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Unconditionally stable algorithms to solve the time-dependent Maxwell equations
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Based on the Suzuki product-formula approach, we construct a family of unconditionally stable algorithms
to solve the time-dependent Maxwell equations. We describe a practical implementation of these algorithms for
one-, two-, and three-dimensional systems with spatially varying permittivity and permeability. The salient
features of the algorithms are illustrated by computing selected eigenmodes and the full density of states of
one-, two-, and three-dimensional models and by simulating the propagation of light in slabs of photonic
band-gap materials.
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[. INTRODUCTION been proposed to solve the TDMB]. The split-operator
approach is based on one of the many forms of the Lie-

Maxwell's partial differential equations of electromagne- Trotter-Suzuki product formulas. The spectral-domain
tism describe the evolution of electric and magnetic fields inmethod makes use of fast Fourier transforms to compute the
time and spac€l]. They apply to a wide range of different matrix exponentials of the displacement operators. The
physical situations that are specified by the boundary condichoice made in Ref6] yields an approximation to the time-
tions on the electromagnetiEM) fields. In many cases, nu- evolution operator that is no longer orthogonal and hence
merical methods are required to solve Maxwell's equationsinconditional stability is not automatically guarantué¢éd
either in the frequency or time domain. For the time domain,n contrast, the methodology that we propose yields efficient,
a well-known class of algorithms is based on a method proEXp"Cit, unconditionally stable schemes that operate on the
posed by Yed?] and is called the finite-difference time- EM fields defined on the real-space grid only. This renders
domain (FDTD) method. The FDTD method has matured the algorithms rather flexible, avoids wrap-around effects
during past years and various a|gorithms imp|emented f0E6], and naturally allows for the spatial variations in both the
Speciﬁc purposes are available by n@ﬁ“l] These a|go- permittivity and the permeability. On the other hand, the
rithms owe their popularity mainly due to their flexibility and implementation described in this paper is by no means
speed, while at the same time, they are easy to implement. nique and leaves a lot of room for further improvements.
limitation of Yee-based FDTD techniques is that the stability For EM fields in a homogeneous medium, Zhestgal.
of the algorithms is conditional. The stability depends on theand Zheng and Chen showed that there is an alternating-
mesh size used to discretize space and the time step useddigection-implicit time stepping algorithm that is uncondi-
perform the time integratiofB]. tionally stable[8,9]. Conceptually, this approach is different

In this paper, we present a fam||y of unconditiona”y from ours. The Fourier-mode Stabl'lty anaIySiS performed by
stable algorithms that solve the time-dependent MaxwelZhenget al. [8] does not generalize to the case of spatially
equations(TDME) through the application of orthogonal varying permittivity and permeability, whereas in our ap-
transformations. That this is possible follows from the repreProach, the algorithms are unconditionally stable by con-
sentation of the TDME in matrix form. The exponential of a Struction.
skew-symmetric matrix plays the role of the time-evolution ~Our presentation is organized as follows: The basic theo-
operator of the EM fields. This time-evolution operator is'etical concepts are given in Sec. Il. In Sec. Ill, we explain
orthogonal. The key to the construction of an unconditionallythe general philosophy that underlies the Suzuki approach to
stable a|g0rithm to solve the Maxwell equations is the obserconstruct algorithms that are unconditionally stable. In Sec.
vation that orthogonal approximations to this operator auto!V, we show in detail how to implement these ideas for the
matically yield unconditionally stable algorithms. The Lie- case of the TDME in one, two, and three spatial dimensions,
Trotter-Suzuki  product formulas [5] provide the Using algorithms that are accurate up to second and fourth
mathematical framework to construct orthogonal approximaorder in the time step. In Sec. V, we explain how we analyze
tions to the time-evolution operator of the Maxwell equa-the data generated by these algorithms. In Sec. VI, we
tions. However, this framework does not specify how topresent the results of numerical simulations for the physical
implement the algorithm. systems that we selected as examples to test the algorithms.

Recently, a spectral-domain split-operator technique ha&ur conclusions are given in Sec. VII.

. . Il. THEORY
*Email address: j.s.kole@phys.rug.nl
"Email address: m.t.figge@phys.rug.nl The model system we consider in this paper describes EM
*Email address: deraedt@phys.rug.nl fields in ad-dimensional =1,2,3) medium with spatially
http://rugth30.phys.rug.nl/compphys varying permittivity and/or permeability, surrounded by a
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perfectly conducting box. In the absence of free charges and

Y (t)=e"¥(0), (10)
currents, the EM fields in such a system satisfy Maxwell’s

equationg 1] whereW (0) represents the initial state of the EM fields and
the operator
J 1
EHZ—;VXE, (1) U(t)ZEIH, (11)
J 1 determines their time evolution. By construction
—E=—-VXH, 2
at € 5 ) 5
W (O)]*=(¥ ()] V(1)= V[sE (t)+ uH(t)]dr,
diveE=0, ) (12
divH=0 (4)  relating the length o’ (t) to the energy density
where H=[Hy(r,t),Hy(r,t),H,(r,))]" and E w(t)=eE2(t) + uH?(t), (13

=[Ex(r,t),Ey(r,t),Ez(r,t)]T denote the magnetic- and .
electric-field vector, respectively. The permeability and theof the EM fields[1]. FromU(t)"=U(-t)=U"*(t)=e""",
permittivity are given byu= u(r) ande =&(r). For simplic- it follows that (U(t)W(0)[U(t)¥(0))=(W(t)[¥(t))
ity of notation, we will omit the spatial dependence pn =(¥(0)|¥(0)). Hence, the time-evolution operatdi(t) is
=(x,y,2)" unless this leads to ambiguities. On the surface oftn orthogonal transformation, rotating the vectoft) with-
the perfectly conducting box, the EM fields satisfy theout changing its lengtfi¥|. In physical terms, this means
boundary condition§l] that the energy density of the EM fields does not change with
time, as expected on physical grourds

The fact thatU(t) is an orthogonal transformation is es-
sential for the development of an unconditionally stable al-
with n denoting the vector normal to a boundary of the sur-gorithm to solve the Maxwell equations. In practice, a nu-
face. The conditions Eq5) assure that the normal compo- merical procedure solves the TDME by making use of an
nent of the magnetic field and the tangential components OglpproximatiorfJ(t) to the true time evolutiot(t) (see be-

the electric field vanish at the bounddj. Some important  |o,) A necessary and sufficient condition for an algorithm to
symmetries of the Maxwell Eqg1)—(4) can be made ex-

NXE=0, n-H=0, (5)

plicit by introducing the fields

X(t)=uH(t), Y(t)=\eE(t). (6)

In terms of the field(t) andY(t), the TDME[Eqgs.(1) and
(2)] read

1 1
——VX—

a(X(t))_ Vu e (xm)

a\yYw 1 Y(t)

1
Nl

X(t)
=H( Y(t)) ' "

0

Writing W (t)=[X(t),Y(t)]", Eq. (7) becomes
J
SV O=HY (D). ®)

It is easy to show that{ is skew symmetric, i.e.H T
= —H, with respect to thénner product

(\If|\lf’>EJV\IfT~\If’dr, 9)

whereV denotes the volume of the enclosing box.
The formal solution of Eq(8) is given by

be unconditionally stable is thft0]
1B w()]<[w(O)]. (14

In other words, the length o¥(t) should be bounded, for
arbitrary initial conditionW (t=0) and for any time [10].
By choosing for¥(0) the eigenvector of)(t) that corre-

sponds to the largest eigenvaluelbft), it follows from Eq.
(14) that the algorithm will be unconditionally stable by con-
struction if and only if the largest eigenvalue Oft) (de-
noted by||U(t)|) is less or equal than orfd0]. If the ap-
proximationU (t) is itself an orthogonal transformation, then
[U(t)| =1 and the numerical scheme will be unconditionally
stable.

In summary, unconditionally stable algorithms to solve
Eq. (7) may be constructed by employing orthogonal ap-
proximations to the time-evolutiob (t) =e'”. For the case
at hand, unconditional stability is tantamount to the exact
conservation of the energy density.

IIl. UNCONDITIONALLY STABLE ALGORITHMS

A numerical procedure that solves the TDME necessarily
starts by discretizing the spatial derivativesee Sec. V.
This maps the continuum problem described Hyonto a
lattice problem defined by a matrkt. Ideally, this mapping
should not change the basic symmetries of the original prob-
lem. The underlying, symmetry of the TDME suggests the
use of matriceH that are real and skew symmetric. For-
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mally, the time evolution of the EM fields on the lattice is
given by

V(t+7)=U(n)P(t)=e™W(t). (15

The second ingredient of the numerical procedure is to

choose an approximation of the time-step operéatér). A
standard procedure is to truncate the Taylor series of th
matrix exponential11,12

oo H n
U(r)=e™= () (16)
A=o N!
Retaining terms up to first order inyields
U(n)=1+17H, (17)

where | denotes the identity operator. Ad(7)U(7)"=I

—(7H)2+#1 for 7#0, it is clear that the matrix Eq17) is
not orthogonal. Making use of the symmetry ldfand the
positivity of the inner product, we find that

(W(n)|W(7)=(0(r)¥(0)|U(7)¥(0))
=(¥(0)|¥(0))+ 2(HW(0)|[H¥(0))
><\If(0)|\lf(0)),

implying that Eq.(14) does not hold. Hence, according to the
arguments given above, th&uler scheme Eq(17) is un-
stable, a fact that is, of course, well knopt0].

The Yee algorithm is based on a leapfrog arranger@nt

PHYSICAL REVIEW E 64 066705

and generalizations there¢$,16]. Applied to the case of
interest here, the success of this approach relies on the basic
but rather trivial premise that the mattikmay be written as

P
H=Zl H,, (22)

e

where each of the matricé$; is real and skew symmetric.
The expression Eq20) suggests that
Uy(r)=e"1---em™, (22)
might be a good approximation 1d(7) if 7 is sufficiently
small. Most importantly, if all thed; are real and skew sym-
metric, U4(7) is orthogonal by construction. Therefore, by
construction, a numerical scheme based on(Eg). will be

unconditionally stable. Using the fact that bdth(r) and
U,(7) are orthogonal matrices, it may be shown tHgf]

2
Jun-usnl= g B MA@

where [H;,Hj]=H;H;—H;H;. From Eq. (23 it follows
that, in general, the Taylor series tf(7) and U(7) are
identical up to first order inr. We will call U,(7) a first-
order approximation tdJ (7).

The product-formula approach provides simple, system-
atic procedures to improve the accuracy of the approxima-

and formally corresponds to an approximation to the matrixion to U(7) without changing its fundamental symmetries.

exponentiall () that may be written as
Oved 7) =1+ 7H,+ 72H3, (18)

whereH; and H, are matrices, the structure of which de-

For example the orthogonal matrix

UZ( 7_) — Ul( _ T/Z)TU 1( T/Z) — eTH p/2~ . .eTH 1/2eTH1/2. . .eTH p/2,
(24)

pends on the Iattic_:e Qimensionality. The presence of th‘?‘s a second-order approximation to(7) [5,16]. Suzuki's
second-order contribution may render the algorithm Stabl?ractal decomposition approag8 gives a general method to

under certain conditions. It seems difficult to determine thes
conditions for arbitrary(skew-symmetric H; and (symmet-
ric) H,, i.e., without making use of very specific knowledge
about the elements d¢f; andH,. For EM fields moving in

free space, a Fourier-space stability analysis of the Yee algo-

rithm yields

_ A
T\C\/a,

as the condition for stability3]. Here,c is the light velocity
in vacuum,A denotes the spatial mesh size, amds the
dimensionality of the system.

A systematic approach to construct orthogonal approxi
mations to matrix exponentials, i.e.,
tionally stable algorithms, is to make use of the Lie-Trotter-

Suzuki formula[13,14
m
( etHi /m)

(19

p

[]

=1

et(H1+'”+Hp): lim

m— o

(20

to construct uncondi-

Construct higher-order approximations based W(7) or

U,(7). A particularly useful fourth-order approximation is
given by[5]

Uu(7)=Uy(arn)Uy(an)Uy[(1—-4a) T]Uz(aT)Uz(aT)(éS)

wherea=1/(4—43). The approximations Eq$22), (24),
and(25) have proven to be very useful in many applications
[14-25 and, as we show below, turn out to be equally useful
for solving the TDME. In practice, an efficient implementa-
tion of the first-order scheme is all that is needed to construct
the higher-order algorithms Eq&4) and (25).

To summarize, Suzuki’'s product-formula approach pro-
vides the formal machinery to define algorithms that are un-
conditionally stable by construction. The accuracy of these
algorithms may be improved systematically, to any desired
order[5]. The only assumption made so far is that the real,
skew-symmetric matriXd representing the TDME may be
written as a sum op real, skew-symmetric matriceés; . The

066705-3



J. S. KOLE, M. T. FIGGE, AND H. DE RAEDT PHYSICAL REVIEW B4 066705

next step is to choose th¢'s such that the matrix exponen- Hy E, H E, Hy E, Hy
tials expgHy)- - -exp(rH,) may be calculated efficiently. This me===

. . . 1 2 3 4 n2 n-1 n
will turn the formal expressions fdd,(7) and U,(7) into . , 4
efficient algorithms to solve the TDME. S

FIG. 1. Positions of the two TM-mode field components on the

IV. IMPLEMENTATION one-dimensional grid.

In this section, we present the details of our implementa-
tion of unconditionally stable algorithms to solve the TDME tial coordinates through the lattice index e.g., X(i,t)
based on the Suzuki product-formula approach. For peddtands foix| x=( +1}6 2t].
gogical reasons, we start by considering the simplest case: A Following Yee[2], it is convenient to assigK,(i,t) and
one-dimensiona(1D) system. Then we show that the strat- Y,(j,t) to the odd and even-numbered lattice site, respec-
egy adopted for 1D readily extends to higher spatial dimentively, as shown in Fig. 1 for a grid of points. The Eqs(28)
sions. The implementation we describe below is by no meangnd (29) may now be combined into one equation of the
unique, leaving a lot of room for further improvements. In form Eq.(8) by introducing then-dimensional vector
principle, any decomposition Eg21) of H into real skew-

symmetric parts will do. Largely guided by previous work X, (i,t)= \/zHy(i,t), i odd
[17,19,24,2% we have adopted a decomposition that is effi- W(i,t)= )= Ve Ei . : (30
cient, flexible, sufficiently accurate, and easy to program. Ya(i,)=VeiB,(i,1),  Teven

The vector?¥ (t) describes both the magnetic and the electric

_ o field on the lattice points=1, ... n. As usual, theth ele-
We consider a 1D system along tRedirection. Accord-  ment of W(t) is given by the inner product¥(i,t)

ingly, Maxwell's equations contain no partial derivatives =e - W(t) where ¢ denotes theith unit vector in the

with respect toy or zande andu do not depend oy orz. 1 gimensional vector space. Using this notation, it is easy to
Under these conditions, the TDME reduce to two indepengpow that Eqs(28) and (29) reduce to

dent sets of first-order differential equatiofly. The solu-
tions to these sets are known as the transverse el¢€ic g
mode and the transverse magnegfldvi) mode[1]. As the —W () =HW(1), (31)
equations of the TE and TM mode only differ by a sign, we at
may restrict our considerations to the TM mode and obtain
the result for the TE mode by reversing the time. where the matriXH is given by
From Eq.(7) it follows that the magnetic fieldd(x,t)

A. One dimension

=Xy(x,t)/yu(x) and the electric field E,(x,t) B/

=Y,(x,t)/\e(x) of the TM mode are solutions of H 7 [Bisii(e8 1~ €18+ Bir1i+2(8118,
d d [ Yo(X.1) — Y 32
— X (X,1)= _ , 26 Q+ZQ+1)]1 (
o= R Jam) 20

with B; ;=1/(6Veiu;) and the prime indicates that the sum

J 1 a9 [ Xyxt) is over odd integers only. In complete analogy to EL),
S Y0 = 500 X N (27 the time evolution of¥(t) is formally given by W(t)

=U(t)¥(0) with U(t) =exptH).

The notation introduced above will prove most useful for
the cases of 2D and 3D for which it is rather cumbersome to
write down matrix representations. For the 1D case, it is not
NYifficult and in fact very instructive to write down the matrix
H explicitly. Indeed, we have

Note that in 1D, the divergence &f,(x,t) and E,(x,t) is
zero. Hence, Eqg3) and(4) are automatically satisfied.

Using the second-order central-difference approximatio
to the first derivative with respect tq we obtain

P 1 (Y, (i+10) Yy —1,t)> 0
—Xy(i,t)= - . (29 B2a
ot S\ Veiis VEi-1 —B,, O By 3
. . H=
—YAi )= : - . (29 ~Bn-1n- 0 Bn-
gt 2 5\/8_1' \/m \/m n-1n-2 ﬁ no 1in
“ Pn-1n
where the integer labels the grid points and denotes the (33

distance between two next-nearest neighbor lattice points
(hence, the absence of a factor two in the nominatéor and we immediately see that is skew symmetric by con-
notational simplicity we will, from now on, specify the spa- struction. Furthermore, fan odd we have
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9 9 Schralinger and diffusion problemgl7,19,24,2% we split
S V(LD =82.¥(21) and —¥(n,t) H into two parts, i.e.H=H;+H,, where
== B 1,¥(n-1Y), (34) .,
nn leizl Bii1i(6€ 1€ 18), (39

such that the electric field vanishes at the boundaries

[Y,(0t)=Y,(n+1t)=0, see also Fig.[] as required by the n

boundary conditions Eq5). For this reason, we only con- _N'"np T T

sider the case afi odd in the sequel. Hz‘i; Pirriva(@1827 828 0), (36)
According to the general procedure outlined in Sec. lll,

the final step in the construction of an unconditionally stable.e., we divide the lattice into odd- and even-numbered cells.

algorithm is to decomposk. Guided by previous work on In matrix notation, we have

0 B
—B21 O 0
0 0 Baz
—Bsz 0 O
Hqi= o - 0 (37)
0 0 :Bn—l,n—z
_,anl,nfz 0 0
0 0
and
0 0
0 0 B3
B2z 0 O
o - 0
o . (39)
2 0 0 Bn73,n72
_Bn—S,n—Z 0 0
0 0 ﬂn—l,n
_Ianl,n 0

Clearly, bothH, andH, are skew-symmetric block-diagonal 0 1\]/W(,1) cosa sina\ [ W(i,t)
eXp ( ): —sina COSa) '

matrices, contamln_g one>_<L1 matrix and (—1)/2 real, 2 ~1 o/ [\w(.p w(j.1)
X 2 skew-symmetric matrices.

According to the general theory given above, the first- (40)
order algorithm defined by

He B. Two dimensions
Ui(r)=e"1e™2 (39

Assuming translational invariance with respect to the
is all that is needed to construct unconditionally stabledirection, the system effectively becomes 2D and the TDME
second- and higher-order algorithms. As the matrix exponenseparate into two sets of equatidiid. For conciseness, in
tial of a block-diagonal matrix is equal to the block-diagonalthis section we only discuss the set of equations for the TM
matrix of the matrix exponentials of the individual blocks, modes. The TE modes may be treated in exactly the same
the numerical calculation o&™1 (or e™2) reduces to the manner.

calculation of —1)/2 matrix exponentials of 22 matri- The relevant EM fields for the TM modes in 2D are
ces. The matrix exponential of a typicak2 matrix appear- W (t) =[xx(x,y,t),Xy(x,y,t),YZ(x,y,t)]T, in terms of which
ing in et or e™2 is given by TDME Eq. (7) reads
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0 o _t21
Vi Y e
J 1 0 1
Sttt 1 0
\/g&y\/; géx\/;

We discretize continuum space by simply reusing the one- T T
P y Pl g G j+18+1j+17 G+1j+18 j+1

dimensional lattice introduced above, as exemplified in Fig. HO(j)=+
2 for the case of the TM modes. This construction automati- ONEit1j+1Mij+1
cally takes care of the boundary conditionsiifandn, are T -
odd and yields a real skew-symmetric matkx L OrieaSj1 G 2184 (44)
I_n analogy with the 1D case, the elements¥ft) are 5‘/8i+2.|+1Mi+2,j+1
defined by
Wi €‘|+1,je|T+1,j+1_Q+1,j+1QT+1,j
‘l’(l 't) Hy('y]):_
b 5V8i+1,j+1ﬂi+1,j
Y211, 0= Vei B (1)), I even an.q even _Q+1,j+19|T+1,j+2_Q+1,j+2qT+l,j+1 (45
=9 Xy(i,j,t)=+vpuijHy(i,j,t), ioddand even, s #H””MHJH ;
XX(iajrt): V/"Li,jHX(irjat)v I even anq Odd
42 and the superscript) and (y) refer to the derivative with

respect tox andy, respectively. Note that we use the pair
(i,j) to label thenyny unit vectorsg, ;. In complete analogy

Discretization of the differential operators that appear in EqWith the 1D, case we split Eq¢44) and (49) into two parts
(41) yield expressions that have the same structure as E@nd obtain for the first-order approximation ti7)
(33), with extra subscripts to account for the second spatial )

. . . )
dimension. It follows that on the lattice, Uy (r)=e™1 e™2 ™1

ey, (46)

where for instance, in formal analogy to E§6), we have

d
—W(t)=HW¥(t)
ot H(X)_g/%rq+l,j+qu+2,j+1_Q+2,j+1qT+1,j+1
2 T & :
X, 0 Wi i=1]=1 ONE yajr1Mit2j+1
=2, 2 HOED+HHOEIT (), (43 (47)

It is not difficult to convince oneself that approximation
U,(7) and hence alstJ,(7) and U,(7) do not commute

with the (lattice version of the divergence. Therefore, the
divergence of the EM fields in 2D is not conserved. Although

where

6 the initial statglatt=0) of the EM fields satifies Eq$3) and
5 Hy H e e (4), time-integration of the TDME using(7) yields a so-
H IE, Iy B, Iy [E. W IE. Wy lution that will not satisfy Eqs(3) and (4). However, for
4 Z Z Z -Z . 7 i
H f algorithm U, (7), the deviations from zero vanish a¥ so
3 Hx Hx X X that in practice these errors are under control and may be
9 b IE, Wy IE, Iy [E. By [E. [Hy made sufficiently small for practical purposes.
1 HX Hx HX HX
C. Three dimensions
y 0 1 2 3 4 5 6 7 8 9 10 In terms of ¥ (t) = (X(t),Y(t))" for a 3D system, Eq(7)
« T reads
FIG. 2. Positions of the three TM-mode EM-field components i\P(t)=H‘P(t)= h W (t) (48)
on the two-dimensional grid fan,=9 andn,=5. ot -h" 0 '
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whereh is given by

0 tosot 1o 1
V92 e Ju Y e
h= _iii 0 iii . (49)
NTRZANA Vi 9% e
tot 1971 0
Ve Y e o Ju 0% e

We discretize the spatial coordinates by adopting the standard Ye¢2jridve show a unit cell of this grid in Fig. 3. In
analogy to the systems in 1D and 2D, we assign the EM fields to the lattice points such that the boundary conditfns Eq.
are automatically satisfied. The elements of the vedtér,j,k,t) are given by

[ Xu(i,j k)= Halij k,t), i even,j oddk odd
Xy (i, kt) =i j Hy(i,j k1), i odd,j evenk odd
Xo(i,i, k) =i jH(i,i.k,t), i odd,j oddkeven
Yo(ivi k) =vei | Ex(i i kit), iodd,jevenkever
Yy(i,j k)= kE,(i,j.k,t), ievenjoddkeven
Y (i,j. k)= 1ei j kEq(i,j k1), ievenjevenkodd

w(i,j,kt)= (50)

—

for the origin of the coordinate systenn, f,k)=(0,0,0) at where the superscriptx), (y), and(2) refer to the deriva-
the center of the unit cell shown in Fig. 3. The number oftive with respect to, y, andz, respectively,
lattice points in thex, y, andz direction will be denoted by

ny, Ny, andn, respectively. As before, these numbers are €+ 1k8 s 1)+ 1k B+ 1)+ 1k [+ 1K
assumed to be odd. HOO(j k)= + e CRE TR
Discretization of the differential operators that appear in ONE +1j+1kMi,j+1k

Eq. (49) yields Eq.(7) in the form T -
Gk 18 k1T G k18 ke

ONE 41k 1M,j k+1

T T
Cr1j+1kQ42j+1k  G+2j+1k8+1j+1k

Ny

—\P(t) HW (t E 2y EZ’[H<X><i,j,k)+H<V><i,j,k>
=1 k=1

+HO( k)W (1), (51 SVEi 1 1+ 1kMi+ 2+ 1k

T T
Cit1jkr18+2) k17 G r2)k+18+1 k+1

Hy
H - - 1
/E/ SVEI L1kt 1M+ 2 k1
7 X
Hy (52
4
< [P and the expressions fad)(i,j,k) and H®(i,j,k) follow
H, " , Y from Eq. (52) by symmetry. Note that we use the triple
(i,j,k) to label then,nyn, unit vectorss, ; .
H .H/ In complete analogy with the 1D and 2D cases, we split
Y X Eq. (52) [as well asHY)(i,j,k) and H®(i,j,k)] into two
5 > parts and obtain for the first-order approximationt¢r)
U l( 7_) — eTH (1X)eTH(ZX)eTH(ly)eTH(Zy)eTH(lZ)eTH(ZZ), (53)
FIG. 3. Unit cell of the Yee grid. where, for instance,
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H(lZ) _ IZ ' (54)

1=

Note that each contribution to E¢54) acts on a different intrinsic parallelism in this class of algorithms. In principle,
pair of elements of¥ (t). Hence, each of the matrix expo- the (h—1)/2 matrix-vector multiplications that implement
nentials in Eq.(53) acts on one quarter of all the lattice e™'1 or ez may be done in parallel.

points. Performing the time-step operation, Egf) involves In the absence of external curreiig®e belov, updating
only two sweeps over all lattice points. the EM field values of a 3D system using the the Yee algo-

By construction, the algorithm defined by E§3) is un-  rithm requires six arithmetic operatiofsee Eq(33) in Ref.
conditionally stable and so are the higher-order algorithm$3]] whereas the second-order algorittup(7) requires 33
defined byU,(7) andU,(7). Each contribution to, e.g., Eq. arithmetic operations. For 1D and 2D problems, the ratio is
(54) is of the form Eq.35) and hence its matrix exponential 9/4 and 21/6, respectively. Thus, in terms of CPU time, the
may be calculated in exactly the same manner as in the 1Price paid for the unconditional stability of the algorithms is
case[see Eq(40)]. The divergence of the EM fields in 3D is, not that much and for some applicatio(see below may
for the same reason as in the 2D case, not conserved butell be worth paying.
decreases as‘. An important aspect that we have not yet discussed is the
effect of the discretization of space on the accuracy of the
numerical results. Both conditional Yee-type algorithms and
unconditionally stable algorithmd(7), U,(7), andU4(7)

The notation required to write down the algorithms in suffer from numerical dispersiofsee Ref[3], Chap. 4, for
mathematical form might give the impression that these alan in-depth discussionSimple methods to reduce numerical
gorithms are difficult to program. Actually, that is not the dispersion are taking a finer mesh or employing more accu-
case, on the contrary. Recall that the first-order algorithnrate finite-difference approximations for the spatial derivates
U,(7) is all we need to program: As explained in Sec. lll, [3]. The former obviously may be used here t@or the
more accurate schemes may be implemented without extrsimulations discussed below, we used a mesh size that yields
programming. Let us consider the algorithm for the case okufficiently accurate results for the present purppsEsere
1D. For 2D and 3D, we simply repeat the steps describedre no fundamental nor practical problems to incorporate the
below two, and three times, respectively. We have latter method in the Suzuki-product-formula approach

N [17,19. However, as the emphasis of the present paper is on
M tH , T T the construction of unconditionally stable algorithms, we rel-
Uy (r)=eeme= [ i[[l X Bi+1i(88+17 6418 )]] egate a presentation of these technical, but for applications,
important extensions to future publications.

D. Implementation: Summary

n
X{H’exp[/siﬂ,i+2<a+1q12—a+2a11>]], (55)
=1 V. DATA ANALYSIS

Time-domain algorithms obviously yield the time devel-

where we used the block-diagonal structureHyf and H, 4 ; e
: : opment of the EM fields. The scatteriftgansmissionof the
(see Egs(37) and (38)) to obtain an exact expression for EM fields from(through objects is one of the main applica-

U,(7) in terms of an ordered product of matrix exponentials.,. f this techniqud3]. O his t
Each of these matrix exponentials only operates on a pair Q ons ot this techniqugs. LUne approach IS 1o prepare an

elements of¥’ (t) and leaves other elements intact. The indi-mitial state'w(0) of the_ EM fields, propagate the fields in
ces of each of these pairs are given by the subscripgsanfl time for a number .Of time steps, and analyzg the scattergd
&', From Eq.(55), it is then clear what the program should and/or transmitted fields. Another, more realistic, approach is
do: Make loops over with stride two. For each pick a pair LO use a current sourckt)=J(r.t). Instead of Eq(8), we
of elements from (t) according to the subscripts efand ave
e’, compute(or recall from memory the elements of the
plane rotatiorfsee Eq(40)], perform the plane rotation, i.e., J
multiply the 2x2 matrices and the vectors of length two, S Y(O=HY (1) - T, (56)
and overwrite the same two elements.

It also follows immediately that performing a time step
with algorithms based on Eq55) takesO(K) plane rota- where W (t)=[X(t),Y(t)]" and J(t)=[0,J(t) T represents
tions whereK is the total number of elements of the vector the source term. The formal solution of E§6) is given by
W(t) (which is less or equal to the number of grid pojnts
This renders the algorithm efficient: The number of opera- .
tions to complete one time step scales linearly with the num- W (t)=e"p(0)— J et WH 7u)du, (57)
ber of grid points. Also, note that there is a high degree of 0
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showing that we may simply reuse one of the uncondition- The information on the eigenvalues dfl, obtained
ally stable algorithms to compute the second term in Egthrough the use of a time-domain method is intimately re-
(57). In practice, for a time-step, we update¥(t) accord- lated to the unconditional stability of the latter. Aét) is
ing to band-limited, with frequenciesE; in the interval
[—=IIH|[,IIH||] (where||H|| denotes the largest eigenvalue of H
in absolute valug it follows from Nyquist's sampling theo-
rem that it is sufficient to samplé(t) at regular intervals
At=m/|H]. If N denotes the number of data points used to
A standard quadrature formula may be used to compute theample f(t), frequenciesE; that differ less thanAE
integral overu [24]. When a current source is present, we =7/NAt are indistinguishablégalthough they will all con-
take as the initial conditiol’(0)=0. tribute to the DO% Extending the length of the time inte-
Time-domain algorithms may also be used to compute th@ration by a factor of two increases the resolution in fre-
eigenvalues oH, the discretized form of{. In generalH is  quency by a factor of two. This is a rather efficient and
a (very) large matrix, usually too large to be stored in flexible procedure to trade accuracy for computational re-
memory. If only a few, well-separated eigenvaluesofire ~ sources. One may object that by integrating the TDME over
required, sparse-matrix techniques can be used to compulenger and longer timegarger and largeN) the error on
these eigenvaluesl2,27. However, if one is interested in "W (t) will increase, possibly leading to no gain in accuracy at
global features of the distribution of eigenvalues, i.e., if weall. However, it has been shown rigorou$6] that the error
want to determineall eigenvalues, time-domain algorithms on the eigenvalues ¢ vanishes as?/N if one uses uncon-
offer several advantages. In fact, they are at the heart dlitionally stable algorithms based on the second-order Su-
so-called “fast” algorithms to compute the density of stateszuki product formula. The proof given in R¢26] applies to
(DOS) and other related quantiti¢®8—33. The basic idea the fourth-order algorithnu,(7) as well, the exponent of
of this approach was laid out by Albe al.[28] who used it  being four instead of two.
to compute the DOS of models for one electron moving in a In some cases, the underlying differential equations and

t+7
\P(t+¢)=efﬂqf(t)—f et WH u)du.  (58)
t

disordered alloy. boundary conditions only specify the solution up to a non-
Denoting the (unknowr) eigenvalues and(unknown zero constant. In the calculation of the DOS, the presence of
eigenvectors oH by iE; and ¢;, respectively, we have such a constant contribution shows up as a peak at zero fre-

quency. In principle, this peak may be removed by modify-

(P(O)|W(t)) (¥(0)|eH¥(0)) ing the random initial state but as the origin of this irrelevant

f(t)= (W (0)[¥(0)) = (W(0)[W(0)) artifact is understood, there is little reason for doing this.
To summarize, solving the TDME by theh-order Su-
“ E. (V(0)|)|? zuki product-formula algorithnlJ,(7) guarantees that the
221 € 'W, (59 accuracy with which the eigenvalues bf may be deter-

mined vanishes as*/N, whereN is the number of points

whereK (K=n for 1D, K=3n,n,/4 for 2D, K =3n,n,n /4 used to samplé(t) [see Eq(59)]

for 3D) is the dimension of the vector space on whiitlacts.

From Eq.(59), it follows immediately that the Fourier trans- VI. SIMULATION RESULTS
form of f(t) contains the information on all eigenvalues for
which [(¥(0)| ¢;)|>0. Using independent random numbers
to initialize the elements o¥ (0), it may beshown that the
density of stateD(w) is given by[26]

In this section, we present simulation results for several
physical systems that we selected as examples to test our
algorithms. For numerical purposes, it is expedient to use
dimensionless quantities. We will denote the unit of length

e by \ and take the velocity of light in vacuumas the unit of
D(w)=af e (D) dt, (60)  Velocity. Then time and frequency are measured in units of
—o N c andc/\, respectively. The permittivity and permeabil-
o ity w are measured in units of their corresponding values in
wherea is an irrelevant constant factor am¢t) is the aver- vacuum.
age of f(t) over different realizations of the random initial
state. It is often expedient to consider, in additioriw), A. One dimension

he integr nsity of . . . . .
the integrated density of states Let us first consider an empty, one-dimensional cavity

with constant permeabilityy=1 and constant permittivity

N(w)zf D(u)du. (61 e=1. The eigenfrequencies for a system of lengtrare
- given by[1]
The statistical error ofi(t) vanishes as 1/SK whereSis the k
number of statistically independent samplesiof0) [26]. Wk (62
The fact that the statistical error decreases with the number
of lattice pointskK/2 gives a tremendous boost to the effi- wherek=0,1,2 ..., labels the different EM modes. In Fig.
ciency of the method. 4, we show the density of staté®(w)| obtained according
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| «3rd
0.01
JUVY I A YO N W N NN O N N b
§ 10°¢ FIG. 6. Structure of a one-dimensional stack of dielectric
= material.
Q 10"
In contrast, the unconditional stability of algorithms based
107 on the Suzuki product formula implies tha(t) is constant
B in time. The solid line in Fig. 5 shows that this is indeed the
10 K) case.
0™ NI W, NI/ ] As a second example, we consider a one-dimensional
0 1 2 3 ‘; s stack of dielectric material, schematically shown in Fig. 6.

® The material indices of refraction, denoted by and n,,

FIG. 4. Density of states of a one-dimensional cavity of Iengthglve fise to a spatially varying permittivity

L=10. Solid line: U,(7) algorithm; dashed line: standard Yee ni’ if x moda+b)<a

algorithm. e(x (63

- n3, if xmoda+b)>a’

to the procedure described in Sec. V, using the second-ordgr oo icular, we consider a structure that is known as the

aIgoritthz(T)_ (solid line) and the_standard Ye_e algorithm guarter-wave stack and is characterized by the relation
[2,3] (dashed ling In both calculations, the lattice spacing

6=0.1 and the time step=0.01. Each curve shown in Fig. ni;a=n,b, (64)
4 is the average ob= 10 statistically independent runs, tak-

ing N=16 384 samples of(t) [see Eq.59)] at time inter-  such that the length of the optical path in the two layers is the
vals At=0.1. The peaks in Fig. 4 correspond to the exactsame. The density of states exhibits a gap centered around
frequenciegsee Eq(62)] of the 1D cavity. The background the midgap frequencyl,34]

signal produced by the Yee algorithf#,3] is at least eight

orders of magnitude larger than that generatetlbfr). The 7

time step operator of the Yee algorithm is not an orthogonal wO—ana. (69
matrix and hence its eigenvalues do not necessarily lie on the

unit circle. This is related to the fact that the Yee algorithm isin Fig. 7, we show the density of statB% ) as obtained by
conditionally stabld 3] and leads to fluctuations in the en- U,(7).

ergy densityw(t), as illustrated by the dashed line in Fig. 5,  Also for these calculations, the lattice spaci#tg 0.1 and

and to negative values of the Fourier transform fgf) the time stepr=0.01. Each curve in Fig. 7 is the average of
[which is the reason why Fig. 4 show®(w)| instead of S=100 statistically independent runs, taking=16 384
D(w)].

!
0.01
10
=N
— 1\8, 10°
=
¥ Q
= 10°
N
B 10"
10‘11 w
10" - - -
0 05 1 15 . 2
)

FIG. 7. Density of states, as obtained by thg(7) algorithm,

FIG. 5. Normalized total energy density as a function of time forof a quarter-wave stack of length=24.9 and with parameters
the same physical system as in Fig. 4. Solid lig(7); dashed n1=1, n;=4, a=0.8, b=0.2 (see Fig. § as a function of the
line: standard Yee algorithm. rescaled frequenc§o=w/w0.
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0 . . ;
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Filling fraction
FIG. 8. Density of states, as obtained by the standard Yee algo-
rithm, of a quarter-wave stack of length=24.9 and with param- FIG. 10. Absolute photonic band gaps of a dielectric material
etersn;=1, n,=4, a=0.8,b=0.2 (see Fig. as a function of the (¢=11.4) pierced by air-filled cylinders. The largest overlap of the
rescaled frequency=w/w,. Note the difference in the vertical TM- and TE-mode gaps occurs at a filling fraction of approximately
scale between Figs. 7 and 8.

B. Two dimensions
samples of (t) [see Eq(59)] at time intervalsAt=0.1. Note

that the system length and the(odd number of lattice ation of EM fields in a range of frequencies that is charac-

points have to be chosen judisciously, otherwise the SpeGgyistic for its structurd35]. A PBG is called absolute if it
trum will exhibit artifacts(impurity states due to one extra oyists for any wave vector of the EM fields. The most com-
grid poiny. _ _ mon method used to compute a PBG employs a plane-wave

In Fig. 8, we show the density of stat®{w) as obtained  expansion to solve the time-independent Maxwell equations
by the Yee algorithm. Note that the spectral weight may takgsee, e.g.[36]). This kind of PBG calculation requires a
negative values, an unphysical feature that is a manifestatioRourier transform of the unit cell of the dielectric structure
of the fact that the energy of the EM field is not conserved.hat is for simplicity considered to be periodic.

In Fig. 9, we present the integrated density of st&tés) With our time-domain algorithm, the existence of a PBG
for both theU,(7) and Yee algorithm. The result of the may be demonstrated with relative ease. It suffices to com-
U,(7) algorithm is in excellent agreement with the analytical pute the spectrum of such a dielectric structure with a ran-
calculation[34]. dom initial state. If the spectrum is gapless there is no need

to make additional runs. If there is a signature of a gap, it

A photonic band gapPBG) material prohibits the propa-

0.12 o a .. if"m_
@ aep OF+vd
o1 w=150 (DO ® @) &<
AN 2 A
008 | © o0 . , .
@ ® q@ &7 T T
# o | R AT AT LD
0=189 | @ -.- .‘6[;: 4 4 4
004 1 00, = ® "¢ 44
e 00 @ s 4
0.02 1 ®@.: ocpo@eor ¥ 7 1
T, a000 @0 . 5 A
: ...-:...&"}‘ ?’"‘g
0 ' ' ' ®=250 |00 ee@ssbh & D4
0 0.5 1 1.5 ~ 2 ® esdoe-@p® ., .
@ Corvo00 = @@ G4
e . ceB0BO: & &

FIG. 9. Integrated density of states as function of the rescaled

frequency2>=w/wo, for the same system as in Figs. 7 and 8. Solid  FIG. 11. Snapshot of the intensiEyg att=102.4. Dimensions
line: U,(7) algorithm; dashed line: standard Yee algorithm; dashed-of the system: 38 12.1; point source located &,6) (see Fig. 2,
dotted line: analytical result. emitting radiation with frequencwy.
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FIG. 12. Density of states of a sample of photonic band-gap
material used in Fig. 11. Size of the sample:>1R.1; filling fac-
tor: 0.77.

may be confirmed and refined by making more runs. As an
example, we consider a system consisting of a dielectric ma-
terial pierced by air-filled cylinder§37]. The geometry is
taken to be a square parallelepiped of dize45.1 that is
infinitely extended in the direction and hence is effectively
two dimensional. In Fig. 10, we present the results for the
PBGs that we obtained for both the transverse magnetic
(TM) and transverse electr{@E) modes as a function of the
filling fraction. The data have been generated by means of
the algorithmU ,(7) with a mesh siz&=0.1 and a time step
7=0.1. To compute the DOS, we usld= 32 768 samples of
f(t) at time intervalsAt=0.1. Only a single random initial
state for the EM fields has been used. Replacing the free-end £ 13, intensity of the EM fields in and outside a cubic sample
boundary conditions Ed5) by periodic boundary conditions o gielectric material containing:33x 3 spherical voids, placed in
(results not shownonly leads to minor changes in the loca- an empty cavity. The size of the cavity is 12.12.1x 12.1, the size
tions of PBG’s. The results shown in Fig. 10 are in goodof the sample is 9% 9.1x 9.1, the source is located at (5.6,5.5,6),
agreement with those presented in R&f]. the slices shown are at=6, the fourth-order algorithr ,(7) was

In Fig. 11, we study the propagation of time-dependeniused with a time step=0.075 and mesh sizé=0.1.(a): Intensity
EM fields through the above-described PBG material conatt=0.3. The radius of the empty spheres is 11): Intensity at
sisting of twelve unit cells. The PBG material is placed in at=384. Same system as (). The permittivity of the dielectric
cavity that contains a point souréecated to the left of the materials =1.5.(c): Intensity att=384. Same system as (). The
PBG materigl that emits radiation with frequency. The  permittivity of the dielectric materiak=5. (A): Intensity att
TDME were solved by th&J,(7) algorithm with§=0.1 and  =0.3. The radius of the empty spheres is 1B): Intensity att
r=0.01 in the presence of a current source according to Eq- 384. Same system as (). The permittivity of the dielectric

(58). The snapshots show the absolute interﬁﬁty)f the TM materiale =1.5. (C): Intensity att=384. Same system as (B).
The permittivity of the dielectric material=5.

TABLE I. Frequencies of the eigenmodes of a cubic cavity of ode att=102.4. The computed DOS of the PBG material
sizeL=>5. Simulation: values determined from DOS data generate S given in Fig. 12. We used the,(7) algorithm with &

usingU,(7) with parameter valueé=0.2, 7=0.01, N=4096, and —0.1, 7=0.1, and tookN=32768 samples of(t) at time

At=0.1. intervalsAt=0.1 in this computation. The presence or ab-
(k.|,m) O Simulation sence (_)f gaps in the DO_S Iead_s_ to qu_alitative chgnges in the
transmitted(and reflectedlintensities. Since a gap is present
1,1,0 0.889 0.889 in the DOS atw=1.89, radiation with this frequency does
1,1,1 1.088 1.089 not easily propagate through tftéin slice of PBG material.
2,10 1.405 1.404 On the other hand, the DOS has no gap®atl.50 andw
2,1,1 1.539 1.534 =2.50, so that propagation of EM fields through the PBG
2,2,0 1.777 1.771 material should be possible, as is indeed confirmed by

Fig. 11.
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C. Three dimensions two-, and three-dimensional systems with spatially varying

We first compute the modes of a simple cubic cavity ofPEMittivity and permeability,

sizeL. The eigenfrequencies are given (2) the use of a real-spad¥ee-like) grid,
g g g i) (3) the order of accuracy in the time step may be system-

wm= 7L WK+ 12+ m?, (66)  atically increased without affecting the unconditional stabil-
ity (in this paper, we limited ourselves to second- and fourth-
where k, I, and m are non-negative integers. Eigenmodesorder schemes
corresponding tok,0,0), (0l,0), and (0,0n) are incompat- (4) the exact conservation of the energy density of the
ible with the boundary conditions Ed@5). In Table |, we electromagnetic field,
present the frequencies of the five lowest eigenmodes of a (5) easy to implement in practice.
cubic cavity forL=>5. We have presented results for the density of states of
The agreement with the theoretical values is satisfactorysimple cavities and photonic band-gap materials. We demon-
Note that as the frequency increases, the deviation from thstrated that mathematical properties of the algorithms are
exact result increases. This is due to ttemcond-ordgr such that they may be used to compute the density of states
finite-difference representation of the spatial derivatives orwith very good accuracylimited by the accuracy of the spa-
the grid and is a manifestation of the numerical dispersiortial discretization usedWe gave some illustrative examples
mentioned earlier. of scattering of waves by photonic band-gap systems. These
As a second 3D example, we consider the emission of thexamples also served to show that our algorithms reproduce
EM radiation from a point source located inside dielectricknown results. The first feature opens up possibilities for
material containing spherical voids. A projection of the ma-applications to left-handed materidl38,39. We intend to
terial onto thex—y (or y—z or x—2z) plane is shown in the report on this subject in the near future.
top panels of Fig. 13. A point source is placed inside the Although we believe there is little room to improve upon
center void to mimic an atom or molecule that emits a phothe time-integration scheme itseéxcept for using higher-
ton. The remaining panels in Fig. 13 show snapshots of therder product formulgsfor some applications it will be nec-
light intensity after an elapsed time=384, for different essary to use a better spatial discretization than the most
sizes of the voids and different values of the permittivity. If simple one employed in this paper. There is no fundamental
the latter is larger than five, the images no longer depend oproblem to extend our approach in this direction and we will
the value of the permittivity(results not shown For ¢ report on this issue and its impact on the numerical disper-
=1.5 [panels(b) and (B)] the EM field easily propagates sion in a future publication.
through the sample and leaves the sample from all sides. The rigorous unconditional stability of the algorithms that
This is not the case foe=5: Radiation may leave the we proposed in this paper is a direct consequence of adopt-
sample only at those locations where there is very little or ndng a Suzuki-product-formula approach that preserves the
dielectric material left. In other words, light emerges from fundamental symmetries of the physical system. In view of
the sample in well-defined directions only. Clearly, muchthe generic character of this methodology, the approach pur-
more work is necessary to study the propagation of EM rasued in the present paper should be useful for constructing
diation in this system as a function of the material param-unconditionally stable algorithms that solve the equations
eters, the system size, and the frequency of the emittetbr, e.g., sound, seismic and elastic waves as well.
photons.
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