = −B

st′1
b ,

etc.), and note that the primed and unprimed space–time
coordinates are correlated in such experiments by the
technique of coincidence counting of the pair results.
Combining the two stochastic processes, one obtains a vector

stochastic process (Ast1
a , B

st′1
b ), (A

st2
a , B

st′2
b ), (A

st3
a , B

st′3
b ), . . . .

The vector stochastic process as defined above can be
further generalized by choosing the setting pairs (indicating
the measurement procedure) randomly. Thus we obtain the
discrete space–time vector stochastic process:

(Ast1
i , B

st′1
j ), (A

st2
i , B

st′2
j ), (A

st3
i , B

st′3
j ) . . . with i, j = RP,

(6)
where RP denotes any pair (a,b), (a, c) or (b, c) chosen
totally randomly, or at the will of any experimenter. This
is indeed a vector stochastic process. The only difference
to the standard definition is that the discrete times tn
are replaced by discrete space–time labels stn with n =

1, 2, 3, . . . . Furthermore, certain setting pairs are chosen
at the discrete space–times to result in particular pairs of

functions on a probability space (Astn
i , B

st′n
j ) that are usually

just denoted by pairs of functions such as XnY n , with both Xn

and Y n being functions on a probability space�with elements
ω [17].

Care must be taken with the choice and labeling of the
functions. It is not possible, for example, to construct a four

dimensional vector stochastic process with equal space–time
labels of the vectors that returns the quantum result. This is
because such a process also fulfills the nontrivial inequality

(Astn
a Bstn

b )+ (Astn
a Bstn

c )+ (Astn
b Bstn

c )6 +1, (7)

that involves a cyclicity. It also contains the fundamental
error to assign equal space–time labels to different equipment
settings, thus ignoring that settings and space–time labels are
not independent variables.

The fact that processes as given by equation (6) remove
any cyclicity, can be seen immediately by inserting the pairs
into equation (4). Because all factors are in principle different.
The resulting inequalities are of the trivial form:

Astm
a B

st′m
b + A

st(m+1)
a B

st′(m+1)
c + A

st(m+2)

b B
st′(m+2)
c 6 +3, (8)

for m = 1, 4, 7, . . . .
It can be shown that for any given stochastic process

of the type equation (6), with randomly chosen settings and
space–time coordinates, one can find a probability measure
that indeed leads to the quantum result [19]. That probability
measure must necessarily depend in some complex way on
the setting pairs. This fact has a mathematical reason that is
independent of any locality considerations. The settings and
space–time variables are, as stressed above, not independent.
For each setting pair, one has necessarily a different function-
domain of space–time variables stn . Therefore, if the setting
pairs change, the domain must also change, and so must, in
general, the corresponding joint probabilities for the functions
A, B. These probabilities depend, therefore, on the setting
pairs. Probability theory can, thus, not ‘play’ the so called Bell
game.

The Bell game requires two players in two measurement
stations to choose values for A, B with the knowledge of
the instrument settings of their respective stations only. The
expectation values for these choices of A, B need then to
give the quantum result. However, any probability model
of the game needs to involve, as shown above, different
domains of the functions for different setting pairs. If the Bell
inequalities are fulfilled, this does not matter because then
one can find one ‘artificial’ probability space that leads to
the experimental expectation values. If, on the other hand,
the Bell inequalities are not fulfilled, then no such probability
space exists. The A, B need to be labeled with a space–time
index to avoid cyclicities, and the player needs to know the
actual domains of the functions and actual joint probabilities
to play the game. These domains and joint probabilities cannot
be determined from the knowledge of one setting in one
station only. Thus it is impossible to play the Bell game by
using the standard formalism for stochastic processes, because
this approach requires knowledge of the time and setting
dependent joint probabilities for the pair measurements. To
play the game by other means would then require necessarily
a detailed knowledge of all possible space–time dependencies
of measurement and preparation in EPR experiments, and
thus an infinity of functions Astn , Bst′n with the cardinality
of the continuum [20]. We have not proven the existence of
such functions by the above findings but we have refuted
the impossibility-proofs of Bell and followers because we
removed the cyclicities by use of general space–time labels.
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No assumption needs to be made, from the viewpoint of logic
or mathematics, whether these space–time labels are from
within or from outside the light-cone.

7. Space–time dependencies of spin measurements

It remains to be shown that space–time dependencies of the
preparation of correlated pairs as well as the measurement
outcomes (and therefore of the functions A, B) are physically
reasonable, and can lead to the quantum result of equation (5).

Possible time dependences within the light cone are
numerous. We just list here a smorgasbord of those that matter
for sets of particles with spin. The Earth rotates around itself
and this rotation introduces a time dependence on how a
gyroscope would be seen from a resting observer. Naturally
that time dependence would be of the order of a day. Radio
waves can cause spin resonances and are omnipresent as are
magnetic fields. Because the Earth’s magnetic field is small,
corresponding time dependencies would be slow also. The
interaction of nuclear spins and electron spins happen in a
wide range and equilibration of electron spin in the field of
nuclear spins can take from hours to milliseconds or less.
Many body interactions of electrons and photons present us
even with a wider range of time constants being limited in
solids (such as a spin polarizer) only by the plasma frequency.
For a typical semiconductor, that frequency is around 1014 s−1

corresponding to time constants down to 10−14 s. Naturally,
if we include the frequencies derived from the mass of an
electron and its energy, one has to include possibilities of
10−20 s time constants and below. To all of these possibilities
of time dependencies of the functions A, B, one needs
to add the fact that actual Aspect type of experiments are
based on coincidence counting i.e. the time correlation of the
measurements in the two experimental wings play a major
role. This leads to a true ‘entanglement’ of the time dependent
joint probabilities of measurement outcomes A, B. One might
view this fact in a Shakespearean fashion: all these random
choices of settings are being made by the players, and time
weaves then a pattern into it.

How, specifically, these reasonable space–time
dependencies actually lead to the quantum result of
equation (5) is still subject of discussions. EPR experiments
that employ time-coincidences to identify pairs effectively
apply a filter to the data and it has been shown that such
a filtering mechanism may lead to violations of a Bell
inequality, opening the route to a description in terms of
locally causal, classical models [21]. A first concrete model
of this kind was proposed by Pascazio [22] who showed
that his model approximately reproduces the correlation
of the singlet state, violating Bell inequalities. Models that
rigorously reproduce the results of quantum theory for the
singlet and uncorrelated state are given in [23–26].

Will these facts end the nonlocality discussions? Probably
not, because one can also remove the cyclicity with labels
from outside the light cone. The simplest choice is, of course,
using λ’s that depend on the setting parameters a,b, c, . . . of
the other sides. For Aspect type of experiments, that amounts
to the use of space–time coordinates from outside the light
cone. Our main point is, however, that the cyclicities can also
be removed by space–time dependencies within the light cone.

The question is, of course, whether such time dependencies
are reasonable and are indeed elements of a complete physical
theory. The answer to this question and the nature of the
infinite set of space–time labeled functions as well as that of
the λ’s are, if they exist at all, currently not known. However,
even with the lack of this knowledge, we can answer an
important question: can quantum mechanics be considered a
complete physical theory?

8. Kolmogorov versus quantum probability,
completeness

We first summarize the above findings. One can find different
elements of a Boolean or σ -algebra for all possible events.
The elementary events can be understood by both, Einstein’s
definition of space–time events, and Kolmogorov’s definition
of the events of a σ -algebra. These events, corresponding to
different experiments and their abstractions, do not lead to any
but the trivial Boole type inequalities such as equation (3)
that can never be violated. Thus, at least in principle, one
can always find functions on a σ -algebra that describe any
possible experimental result of macroscopic events that can be
recorded by our anthropomorphic methods. Because all these
recordings can in that way be described without contradiction,
it follows that the averages of macroscopic indicator readings,
that are described by quantum theory, can also be described
without contradiction. This answers the important question
whether Kolmogorov probability can be made consistent
with the results of quantum mechanics. It always can be,
because one always can find functions on a probability space
that follow only trivial Boole–Bell equations. If, however,
the experimental results are not all denoted by different
space–time coordinates, if some are assumed to have the
same coordinates or not to depend on coordinates, then
nontrivial inequalities and contradictions may arise. These
contradictions call then for additional space–time labels or,
speaking from the viewpoint of causal physical theories,
additional space–time dependencies.

To find a physically valid theory within the framework
of Boole and Kolmogorov, it is therefore necessary to
explore all possible topological combinatorial cyclicities and
to determine the necessary space–time labels, in order to
arrive at a contradiction free set of random variables that
are defined as functions on a σ -algebra. Then one needs
to select the physically reasonable space–time connections
that may underlie this σ -algebra. The advantage of quantum
mechanics, as compared to this cumbersome procedure,
is that quantum mechanics works with a noncommutative
algebra and, compensating for this luxury, never attempts
to explore the logical and causal space–time connections
between single events or small sets of events. Quantum theory
only insists on agreement with averages of large numbers
of experiments [18]. If we wish to compare Boole’s or
Kolmogorov’s probability theory with quantum mechanics,
and render judgements on their completeness with respect to
a physical-science point of view, the following fact should be
considered. The introduction of probabilities is the hallmark
of all of these theories and does, by itself, not necessarily
represent an incompleteness. It is indeed generally assumed
that quantum mechanics gives all the information about
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averages that we possibly can have. To achieve this result,
however, quantum mechanics does sacrifice the prediction of
single and small sets of, events.

The elements of Kolmogorov’s σ -algebra and functions
of them must fulfill certain requirements not contained in
conventional quantum theory: they must not contradict any
facts following from the topological combinatorial cyclicities
of Vorob’ev. These rules for the data of experiments,
therefore, impose physically speaking a ‘law’ on the
space–time dependencies of the outcomes. Because this law
is not contained in quantum mechanics, but does relate to
the physical measurement outcomes that we macroscopically
record, quantum mechanics exhibits an incompleteness in the
sense of EPR.
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