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One-step finite-difference time-domain algorithm to solve the Maxwell equations
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We present a one-step algorithm to solve the time-dependent Maxwell equations for systems with spatially
varying permittivity and permeability. We compare the results of this algorithm with those obtained from the
Yee algorithm and from unconditionally stable algorithms. We demonstrate that for a range of applications the
one-step algorithm may be orders of magnitude more efficient than multiple time-step, finite-difference time-
domain algorithms. We discuss both the virtues and limitations of this one-step approach.
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[. INTRODUCTION Chebyshev polynomial expansion method into a one-step al-
gorithm for solving the Maxwell equations. In Sec. IV we
Many applications in physics and engineering require nuidllustrate this approach by considering a one-dimensional
merical methods to solve the time-dependent Maxwell equasystem with a current source and present results of an error-
tions [1—-10]. A popular approach is the finite-difference €fficiency analysis. Results of numerical experiments on a
time-domain(FDTD) method[2—4] based on a proposal by three-dimensional system as well as an error-efficiency
Yee[1]. It is flexible, fast, and easy to implement. A limita- analysis are presented in Sec. V. A summary and our conclu-
tion of Yee-based FDTD techniques is that their stability issions are given in Sec. VI.
conditional, depending on the mesh size of the spatial dis-
cretization and the time step of the time integrati@h Il. THEORY
Recently we have introduced a family of unconditionally . i o . . ) i
stable algorithms to solve the time-dependent Maxwell equa- W& consider em fields in linear, isotropic, nondispersive,
tions[9,10]. The operator that governs the time evolution ofand lossless materials. _Generallzauons are dlscus_sed below.
the electromagneti¢em) fields is orthogonal and can be In the_ abse_nce of electric c'harg(_es, the time evolution qf the
written as the matrix exponential of a skew-symmetric ma-€M fields in these materials is governed by the time-
trix [9]. Orthogonal approximations to the time-evolution op- d€Pendent Maxwell equatiorig mks unitg [2]
erator yield unconditionally stable algorithms by construc- 1
tion [11]. Details of the construction of such algorithms can ﬁH: —__VXE
be found elsewherf9,10). ot I '
A limitation of both the Yee-base[2] and our uncondi-
tionally stable algorithm$9,10] is that the amount of com- V-(uH)=0, V-(eE)=0, 2
putational work required to propagate the em fields for long
times may be prohibitive for a class of important applica-Where H:(Hx(f,t),er(r,t),Hz(r,t))T and E
tions, such as bioelectromagnetics and very large scale inté= (Ex(r.t),Ey(r,t),E,(r,t))" denote the magnetic and the
grated desigri2,12,13. The basic reason for this is that in electric field vector, respectively. The source of the electric
order to maintain a reasonable degree of accuracy during tHi€ld is represented byl=(J(r,t),d,(r,t),3,(r,1))". The
time integration, the time step has to be relatively small. ~Permeability and the permittivity are given = u(r) and
A well-known alternative to time stepping is to use €=¢&(r). For simplicity of notation, we will omit the tempo-
Chebyshev polynomials to construct approximations to timefal and the spatial dependence or (x,y,z)" unless this
evolution operator§14—20. In this paper we make use of leads to ambiguities. For numerical purposes it is expedient
these rapidly converging polynomial approximations to con-o introduce dimensionless quantities. The velocity of light in
struct a one-step algorithm that solves the time-dependemacuum is given byc=1/\equg (in mks unit3, whereeg
Maxwell equations. We demonstrate that the one-step algaienotes the permittivity angl, the permeability in vacuum.
rithm can be orders of magnitude more efficient than currentf we measure distances in units of the wavelengthtime
FDTD algorithms. and frequency are expressed in units\6¢ andc/\, respec-
The paper is organized as follows. In Sec. Il we recalltively. Then Egs(1) and(2) take a dimensionless form if we
some basic, essential facts about the mathematical structureplaces(u) by its value relative teq (1g) and express$
of the Maxwell equations that we need in Sec. Ill to turn theandE in units of A/m andV/m, respectively. We adopt this
dimensionless form, in other words, from now bBin E, &,
u, t, andr are dimensionless quantities.

1
EEIE(VXH_J)’ (N
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®) procedure of the spatial derivatives. This procedure maps
continuum space onto a lattice, i.e., it maps the differential

with n denoting the vector normal to a boundary of the sur-operatorx onto a matrixC. The time-evolution matrix and

face. Conditiong3) assure that the normal component of thethe vector of the em fields on the lattice will be denoted by

magnetic field and the tangential components of the electrig)(t) =e'* and W(t), respectively. The matrix equivalent of

field vanish at the boundaf21]. Eq. (5) reads
Some important physical symmetries of the Maxwell

equationg1) and(2) can be made explicit by introducing the

fields

nxE=0, n-H=0,

%‘If(t)=£11f(t)—<l)(t), (8

X()=vuH(t), Y(t)=eE(t). (4)

In terms of the fieldsX(t) and Y (t), Maxwell’s curl equa-
tions (1) read

—LVX@ 0
i(x(t))_ Vo Ve | "
alym) | 1 S0 = ’
— — €
Ve o
o)
My | 20 ®
&
where
0 _loxt
Vu oo e
H= (6)
Lot o
Ve o Vu

Writing Z(t) = (X(t),Y(t))" it is easy to show that{ is
skew symmetric, i.e. "= —H, with respect to the inner
product(Z|Z'y=[,Z"-Z'dr, whereV denotes the volume
of the enclosing box. By constructidi@ (t)[|2=(Z(t)|Z(t))
= [\ [eE?(t)+ wH?(t)]dr, relating the length oE(t) to the
energy densityv(t)=sE?(t) + uH?(t) of the em fieldg21].
The formal solution of Eq(5) can be written as

0
X(t) X(0)| [t
Z(t):(Y(t)): tH Y(O))_foe H J\(/li) du|.
&

()

From Eq.(7) it is clear that the operatd#(t)=e'" governs
the time evolution of the em fields. Aw(t)"=u(—t)

=U"Y(t)=e ", the time-evolution operatd(t) is an or-
thogonal transformation that rotates the veddt) without

changing the length oZ(t). In physical terms this means
that if J(t) =0, the energy density of the em fields does not

change with time, as expected on physical grourads.

Ill. TIME-INTEGRATION ALGORITHM

where®(t) is the vector that represents the current source.
The formal solution of Eq(8) is given by

W(t) = CW(0) — Lte“*”)‘d)(u)du. ©

Ideally, the mapping from a continuum to a lattice prob-
lem should not change the basic symmetries of the Maxwell
equations. The underlying symmetry of the time-dependent
Maxwell equations suggests using matrigg¢ghat are real
and skew symmetric. The discretization procedure itself is
not essential for what follows as long Asis skew symmet-
ric (generalizations are being discussed belderefore, in
this paper, we do not discuss tkienportan} technicalities
related to the spatial discretization and refer the reader to
Ref.[9].

The next step is to choose an algorithm to perform the
time integration for the time-dependent Maxwell equations
defined on the grid. In general, this amounts to approximat-
ing the matrix exponential (t)=e'* by a time-evolution
matrix U(t). The corresponding approximate solution will
be denoted byr(t). If the approximationU (t) is itself an

orthogonal transformation, thefU(t)||=1, where|/X|| de-
notes the two-norm of a vector or matd¥q{ 22]. The fact that
U(t) is an orthogonal transformation is essential for the de-
velopment of an unconditionally stable algorithm to solve
the Maxwell equation$9]. In the absence of source terms
[i.e., ®(t)=0], this implies that |W(t)||=]0(t)¥(0)|
=||w(0)||, for an arbitrary initial condition?’(0) and for all
timest and hence the time-integration algorithm defined by
U(t) is unconditionally stable by constructi¢23,11]. In the
presence of current sources, for genéiét), it follows im-
mediately from Eq(9) that

W (t)]|<|w(t)|+e

t
1+ foncmu)ndu), 10

where|U(u) —U(u)| <’ for 0<u<t ande is a measure for

the accuracy of the approximatidi(t). In a strict sense, the
one-step method we describe below does not correspond to
an orthogonal approximation. However, for practical pur-
poses it can be viewed as an extremely stable time-
integration algorithm because it yields an approximation to
the exact time-evolution operattf(t) =e'* that is exact to

A numerical algorithm that solves the time-dependentearly machine precision, i.e., in practice the valuee dh
Maxwell equations necessarily involves some discretizatioriEg. (10) is very small. This also implies that within the same
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precision V-(uH(t))=V-(uH(t=0)) and V-(¢E(t)) puting the expansion coefficients of each of the functions
=V-(¢E(t=0)), i.e., Eq.(2) holds for all times. e'?’ that appear in Eq(11). In general, for—1<x<1 we

can represent a functiof(x) as
A. Case: Jt)=0

We first recall how the Chebyshev polynomial approach is
used to approximatel(t)=e' and then show how to treat WhereT,(x)=coskarccox) is the Chebyshev polynomial
the source term. We begin by “normalizing” the matrix of the first kind of ordek [24]. The expansion coefficiengs
The eigenvalues of the skew-symmetric matfixare pure can be found by computing
imaginary numbers. Hence the eigenvalues of the Hermitian
matrix A= —i L are real and i is one of these eigenvalues akzzf” PO | Efwf(cose)coskeda.
S0 is —a. The eigenvalues ofA lie in the interval w1 J1-x2 T Jo
[—=1Zl2.1£l2], where| L], is the largestin absolute value (13
eigenvalue ofz [22]. Obviously| £/, is hard to find. How-
ever, for our purposes we on|y need an upper bourﬂd:ﬂg From Eq(13) it is clear that, in praCtice, the CoefﬁCiemﬁ

f(X)=3a0To(X)+a;Ty(X)+aTo(x)+---, (12

Since L is sparse it is easy to computé€],=maxX|L; ;| can be calculated by Fourier transformationf 6¢ose).
and the upper bound follows frofiC||,<|| £ ; [22]. By con- Using representatiof24]

struction the eigenvalues &= —i.L/| L[|, all lie in the in- "

terval[ —1,1]. The time-evolution operator then readst) e2%=3 (242> iKI(2)Tu(x 14
=e'“=¢'?B wherez=t| L|;. In practice, it is easy to deter- o(2) g‘l (DT, (14)

mine||£||; by hand. Ife= =1, in the case of a three-point . _ _
central-difference approximation to the spatial dervativesWhere Ji(z) is the Bessel function of integer ordér we
| £||;=2/5 for a one-dimensional grid anfi||,=4/5 for a  obtain
two- and three-dimensional grid, being the mesh size.

Expanding the initial valu&(0) in the (unknown eigen- U W(0)=e“u(0)=| I~tl 2l
vectorsb; of B we have WO (0= o(t£])

U(t)W(0)= e (0) = el (- 1212l 0) = e'2Byr(0) ” -
22, LD TLL/L]) | w(0).

— izbih. /h.
—2 e'2ib;(b;| W(0)), (11) 5

where theb; denote thgunknown eigenvalues oB. Actu-  Here | is the identity matrix andr(£/||£],) is a matrix-

ally, we will only make use of the fact that 1<bj<1. We  valued modified Chebyshev polynomial that is defined by the
find the Chebyshev polynomial expansionlft) by com-  recursion relation

To(LI| L) W(0)=W(0), Ti(L/|L],)W(0)=L|L]; W (0), (16)

T (LI L] )W) =2L] L] T LI L] ) W(0) + Ty (LI| L] ) W(0)  for k=1. (17)

From Eqgs.(16) and (17) it is clear thatT(£/||£],)¥(0) is @asa function ok. Using the downward recursion relation of

real valued, as it should be in the case of the Maxwell equathe Bessel functions, we can compiteBessel functions to

tions. Thus, in an actual implementation of the algorithmmachine precision using only of the order Kfarithmetic

there is no need to perform Comp|ex arithmetic. Operati0n3[24,23. In praCtice, a calculation of the first
In practice, we will have to truncate the sum in Em5), 20000 Bessel functions takes lessrtHas on aPentium Il

i.e., we will use only the firsk + 1 contributions to approxi- 600-MHz mobile processor, using 14-15 digit arithmetic.

mateU (t)W(0): Hence this part of a calculation is a negligible fraction of the
total computational work for solving the Maxwell equations.

K From Fig. 1 it is clear thatJ,(z)| vanishes rapidly ifk

etEIII(O)w{JO(tHEIIl)I +2> JtlLly becomes larger tham For instance)J,(z=2000) <10 1°

k=1 for all k>z+100. Thus we may fix the numb&rby requir-

ing that|J, (]| £||,)|> « for all k=K. Herex is a small num-
X?k(ﬁ/HﬁHl)}‘l’(O)_ (18  ber that determines the accuracy of the approximation. In our
numerical experiments we use conventional 14-15 digit

To determine the value df it is instructive to studyl,(z)  floating-point arithmetic and we have takers 10~ °. Once
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polynomial expansion for other values ®f Doubling the
number of Taylor expansion terms helps to reduce the error
but not to the same level as for the Chebyshev polynomial
expansion.

The fact that the truncated Taylor polynomial is less ac-
curate for eigenvalues of large modulus also contributes to
the second and main reason for not using the Taylor series to
approximate expf): Numerical instability{ 23]. A clear sig-

i ? T nal of this phenomenon can already be seen in Fig. 2.
agf 0 ] For —1<x<1, z=20 and K=50(100) we have
18 — |€2— =K (izx) k! < |z KT Y (K+ 1)1~ 10°*§107%).

0 500 1000 1500 2000 2500 3000 3500 4000 The upper bound foK =100 tells us that we should have no
k confidence in the numerical results fidre=100 (dotted ling

FIG. 1. Dependence of the Bessel functiiz) on the ordek.  shown in Fig. 2. The reason that the numerical error|pr

Solid line, z=500; dashed linez=1000; dotted linez=2000. =1 is much larger than the theoretical upper bound stems

from the fact that we have performed these numerical calcu-
we have found the smallest such that|J,(t||£];)|>« for  lations using 14-15 digit arithmetic and, most importantly,
all k<K, there is no point in taking more thahterms in the that summing the Taylor series faz=20 is a numerically
expansion. Indeed, sindd (£/||£],)[|<1 by construction unstable procedure. This is most easily verified by repeating
of the modified Chebyshev polynomials, it follows from Fig. the same calculation with 32-33 dlglt arithmetic. Then for
1 that such contributions would only add to the noise. HowxZ=20, the numerical error of thi =100 series is 10°°
ever, taking less thamterms has considerable negative im- (results not shown in agreement with the theoretical upper
pact on the accuracy of the results. Hence in practice theound.

logl(2)l

choice of K is rather limited (e.g., K e[z,z+100] if z In the Chebyshev approach we hdJg(z)| <1 (recallzis
=2000). In any case, for fixed, K increases linearly with real) and||T,(£/||£||,)||<1 and therefore all contributions in
tl Ll Eg. (18) are roughly of the same magnitude. In contrast, to

At this point one may wonder why it would not be sim- sum the Taylor series we must compuiéle(tﬁ)"/k!,
pler to use the Taylor series instead of the Chebyshev polywhich involves adding many small and larrea) numbers,
nomial expansion. There are two reasons for not doing thisa numerical task that can be very difficult and often results in
The first is the accuracy of the polynomial expansion. Fromnumerical instabilities. Examples of this phenomenon for the
the derivation of Eq(18), it is clear that we use the Cheby- case of the Maxwell equations are given in the Appendix.
shev polynomial expansion to approximate éxpj for each According to Eq.(18), performing one time step amounts
of the (unknown eigenvalued; . After rescaling, the values to repeatedly using recursion relatiofl7) to obtain
of b; enter through the varigbbee[— 1,.1]. As shown inFig. T, (/) w(0) fork=2, ... K, then multiplying the ele-
2, the Chebyshev polynomial expansion witk- 50 is a very  ments of this vector byl(t||£]|l;) and adding all contribu-
good approximation to exjx), for all relevant values ok.  tjons. This procedure requires storage for two vectors of the
The corresponding Taylor series approximation, using th&ame length as#(0) and some code to multiply such a

same number of termK =50, does very well for-0.25  yector by the sparse matrik. For ®(t)=0, bound (10)
<x<0.25 but performs much worse than the Chebysheyjyes

2 ' : ' 1wt <[ wt)|+e(K), (19

\ wheree(K) denotes the error bound on the truncated Cheby-
AN A shev polynomial expansions af(t)=e'“. As e(K) can be

T S made(exponentially small by increasingd<, bound(19) sug-
gests that in practice, the one-step algorithm may safely be
used repeatedly to perform multiple time steps wittvery)
large fixed time step. At most the error will simply la€K)
times the number of time steps.

log(error)

B. Case: Jt)#0

-1 05 0 05 1
X We now turn to the treatment of the source term and focus
FIG. 2. Error betweer'?* and the Chebyshev approximation to on the case where the time dependence of the source term is
€'?* and two Taylor series approximationse, as a function ok known explicitly. One approach might be to simply use the
for z=20. Solid line, logdeé”—[Jy2)+23K ,3(@Tx)] for K  Chebyshev expansion fef'~* and perform the integral in
=50; dashed line, logle>—3K_(iz)¥/k!| for K=50; dotted line,  Eq. (9) numerically. However, this approach is not efficient,
logy €2 —=K_(izx)K!| for K= 100. as for each value df—u we would have to perform a recur-
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sion of the kind of Eq(17). Thus we take another route that ]
we illustrate by considering a sinusoidal souf26] 2
-4

J(r,t)=0(T—1t)s(r)sin(Qt), (20 = 6
wheres(r) specifies the spatial distribution of the source and A -0t
Q) is the angular frequency of the current source. The source & -12 }
is turned on at=0 and is switched off at=T, as indicated 8 44}
by the presence of the step functién(T—t) in Eq. (20). 16 |
Artifacts that result from the discontinuity a&=T can be 18 |
minimized by choosingTl such thatQT/2# is an integer 20 . s s s s . s
number. 0 500 1000 1500 2000 2500 3000 3500 4000

The contribution of the source term to the em field at time k

t is given by the last term of Eq9). For the sinusoidal
source described by E@20) the formal expression of this
contribution reads

fte(““)£¢(u)du= (024 £2) 1et=T)L
0

X (Qe"£-Q cosQT' — LsinQT')E

=f(L,t,T',Q)E, (21

whereE denotes the vector representing the spatial distribu-

tion s(r) of the source andl’=min(t,T). The expansion

coefficients of the Chebyshev polynomial approximation o

the time-evolution operator in E§21) may be calculated as

FIG. 3. Dependence of the expansion coefficiegiz=2000)
on the ordek.

2mn
cos—,z,72" ,w |,

N—-1
St L)) =i"%> eZﬂ'ink/Nf<
A=0 N

(23

whereN is the number of points in the FFT. The symmetry of
f(cos(2m/N),zZ',w) guarantees that the coefficients
Sc(t]|£]|;) are strictly real.

The numberN serves two purposes. First has to be
chosen such that the sum ovemn Eq. (23) yields an accu-

frate(i.e., better than) approximation to the integral in Eq.

(13), for all relevantk. Second, since we have to truncate the

follows. First we repeat the scaling procedure described€/es ak’, N has to be sufficiently large so that we can find

above. Then we substitute in Eq2l) L£=ix||L],
t=z/|L|,, T'=2'1|£]|l;, and Q=w|L|; and compute
the Fourier expansion coefficientgi.e., the coeffi-
cients of the Chebyshev polynomial expangioof the
function

!

2|£]s

sinf (w+x)Z'/2]
(0+X)Z' 12

f(x,2,2",w)= eix(z—2’>{wz

si(w+Xx)Z'/2]
(w+x)2'12

sif(w—x)Z'12] .
X +i
(w—x)Z'12

siM(w—x)Z'12]

—X)Z'12]-
xeod(wmx)zt2 = =

|

We have written Eq(22) in a form that emphasizes that
f(x,z,Z",w) has no singularities as a function ef1<x
=<1.

Xcog(w+x)Z'12] (22

K’ for which|S,| < « for all k>K'. In our numerical experi-
mentsK' is in the range 1000—-10000 and it is the first
condition that determines the value Nf In Fig. 3, we show
In|S(z=2000) as a function ok obtained by using= 22?2
points in the FFT(this calculation takes less than 32 s on a
Pentium Il 600-MHz mobile processor, using 14-15 digit
arithmetig. From Fig. 3 it is clear that foz=2000 we can
truncate the series K’ is a little larger thare. Thus, as in
the case where the expansion coefficients correspond to the
Bessel functions, we fix the numb&’ by requiring that
ISt £])|>« for all k<K’. The results for N
=220 221 222 {iffer in the noisy, irrelevant partn>z+ 100)
only. The noise level can be reduced further by increaling

Putting all pieces together, the one-step algorithm to com-
pute the em field at timeis given by

K
Jo(tlLlr+22, Jk<t|clllﬁkw/llﬁlll)}wo>

]

W(t)~

K'

So(t]|£ll1)!1 +2k§l Sk<t|£||1ﬁk(£/llclll>] =3

(29)

According to the general theory, the coefficients of the
formal expansion off (£,t,T',Q) in terms of Chebyshev The numerical procedure to compute the contribution of both
polynomials are given by E@13), i.e., by the Fourier cosine terms in Eq(24) is the same and involves real numbers only.

transform off (cos6,z,Z’ ,w) with respect tod. In practice the
expansion coefficient§(t||£|,) are most easily calculated
by performing a fast Fourier transfor(&FT) [20]. For the
sinusoidal source, Eq20), we have

In principle, sources with a more complicated time depen-
dence G(t) can be synthesized by computing
17 ..9(w)f(x,2,Z',0)dw, whereg(w) is the Fourier sine
transform ofG(t) but this requires two nested Fourier trans-
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forms and may result in a substantial computational cost. Hy E, Hy E, Hy E, Hy
Another option is to choose the form of the current pulse -

such that the integral in Eq21) can be worked out analyti- 1T 2 3 4 -2 A1 n
cally. For instance, for the Gaussian pulsed source defined by S

[2,3]

FIG. 4. Positions of the two TM-mode field components on the
J(r,t)zs(r)e*a(t*to)z, (25) one-dimensional grid. The distance between two next-nearest
neighbors is denoted b§.
the formal expression for the contribution of the source reads
lattice sites, as shown in Fig. 4. Using the second-order

to T 2 central-difference approximation to the first derivative with
foe(t VEd(u)du= V Ee(t e erf(Va(t—to) respect tax, we obtain

+ LI2\a) + erf(Jaty— L2\ a) |E
=p(L.t,ty,a)E. (26)

%Hy(Zi +10=56"YE2i+20)—E2i,0)], (29

As in the case of the sinusoidal source, also for the Gaussian? a1 . . .
pulsed source the coefficients in the Chebyshev polynomiaIEEZ(ZI’t)_ o THy(2i+ 1O =Hy(21 =10 ]~ J(21.0),
expansion can be calculated by the FFTpék,z,z,, ). (30)
We end this section by making some general comments
on the one-step approach. First, it is important to note that itvhere we have introduced the notatioA(i,t)=A(x
this approach the time dependence of the source is taken intoi 9/2t). The integeri labels the grid points and denotes
account without actually sampling it as a function of time the distance between two next-nearest neighbors on the lat-
(see the example in Sec. JVFurthermore, the treatment of tice (hence the absence of a factor 2 in the denominatide
the source term presented above trivially applies to thélefine then-dimensional vectoM/(t) by
scattered-field formulatiofi2,3]. In the more general case ) )
where there are electrical or magnetic losses in the system, _ Hy(i,t), iodd
the matrix £ is no longer skew symmetric but still normal. Wi,y = E,(i,t), ieven.
Then/ still has a complete set of eigenvectors ame of
the eigenvalues of may have a nonzero real part. We leave The vector®(t) contains both the magnetic and the electric
for future research the problem of determining the conditiongield on the lattice points=1, ... n. As usual, thath ele-
under which the series expansitb) converges sufficiently ment of W(t) is given by the inner productd(i,t)
fast for practical applications. =g -W(t), where ¢ denotes theith unit vector in the
n-dimensional vector space. Using this notatigmhich

IV. ILLUSTRATIVE EXAMPLE proves most useful for the case of two dimensions and three
dimensions for which it is rather cumbersome to write down
explicit matrix representatiohsit is easy to show that Egs.
0(f29) and(30) can be written in form8) where the matrixC

(31)

We consider a system, infinitely large in tlyeand z di-
rections, for whiche=1 andu=1. Under these conditions,
the Maxwell equations reduce to two independent sets

first-order differential equation®21]. The solutions to these 's given by

sets are known as the transverse eledffie) mode and the n—1

transverse magnet{d@M) mode[21]. As the equations of the =51 T T 32
TE and the TM mode only differ by a sign, we can restrict Z’l (88176418, (32

our considerations to the TM mode and obtain the result for

the TE mode by reversing the time. and we immediately see thal is skew symmetric by con-
From Eq.(1) it follows that the magnetic fieldH,(x,t) struct.ion. Thus_, we are in the position to apply the one-step

and the electric fieldE,(x,t) of the TM mode in the one- algorithm to this problem.

dimensional(1D) cavity of lengthL are solutions of First we briefly discuss the aspects that are relevant for
the comparison among the Yee algorithm, the Suzuki-
d d product-formula-based unconditionally stable algorithms
ﬁHy(X’t): gEz(X’t)’ (27 [9,10], and the one-step approach. From E9). it follows
that the em fieldaP(t) change according to
J J
— = — — t+7
at B0 X Hy(X,t) J(x.0), (28) W(t+ T)IeTL‘I’(t)_ J' elt+ T*U)Eq)(u)du, (33)
t

subject to the boundary conditid#,(0,t)=E,(L,t)=0 [21].

Note that constraint&2) are automatically satisfied. where®(i,t)=J,(i,t) if i is even andP(i,t)=0 otherwise.
Following Yee[1], to discretize Eqs(27) and (28), it is In practice we approximate the source term in B8) by a

convenient to assigil, to odd andE, to even numbered standard fourth-order quadrature form{2#] and obtain
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FIG. 5. The fieldE,(x,t=100) generated by a current source at
x=125 that oscillates at frequené€y=1 during the interval &t

<4, as obtained by the one-step algorithig#) with K'=2090
(K=0 in this casg

W(t+7)=e™W(t)+ g[efﬁcp(t) +4e™2dD(t+ 7/2)

+P(t+7)]. (34

We replacee™? and e™ in Eq. (34) by an approximation

U(7/2) andU(7), respectively. For this purpose we will use
the unconditionally stable algorithmE2S2 andT4S2 (see
Ref. [10] for more details T2S2 (T4S2) is second-
(fourth-) order accurate in the time step Both are second-
order accurate with respect to the mesh size

In the presence of the current source, the application 06

the Yee algorithm requires considerable additional work. Th

Yee algorithm is second-order accurate in both the mesh Slch482 algorithms require, respectively, 1, 1.5, and¥ op-

and the time step. This is due to the use of a staggered gri

both in space and time. From the point of view of time inte-

gration, the latter presents some problems that are absent i

PHYSICAL REVIEW 7, 056706 (2003

log (error)

2 -1.5 -1

25
log (time step)

-0.5

FIG. 6. The error|W(t)—W(t)|/|¥(t)| at timet=100 as a
function of the time step for three different FDTD algorithms. The
current source is positioned at the center of the system, and oscil-
lates at frequency)=1 during the interval &t<4 (see Fig. 5.
\if(t) is the vector obtained by the one-step algorithm, usdfrig
=2090 matrix-vector operatior¥’ —MW. \if(t) is obtained by
one of the FDTD algorithms. Plus signs, Yee algoritiy2] using
7=0.1/2" for n=0,1, . . .,7;crosses, second-order unconditionally
stable algorithmT2S2 [9,10] using 7=0.1/2" for n=0,1,...,7;
stars, fourth-order unconditionally stable algoriti#S2 [9,10] us-
ing 7=0.1/2" for n=0,1, . .. ,7;0pen squares, Yee algorithm using
7=0.017/2" for n=0,1,...,6; solid squares,T2S2 using 7
=0.017/2" for n=0,1,...,6; open circles, T4S2 using 7
=0.017/2" for n=0,1, . . . ,6.Lines are a guide to the eye only.

periods the source radiates is set t¢i.4., T=4). If ¥(0)

=0, which is the usual case if a current source is present, the
ne step algorithm requird§’ matrix-vector operation§.e.,
—MW) to computeW(t). The standard Yed,2S2, and

rations per time step.
in We define the error of the solutloﬂf(t) for the wave

all other time-integration methods discussed in this papetform by ||W(t) — W (t)|/|¥(t)|, whereWw(t) is the vector of
Indeed, to complete one time step with the Yee algorithm wehe em fields obtained by the one-step algorithm. In Fig. 6,

need to know the values of sd,(t) andH(t—7/2), not

we present results of numerical experiments with the four

Hy(t), and the proper, time-shifted, values of the currentdifferent time-integration algorithms, for the same system

contributions in Eq(34). If a current source is present it is
reasonable to start with?(0)=0. Then we use the one-step

used to compute the results shown in Fig. 5. We compare the
solutions of the Maxwell equations &t 100, i.e., well be-

algorithm to compute time-shifted values of the current confore the wave fronts reach the boundarisse Fig. 3. In
tributions in Eq.(34). Note that because the time dependencehese calculations, we have used two different sets of time

of the source, Eq(20), is known explicitly, these calcula-

tions need to be carried out only once. The Yee algorithm cafor n=0,1, . ..

steps, namelyr=0.1/2" for n=0,1, ... ,7 andr=0.017/2"
,6. Onpurpose, the former has been chosen

now be used for time stepping. To compare the final result ofuch that the time at which the source is turned off (
the Yee algorithm with those of the one-step method we have- 41 in this examplg divided by, is not an integer. Then

to know the numerically exact values of boHy(t) and

it is conceivable that the discrete sampling of the source term

H,(t—7/2). The latter can be obtained by another applicamay introduce artifacts because approximati®# does not

tion of the one-step algorithm. We also us€dS2 with a

correctly sample the source term near the end phihh the

very small time step to perform these time shifts and obdatter case, these artifacts should not be present. According to

tained the same results.

the rigorous bounds on the error of thdS2 algorithm the

In Fig. 5, we show a typical result of a one-step calcula-error should vanish with* [9—-11]. The erratic behavior of

tion on a grid ofn=5001 sites with= 0.1 (corresponding to

the first set 0fT4S2 data(see Fig. 6 and deviation from the

a physical length of 250.1), and a current source placed at* dependence are manifestations of the “inappropriate”
i =2500 to eliminate possible artifacts of the boundaries. Thehoice of the time step in relation to the pulse durafioAs
frequency of the source is setto @ € 1) and the number of we use a fourth-order accurate approximation to compute the
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TABLE 1. The error|®(t)— W (t)||/|¥(t)| at imet=100 as a H,

function of the time step for three different FDTD algorithms. The Hy
initial values of the em fields are random, distributed uniformly E;

over the interval[-1,1]. \if(t) is the vector obtained by the one-step Hy
algorithm, usingK=2110 matrix-vector operation®¥’'« MW "
P(t) is obtained by one of the FDTD algorithms. Yee, Yee algo- /g. z
rithm [1,2]; T2S2, second-order unconditionally stable algorithm ‘H ‘Ex H
[9,10]; T4S2, fourth-order unconditionally stable algoritH®,10].

T Yee T2S2 T4S2 H, Hy

A

v

0.100 0.9%10"! 0.15x 10™* 0.13x 10™* z
0.010 0.1%x10"! 0.79x10™° 0.29x 108
0.001 0.1%107?! 0.83x 1072 0.29x 1077 Yy

contribution of the source term, this effect is too small to FIG. 7. Unit cell of the Yee grid.
affect the results of the second-order integrators.

The rigorous bound on the error between the exact an
T4S2 results tells us that this error should vanish with
[9-11]. This knowledge can be exploited to test if the one-
step algorithm yields the exact numerical answer. Using th
triangle inequality we can write

thend to use the one-step algorithm because then the time-
integration error is negligible. The Yee algorithm is no com-

etition forT4S2 if one requires an error of less than 1% but

4S2 is not nearly as efficient as the one-step algorithm.
These conclusions seem to be quite general, i.e., we have not
~ - been able to construct counterexamples. Moreover, as we
[ W (t)— ()| <[ W(t)— W)+ [T -W(D], 35  will see below, the one-dimensional case is rather favorable
with respect to the efficiency of the FDTD algorithms.

: -
4 1+f0”J(u)||du o -wf, (36

V. SCATTERING FROM
whereW(t) and W(t) are the results of th#4S2 and the A THREE-DIMENSIONAL OBJECT

one-step algorithm, respectively, aods a positive constant We now consider a more complicated but realistic prob-

[11]). As the numerical data in Fig. 6 show thﬂiﬁf(t) lem of em scattering in three dimensions. In the preceding
—li’(t)||—>0 as . we can be confident that the OnE!_S,[epsectmn, we already showed that the one-step algorithm is

. . o ) very efficient if a current source is present. In the sequel we
algorithm yields the correct answer within rounding errors. put J(t) =0 and demonstrate that the same conclusion holds
From the data in Fig. 6 it is clear thaRS2 is the least .

efficient of the three FDTD methods: It uses about a factor mlf the source is absent. First we write the Maxwell equations

1.5 more arithmetic operations and yields errors that arél) as
larger than those of the Yee algorithm. However, this conclu-
sion does not generalize as the Yee algorithm yields the larg- P 0
est errors of the three methods if the initial em field distri- —Z(t)=HZ(t)=( T
bution is random, as illustrated in Tabl¢47]. The error on at —h
the Yee-algorithm result is expected to vanishragor suf-
ficiently small~ and, as shown in Fig. 6, it does. However, as
Fig. 6 also shows, unless is made sufficiently small
=<0.0125 in this examp)e the presence of the source term
changes the quadratic behavior to almost linear. 1 1
To obtain the data of Fig. 6, the one-step algorithm re- 0 — —
quiresK’ =2090 matrix-vector operatiord’' —MW. This Vi 9z e J Y e
implies that for allr<t/K’, the FDTD algorithms will per- 1
form more W'<—MW operations than the one-step algo- h=| — —
rithm. This is the case if<0.05 for the Yee algorithm and is \/ﬁ
always the case for4S2 because the latter uses a factor of 1
6 moreW'— MW operations than the Yee algorithm. —
The answer to the question that which of the algorithms is N
the most efficient crucially depends on the error level that (39
one finds acceptable. Taking the data of Fig. 6 as an example We discretize Eq(37) by placing the em fields on the
we see that if one is satisfied with an error of more tharvertices of the Yee lattice, as indicated in Fig. 7. On this
2.5%, one could use the Yee algorithm, though we recomlattice, the elements of the vectdr(t) are given by

)Z(t). (37

whereh is given by

14
0z

“l

J
ay

e
T
En
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[ X, (i,j.kt)= (i ], K)Hy(i,j,k,t), i even,j odd, k odd
X, (i,j,k,0)=u(i,j,K)Hy(i,j,kt), i odd, j even, k odd
X,(i,j. k) =u(i,j,KH,(,j,kt), i odd, j odd, k even
(k=) Y, (ihj k) =+e(i,],KEx(i,j.kt), i odd, j even, k even (39
Y, (i,j,k ) =e(i,j,kEy(i,jkt), i even,j odd, k even

L Yo(i0. k) =Ve(i,] KEL,j.kt), i even, | even, k odd,

where we introduced the notatio®(i,j,k,t)=A(x=i6/2)y

=] dl2,z=kdI2}) and the origin of the coordinate system is  £™(i,j k)= + Btk e 1k B 10 1KG 1k

chosen such that its coordinatésj (k) are all even. Through SVe(i+1j+1K)u(i,j+1k)
this arrangement, the EM fields automatically satisfy the T T
boundary condition$3) if the number of lattice points in the C Gk a8 k1T G k18 ke
x, y, and z directions, to be denoted bl,, L,, andL, SVe(i+1j,k+1)u(i,j,k+1)
respectively, is odd.

Approximating the differential operators that appear in €1+ 1K8 42+ 1k €42+ kO + 1)+ 1k

Eq. (38) by the standard three-point difference formula, we

can write[9] SVe(i+1j+1k)u(i+2j+1k)

Le2 L2 L2 _Q+1,j,k+1€‘.T+2,j,k+1_Q+2,j,k+1€‘.T+1,j,k+1
L= Zl, 121’ 121/ (LY ,j,k)+LY,j,k) S\Ve(i+1j,ktu(i+2,k+1)

(41)
+ £, k)1, (40)

o _ _and the expressions fat Y)(i,j,k) and £@(i,j,k) follow
where the prime indicates that the stride of each summatioffom Eq. (41) by symmetry. Note that we use the triple
index is 2, and the superscripts)( (y), and(z) refer to the  (j j k) to label theL,L,L, unit vectorse ; . The (,j,k)th
derivative with respect ta, y, andz, respectively. More ex-  glement ofW(t) is given by the inner produc¥(i,j,k,t)
plicitly, we have =¢ ;- W(t). Itis easy to check that by construction, the
matrix £ given by Eq.(40) is skew symmetric.

As an example we show results of scattering of an em
wave packet by a three-dimensional scaff?8] of dielec-
tric material (see Fig. 8 As the results of the one-step
method and FDTD calculations are visually indistinguishable
on the scale used to prepare the snapshots, we only show the
results of the former. In Fig. 9, we show 2D projections of

..

=
Ykl LT

EEBLEEEAEBEE
CEEENEEEEEEED
CEDOEREEEED

E

FIG. 9. Energy density distribution of the em field as a function
of (x,y=6,z). The simulation box measures 222X 12. The co-
ordinates of the left-bottom corner a(@,6,0. The scaffold struc-
ture (see Fig. 8 is located in the domain 8x<12,0<y<12,0
<z=12). The form of the initial wave packet is given by E42),

FIG. 8. Cut of the scaffold structure used in the simulation. Thewith the center located at,=(3.5,6,6Y, the parameters that deter-
scaffold structure is built from square X®.5 rods with a spacing mine the width given byeo=(3,0.75,0.75), and wave vectok
of 0.5. Dielectric constant of the rods=4. =(6,0,0). Left,t=0; right,t=6.4.
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10> 10° 10 10° 10®° 10 __ 10
N
FIG. 10. Error analysis of the one-step algorithm, the Ye&]
algorithm, and two unconditionally stable algorithf®10]. The

data have been obtained from the simulation of the scattering of the

em field on the scaffold structufsee Figs. 8 and)9Shown is the
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timet and compute the errar by comparing the result with
the one of the one-step algorithrwith K chosen properly,

see above As we havea=ar"t we can determine the con-
stanta. Let one time step tak@/ matrix-vector operations of
the typeW'«—MW. For a 3D calculation we havé/=1,
W=2, andwW= 10 for the Yee,T2S2, andT4S2 algorithm,
respectively(the actual number of floating-point operations
carried out by our algorithms agrees with these estimates

Let N denote the number oF’ — MW operations it takes to
obtain the solution at tim& with error . We haver

=Wt/N and a=aW't""Y/N". We can now calculate the
number of operation8! it will take to compute the solution

at timet with accuracya. Using the scaling properties of the
error we havex=aW"t""1/N" and eliminating the constant

ayields
~(Zz)l’" t
N=N|—
o

(n+1)/n
:) (43
t

error a=||W(t)—W(t)| att=6.4 as a function of the number of N practice,Nfor~each zilgorithm we first have determined the
timesN the operation¥’ —MW is carried out. The computational numbersn, N, «, andt in Eq. (43) before we can use Eq.

effort of each of the four methods is proportionaNoThe one-step
algorithm with K= 320 (indicated by the arrojvwas used to gen-
erate the reference solutio#(t). Crossesﬁf(t) obtained by the
fourth-order unconditionally stable algorithidS2 [9,10] for 7
=101, 7=10"2, and r=10"3; open squares¥(t) obtained by
the standard Yee algorithm for=10"2, 7=10"3, =104, ~
=10"%, and r=10"% open diamonds,\if(t) obtained by the
second-order unconditionally stable algorithfi@S2 [9,10] for =
=102, 7=10"3% r=10"% r=10"° and r=10°. Lines are a
guide to the eyes.

the energy density distributions of the em fieldtatO (left
hand side¢ and t=6.4 (right hand sidg respectively. The
initial wave packet is defined by

10
H, (1) =Sink(x—xo—t)]e~ %o~ 00
X e~y ohe—(z-2)%0% (42)

i.e., a product of two Gaussians in th@ndz directions and
a function with a much sharper cutoff in tikedirection. The

(43). This can be done by making one numerical experiment
per algorithm for a reasonable choice of the time step. The
one-step algorithm computes the solution at timesing K
operations and, as we have seen abBvsgales linearly with

t. On the other hand, as E¢3) shows, amth-order algo-
rithm requires of the order af"* 1" operations. Thus, for
larget, the one-step algorithm will benuch more efficient
than the FDTD algorithms.

As an illustration we use the data of Fig. 10. For the
one-step algorithm we havié~50+42. If we require an
error of 1% (i.e., a=10"2) we find N=34t%2 N=86t°?,
N=76t>4 for the Yee,T2S2, andT4S2 algorithm, respec-
tively. Plotting these expressions fidrandN as a function of
t (results not shown we find that the one-step algorithm
outperforms the FDTD algorithms i£>3. The latter state-
ment is rather sensitive to the accuracy of the time-
integration algorithm that one finds acceptable. For instance,
if one would like to have an error of at most=10 3, we
find N=107%2 N=272%2 N=13%%4 for the Yee T2S2,
and T4S2 algorithm, respectively, and the one-step algo-
rithm is more efficient than the FDTD algorithmstif-1.

other components of the em field have been determined ndrurthermore, as shown in Fig. 11, we conclude that for
merically, taking into account that, in vacuum, the Fourierlonger times none of the FDTD algorithms can compete with
components of the em fields are related to each other throughe one-step algorithm in terms of efficiency. TheS2 al-

the Maxwell equations witle = =1 andJ(t)=0. gorithm is always(much less efficient than the other two

These and other Ca|cu|ati0|(]ﬂgsu|ts not shovW]for dif- FDTD algorithms and has therefore been omitted in Flg 11.
ferent systems have been used to compare the computatiorfe®r t= 20, the one-step algorithm is a factor of 10 faster than
efficiency of different FDTD a|g0rithms with the one_step the Yee algorithm. Thereby, we have disregarded the fact that
method described in this paper. In Fig. 10, we show théhe Yee algorithm yields results within an error of 0.1%
results of such a comparison for the case shown in Figs. hile the one-step algorithm gives the numerically exact so-
and 9. These results are representative, i.e., not intentionallytion. It is evident that th&l, @, andt in Eq. (43) may vary
selected to favor one particular method. from problem to problem but the scaling Nfwith t will not.

A quantitative analysis of the efficiency can be made asTherefore we may conclude that, for long times, the one-step
follows. We assume that the time stes sufficiently small  algorithm can be orders of magnitude more efficient than
such that the error of theth-order algorithm is proportional current FDTD methods, even if we are content with a poor
to 7"t (see Fig. 10 We perform a calculation for a particular accuracy of the latter.
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10000 ' ' ' (5) may be used for time stepping wiftvery) large time
L Lo steps(6) implementation is as easy as for the FDTD algo-
N I a rithms.
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1000 & P 1 APPENDIX: TECHNICAL ISSUES

o 5 10 15 20 Truncation of the series expansion@&f in terms of the

t Chebyshev polynomials at thé&h term[i.e., Eq.(18)] yields
a Kth-order polynomial approximation ig°, ... ,.X. One
might wonder why not use the corresponding Taylor polyno-
mial instead of the more complicated Chebyshev recursion.
Numerical instability is the main reason for not using the
Taylor expansiorj23], a point that we illustrate by comput-
ing the time evolution of a 1D Gaussian wave packet. The

FIG. 11. The number o’ «— MW operationsN needed to com-
pute the solution of the 3D Maxwell equation at timéor the
system shown in Figs. 8 and 9. Solid line, one-step algorithm
dashed line, Yee algorithifl—3] yielding a solution within 0.1%
error; dotted lineT4S2 algorithm[9,10] yielding a solution within
0.1% error.

VI. CONCLUSION TABLE . The error Erayior=Urayior®(t=0)—¥(t)/

We have described a one-step algorithm to solve the timdl.‘i’(t)H for different timest and different numbers of terms in the
dependent Maxwell equations. We have presented numericBplynomial expansion. The initial value of the em fields is a Gauss-
results for a 1D system with and a 3D system without a" Wzvfh pack(;eO(”\I' (tfz t?])xefo_(x_x‘l):).ZM']’ ),(o(f|= 12?’ Cen.tezﬁd
current source and compared these results with the ones oB.2und the middie of the systesee Fig. 5 Also shown is the
tained by using the conventional Yee algorithm and two un£o" Ecnebyshe With respect to the reference solutiok(t) ob-
conditionally stable algorithms. The latter offer rigorous con-@in€d by the one-step algorithm usifg=300 expansion coeffi-
trol over the errors and have been used to produce theents. An entry yv_lth value - MP - indicates that the result is exact
reference data. In all cases the one-step algorithm reproducgjsmaChIne precision.

these results. Typically, the one-step algorithm is more than

an order of magnitude faster than the FDTD algorithms. This K Eraylor Echebyshe
roughly matches our expectations based on a count of the 2.0 50 0.4& 101! 0.54x10°3
number of arithmetic operations for the different methods. 2.0 55 0.1x10°?! 0.11x10°4
Overall our conclusions are in concert with those drawn on 2.0 60 0.15¢10 2 0.73x 10"’
the basis of numerical experiments with the Sclimger 2.0 70 0.9410°° 0.13x10°*
equation[17]. 2.0 140 0.6X 10*i§ - MP -

For some applications it will be necessary to use a better 2.0 200 0.6x10° - MP -
spatial discretization than the most simple one employed in 2'8 28%5 ’Og‘éfrlﬂc()l";’ ) 0 Q&MlF()):G
this paper. It is straigthforward to adopt the approach used in 30 85 0.4% 10" 013% 107
the case of the unconditionally stable algorithf@§]. This 30 90 0.60K 10*5 0.10% 10~9
will not affect our general conclusions regarding the effi- 3 05 0.6 10+ 0.62x 1012
ciency of the different methods. Currently the mathematical 3 g 100 0.5%10"3 0.25¢10 14
justification of the one-step method requires that the matrix 3.0 120 0.2K 102 -MP -
L is skew symmetric. This is of particular importance if we 3.0 140 0.3%x10°° - MP -
want to treat othefe.g., absorbingboundary conditions by 3.0 160 0.3%x10 7 - MP -
the same approach. Many practical applications use other 3.0 180 0.3%10°7 - MP -
types of boundary conditiof®] than those adopted in this 3.0 190 - Overflow - - MP -
paper. The problem of incorporating these boundary condi- 40 100 0.20¢ 10112 0-45%¢ 10:152
tions is left for future research. 4.0 120 0.26¢ 10+9 01310

In summary, our results indicate that the main features of 3'8 igg 8'%& 18+3 ME
the one-step algorithm for solving the time-dependent Max- 40 170 0.15 102 - MP -
well equations are the followingl) applicable to systems 4.0 172 - Overflow - -MP -
with spatially varying permittivity and permeability and cur- 5 g 140 0.54 10" 22 0.21x10" 1
rent source(2) no need to sample the time dependence of the 5 g 160 0.1% 10+1° - MP -
current source(3) very accurate time integration4) effi- 5.0 165 - Overflow - -MP -

cient method to compute the em fields at particular times;
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system we consider is identical to the one used in Sec. IMhe values oK that yield high precision are very close to the
For convenience the vector of initial values is normalized tovalues ofK for which the numerical instabilities occur.
1. The algorithm based on the Taylor expansion is defined by Although the Taylor series is accurate for eigenvalues of
L close to zero, this is clearly not sufficient to accurately
Ko ¢n approximate the matrix exponentigl. The Chebyshev ex-
Uraylor= > —IE”. (Al)  pansion on the other hand, guarantees equal maximum error
n=1n over the whole interval of eigenvalues 6f Therefore, for
the same number of terms in the expansion, it is a much
In Table Il we compare the Taylor-expansion algorithm with petter approximation te'* than the truncated Taylor series.
the Chebyshev algorithm. It is obvious that the instability of As Table I demonstrates, numerical instability renders the
the Taylor algorithm makes it unsuitable for integrating theTaylor expansion uselesstif-4. The Chebyshev expansion
Maxwell equations over extended time intervals. Note thatoes not suffer from this limitation.
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