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Efficient scheme for numerical simulations of the spin-bath decoherence
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We demonstrate that the Chebyshev expansion method is a very efficient numerical tool for studying
spin-bath decoherence of quantum systems. We consider two typical problems arising in studying decoherence
of quantum systems consisting of a few coupled spins:~i! determining the pointer states of the system and~ii !
determining the temporal decay of quantum oscillations. As our results demonstrate, for determining the
pointer states, the Chebyshev-based scheme is at least a factor of 8 faster than existing algorithms based on the
Suzuki-Trotter decomposition. For problems of the second type, the Chebyshev-based approach is 3–4 times
faster than the Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide spectrum of
systems, with different spin baths and different Hamiltonians.
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I. INTRODUCTION

Recently, a great deal of attention has been devoted to
study of quantum computation@1,2#. For many physical sys
tems, basic quantum operations needed for implementa
of quantum gates have been demonstrated. To be practic
quantum computer should contain a large number of qu
~some estimates give up to 106 qubits @3#! and be able to
perform many hundreds of quantum gate operations. H
ever, these requirements are not easy to satisfy in exp
ments. A real two-state quantum system is different from
ideal qubit. The system interacts with its environment, a
this leads to a loss of phase relations between different s
of the quantum computer~decoherence! @4–7#, causing rapid
accumulation of errors. Detailed theoretical understanding
the decoherence process is needed to prevent this.

More generally, decoherence is an interesting many-b
quantum phenomenon which is fundamental for many ar
of quantum mechanics, quantum measurement theory,
@4,5#. It also plays an important role in solid state syste
and might suppress quantum tunneling of defects in crys
@7# and spin tunneling in magnetic molecules and nanop
ticles @8,9#, or destroy the Kondo effect in a dissipationle
manner@10#. That is, decoherence in many physical syste
can have experimentally detectable~and sometimes consid
erable! consequences, and extensive theoretical studies o
coherence are needed to understand the behavior of t
systems.

Formally speaking, decoherence is a dynamical deve
ment of quantum correlations~entanglement! between the
central system and its environment. Let us assume that
tially the central system is in the stateuc0& and the environ-
ment is in the stateux0&, so that the state of the compoun
system ~central system plus bath! is uC(t50)&5uc0&
^ ux0&. In the course of dynamical evolution, the direct pro
uct structure of the stateuC(t)& is no longer conserved. If we
need to study only the properties of the central system,
can consider the reduced density matrix of the central s
tem, i.e., the matrixrS(t)5TrBuC(t)&^C(t)u, where TrB
means tracing over the environmental degrees of freed
Initially, rS(0)5uc0&^c0u, the system is in a pure state, an
1063-651X/2003/67~5!/056702~7!/$20.00 67 0567
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its density matrix is a projector, i.e.,rS
2(0)5rS(0). At

t.0, this property is lost, and the system appears in a mi
state. It has been shown that, even for relatively small in
grable and nonintegrable systems, the mixing is sufficient
the time-averaged, quantum dynamical properties of the s
system to agree with their statistical mechanics values@11#.
Diagonalizing the density matrixrS , we can find the~instan-
taneous! states of the systemuqi(t)& and ~instantaneous! oc-
cupation numbers of these stateswi(t). It is generally as-
sumed~and is true for all cases we know! that in ‘‘regular’’
situations, the statesuqi(t)& quickly relax to some limiting
statesupi&, called ‘‘pointer states.’’ This process~decoher-
ence! is, in most cases, much faster than the relaxation of
occupation numberswi(t) to their limiting values~which
correspond to thermal equilibrium of the system with t
bath!.

The theoretical description of decoherence, i.e., a desc
tion of the evolution of the central system from its initi
pure statec0 to the final mixed state, and finding the fin
pointer statesupi&, is a very difficult problem of quantum
many-body theory. Some simple models can be solved a
lytically, for some more complex models different approx
mations can be employed, such as the Markov approxima
for the bath, which assumes that the memory effects in
bath dynamics are negligible. The special case of the e
ronment consisting of uncoupled oscillators, the so-cal
boson bath, is also rather well understood theoretically. B
although the model of the boson bath is applicable for
scription of a large number of possible types of environme
~phonons, photons, conduction electrons, etc.! @7#, it is not
universal.

A particularly important case where the boson bath
scription is inapplicable is the decoherence caused by an
vironment made of spins, e.g., nuclear spins or impu
spins~the so-called spin-bath environment!. Similarly, deco-
herence caused by some other types of quantum two-l
systems can be described in terms of the spin bath. Ana
cal studies of the spin-bath decoherence are difficult, and
spin-bath decoherence of many-body systems is practic
unexplored yet. In this situation, numerical modeling of sp
bath decoherence becomes an invaluable research tool.
©2003 The American Physical Society02-1
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The most direct approach to studying spin-bath decoh
ence is to compute the dynamical evolution of the wh
compound system by directly solving the time-depend
Schrödinger equation of the model system. Even for a mo
est number of spins, say 20, such calculations require c
siderable computational resources, in particular becaus
study decoherence we have to follow the dynamical evo
tion of the system over substantial periods of time. Theref
it is worthwhile to explore ways to significantly improve th
efficiency of these simulations.

In this paper, we apply the Chebyshev expansion met
to simulate models for the spin-bath decoherence. T
method has been widely applied before@12–18# to study the
dynamics of large quantum systems, but, to our knowled
has never been used for simulations of systems made of l
numbers of coupled quantum spins. We show that for rea
tic problems and typical values of parameters this metho
a very efficient tool. We compare this approach with alg
rithms based on the Suzuki-Trotter decomposition@21# and
the short-time iterative Lanczos~SIL! method@14,22,23#. We
find that for a large class of problems relevant for decoh
ence studies, the Chebyshev polynomial expansion me
gives a significant increase in the simulation speed, so
times up to a factor of 8, in comparison with algorithm
@19,20# based on Suzuki-Trotter decompositions@21#. We il-
lustrate this point by test examples that we have encount
in our previous studies of the dynamics of spin-bath de
herence. We also find that the short-time iterative Lanc
method is significantly slower than both Suzuki-Trotter a
Chebyshev’s methods.

The remainder of the paper is organized as follows.
Sec. II, we describe the model and the approaches use
the decoherence simulations. In Sec. III, we describe the
cific details of application of Chebyshev’s expansion meth
to the spin-bath decoherence simulations. In Sec. IV,
present the results of our test simulations. A brief summar
given in the Sec. V.

II. SIMULATIONS OF THE SPIN-BATH DECOHERENCE:
THE MODEL AND NUMERICAL APPROACHES

We focus on decoherence in quantum systems of sev
coupled spins. This type of quantum system is of particu
interest for quantum computations, since a qubit can be
resented as a quantum spin 1/2, and qubit-based qua
computation is, in fact, the controlled dynamics of a syst
made of many spins 1/2. Such systems are also of prim
interest for studying many solid state problems, since
electron is a particle with spin 1/2, and its orbital degrees
freedom are often irrelevant. Thus, a system made of sev
coupled spins 1/2 is a good model for investigating a la
class of important problems both in quantum computing a
in solid state theory. The approach described below can
easily extended to arbitrary spin values, but discussion
simulations with arbitrary spins is beyond the scope of t
paper.

We consider the following class of models. There is
central system made ofM coupled spinsSm (Sm51/2, m
51, . . . ,M ). The spinsSm interact with a bath consisting o
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N environmental spinsIn (I n51/2, n51, . . . ,N). The
Hamiltonian governing behavior of the whole ‘‘compound
system~the central spinsSm plus the bath spinsIn) is

H5H01V5HS1HB1V, ~1!

whereHS andHB are the ‘‘bare’’ Hamiltonians of the centra
system and the bath, respectively, andV is the system-bath
interaction. Below, we present simulation results for the f
lowing general forms of the Hamiltonians:

HS5 (
^m,m8&

(
a5x,y,z

Jmm8
a Sm

a Sm8
a

1(
m

(
a5x,y,z

Hm
a Sm

a ,

HB5 (
^n,n8&

(
a5x,y,z

Gnn8
a I n

aI n8
a

1(
n

(
a5x,y,z

Hn
aI n

a ,

V5 (
^m,n&

(
a5x,y,z

Amn
a Sm

a I n
a . ~2!

We assume that the HamiltonianH does not explicitly de-
pend on time, i.e., all exchange interaction constantsJ, G,
and A, and all external magnetic fieldsH are constant in
time. Although this makes it impossible to model a tim
dependent quantum gate operation, the investigation of
fundamental properties of spin-bath decoherence is not s
ously affected by this requirement. The dynamics of t
model ~1! is already too complex to be studied analytical
and for generalH, when noa priori knowledge is available,
the only option is to solve the time-dependent Schro¨dinger
equation of the whole compound system numerically. T
is, we choose some basis states for the Hilbert space o
compound system~the simplest choice is the direct produ
of the statesu↑& andu↓& for each spinSm , In). We represent
an initial state of the compound systemC0 as a vector in this
basis set, and the HamiltonianH is represented as a matrix
so that the Schro¨dinger equation

idC~ t !/dt5HC~ t ! ~3!

is a system of first-order ordinary differential equations w
the initial conditionC(t50)5C0.

The length of the vectorC is 2M1N; for typical values
M52 andN520, an exact solution of about 43106 differ-
ential equations becomes a serious task. Moreover, the in
action between the central spins is often much bigger t
the coupling with the environment or coupling between t
bath spins, so that the system~3! is often stiff. Simple meth-
ods, e.g., predictor-corrector schemes, perform rather po
in this case, and very small integration steps are neede
obtain a reliable solution.

Algorithms based on the Suzuki-Trotter decompositi
@19,20# can solve Eq.~3! for sufficiently long times~essential
to determine the pointer states of the central system!. They
can handle Hamiltonians with explicit dependence on tim
are unconditionally stable, exactly preserve the unitarity
quantum evolution, and the time step can be made more
an order of magnitude bigger than in the typical predict
corrector method. Moreover, as our experience shows, f
2-2
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scheme based on the Suzuki-Trotter decomposition, a l
part of the total numerical error is accumulated in the to
phase of the wave functionuC(t)&, and does not affect an
measurable physical quantities~observables!. However, for
reasonably large systems, this scheme is still slow, and s
lations of decoherence last for up to 200 CPU hours on a
3800 supercomputer. The problem of long simulation tim
becomes especially prominent if we need to find the poin
states, or if the dynamics of the central system is much fa
than the decoherence rate. We found that in these circ
stances the method based on Chebyshev’s expansion
comes a very efficient tool to study problems of decoh
ence.

Along with the Chebyshev expansion method, the sh
iterative Lanczos approach@14,22,23#, which is also based
on the power-series expansion of the evolution operator,
found to be efficient for many similar problems of quantu
chemistry. We have tested this method, but our results
negative. The low-order SIL method~with a small number of
Lanczos iterations per step, usually less than 25! gives an
unacceptable error, even for very short time steps. On
other hand, the high-order SIL method~with more than 25
Lanczos iterations per step! is noticeably slower than the
approach based on Chebyshev’s expansion. We believe
the poor performance of the SIL method originates from
fact that for a small number of Lanczos iterations~i.e., for
the low-order SIL method!, only a very limited part of the
spectrum is described correctly. For a typical problem wh
the SIL method is known to be very effective~e.g., wave
packet propagation!, most of the relevant basis states ha
energy close to the energy of a wave packet. Only th
relevant states should be accurately described, while an
curate description of the whole energy spectrum is excess
In contrast, in a typical spin-bath decoherence problem
large number of bath states with very different energies
involved in the decoherence process. Correspondingl
large part of the spectrum should be taken into account,
the high-order SIL integrator should be employed, reduc
the performance of the SIL method.

Significant speed-up can be achieved by employing
radically different approach, by using an approximate fo
of the wave function of the total system~central system plus
bath!. In particular, the multiconfigurational time-depende
Hartree~MCTDH! method@24–26# is known to be very ef-
ficient, e.g., for modeling boson-bath decoherence. T
MCTDH approach uses an approximate representation o
wave function, based on the assumption that the wave fu
tion of the total system can be written as a superposition
relatively small number of ‘‘configurations,’’ i.e., products o
time-varying spin wave functions. The MCTDH method
the method of choice when the dimensionality of a sing
particle Hilbert space is large, and the multiparticle quant
correlations are associated with a superposition of a sm
number of products of single-particle wave functions. T
problems considered in our paper present an opposite s
tion. The bath consists of many spins 1/2, i.e., we have o
two orbitals per particle~spin!, and the single-particle evolu
tion is very simple, while the complex many-particle qua
tum correlations are responsible for most of the physical
05670
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fects ~i.e., the number of important single-spin wav
functions products is very large!. It is probable that many
problems of spin-bath decoherence can be efficiently trea
by the MCTDH method, but the corresponding study
quires a separate extensive research effort, which is bey
the framework of our paper.

III. CHEBYSHEV’S METHOD FOR SPIN-BATH
DECOHERENCE

For a time-independent Hamiltonian, the solution of E
~3! can be formally written as

C~ t !5exp~2 i tH!C05U~ t !C0 , ~4!

whereU(t)5exp(2itH) is the evolution operator. An effec
tive way @12–18# of calculation of the exponent of a larg
matrix H is to expand it in a series of the Chebyshev po
nomials of the operatorH. Below, we describe the specifi
details of application of the Chebyshev method to spin-b
decoherence simulations.

The Chebyshev polynomialsTk(x)5cos(karccosx) are
defined forxP@21,1#. Thus, the HamiltonianH first should
be rescaled by the factorE0 ~the range of values of the sys
tem’s energy! and shifted byEc ~median value of the sys
tem’s energy!:

Ec5
1

2
~Emax1Emin!, E05Emax2Emin ,

Emin5min^H&5 min
^FuF&51

^FuHuF&,

Emax5max̂ H&5 max
^FuF&51

^FuHuF&. ~5!

In this way, the rescaled operatorG52(H2Ec)/E0 is also
bounded by21 and 1: 21<^G&<1, i.e., 21<^FuGuF&
<1 for any state vectoruF& such that̂ FuF&51. For spin
systems, the Hamiltonian is bounded both from above
from below, and the operatorG can be found.

In the specific case considered in this paper, when
Hamiltonian H is defined by Eq. ~2!, we take E0
52 max(uEminu,uEmaxu). For this choice,2E0/2<^H&<E0/2.
Correspondingly, we can takeEc50; this choice is legiti-
mate, and, although it might be not optimal for some pro
lems, it still results in very good performance of Cheb
shev’s method~see below!. Since max̂H&5iHi is the norm
of the Hamiltonian, the value ofE0 can be estimated usin
Cauchy’s inequality:E0/2<iHSi1iHBi1iVi . Similarly,

iHSi< (
^m,m8&

(
a5x,y,z

uJmm8
a uiSm

a iiSm8
a i

1(
m

(
a5x,y,z

uHm
a uiSm

a i

5 (
^m,m8&

(
a5x,y,z

1

4
uJmm8

a u1(
m

(
a5x,y,z

1

2
uHm

a u, ~6!
2-3
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and iHBi and iV i can be estimated in the same manner.
a result, we have an estimateE0<E1, where

E15 (
^m,m8&

(
a5x,y,z

1

2
uJmm8

a u1 (
^n,n8&

1

2
uGnn8

a u1 (
^m,n&

1

2
uAmn

a u

1(
m

uHm
a u1(

n
uHn

au, ~7!

and the operatorG can be defined asG52H/E1, which sat-
isfies the inequality21<^G&<1.

The Chebyshev expansion of the evolution operatorU(t)
@see Eq.~4!# now looks like

U~ t !5exp~2 i tG!5 (
k50

`

ckTk~G!, ~8!

wheret5E1t/2. The expansion coefficientsck can be calcu-
lated using the orthogonal property of the polynomi
Tk(x):

ck5
ak

p E
21

1 Tk~x!exp~2 ixt!

A12x2
dx5ak~2 i !kJk~t!, ~9!

whereJk(t) is the Bessel function ofkth order, andak52
for k50 andak51 for k>1. The successive terms in th
Chebyshev series can be efficiently determined using the
cursion

Tk11~G!52GTk~G!2Tk21~G! ~10!

with the conditionsT0(G)51, T1(G)5G. Thus, to find the
vectorC(t), we just need to sum successively the terms
the series~8!, using Eq.~10! for calculation of the subse
quent terms, until we reach some predefined valueK of k,
which is determined by the required precision.

The high precision of this scheme originates from the f
that, for k@t, the value of a Bessel function decreases
perexponentiallyJk(t);(t/k)k, so that termination of the
series~8! at k5K leads to an error that decreases super
ponentially with increasingK. In practice,K51.5t already
gives a precision of 1027 or better in most cases. For th
same reason, this scheme is asymptotically more effic
than any time-marching scheme. For given sufficiently sm
error e, the number of operationsNop needed for finding the
wave function at timeT, i.e., C(T), grows linearly withT
for the Chebyshev-based scheme. For a marching schem
order r with the time stepDt, the numerical error ise
;(Dt) rT, so that for givene and T, the number of opera
tions needed isNop5T/Dt;T111/r , growing superlinearly
with increasingT. For very long-time simulations, and whe
very high precision is necessary, the Chebyshev metho
more efficient than any time-marching scheme known to
However, in practice, a precision better than 0.5–1 % is v
rarely needed. Similarly, very long-time simulations a
rarely of interest: in most cases, the simulations are inter
ing only until the dynamics of the system exhibits some n
trivial behavior. Therefore, in spite of its asymptotic ef
05670
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for real research, and its efficiency should be studied in ev
separate case.

IV. SIMULATION RESULTS

We assess the usefulness of the Chebyshev method
wide spectrum of decoherence problems, by considering
central problems of decoherence, the description of damp
of quantum oscillations in a system, and determination of
pointer states. In fact, there is no strict boundary: in study
both problems, we track the evolution of the system, che
ing its state at regular intervals of lengthT, but in studying
the oscillation decay the intervalT is much smaller than the
characteristic decoherence timeTdec, while in studying the
pointer states,T is larger thanTdec.

In spite of the asymptotic advantages of the Chebysh
based scheme, it is nota priori clear if it is efficient for
realistic problems, when the required numerical errord is
modest~say,d51022–1023). Also, if we track the dynam-
ics of the decoherence process, we make many steps of m
est lengthT, and the overhead associated with the use of
Chebyshev expansion might be significant~see Fig. 1!.

To study this issue, we have performed several types
numerical tests. The timing information reported in this p
per has been obtained from calculations on a SGI Ori
3800 ~500 MHz! system, using sequential, single-proces
code. The order of Chebyshev’s expansionK has been de-
fined by the prespecified precisione. We determined the
minimum value ofK such thatucku,e for k>K, starting
from the valueK05@1.1t# (@x# is the integer part ofx), and
adjusting it as needed. Each simulation has been perfor
three times: ~i! using the Chebyshev method withe
510212, the reference run,~ii ! using Chebyshev’s metho
with e51025–1026, and ~iii ! using the scheme based o
Suzuki-Trotter decomposition@19,20#. Previously we have
used the latter to study spin-bath decoherence@10,27#. In this
paper, we have chosen to consider the same problems
our previous work on this subject, in order to avoid the im
pression that the tests have been constructed to favor
particular method.

FIG. 1. Dependence of the order of the Chebyshev expansioK
on the value oft5E1t/2. The solid circles correspond to the min
mum value e51025 of the expansion coefficientck ; the open
circles correspond toe51026.
2-4
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EFFICIENT SCHEME FOR NUMERICAL SIMULATIONS . . . PHYSICAL REVIEW E 67, 056702 ~2003!
First, we consider the problem of oscillations damping
the central system of two spins coupled by Heisenberg
change, interacting with the bath. We studied this probl
using the Suzuki-Trotter scheme in Ref.@27#. The Hamilto-
nians describing the bath and the system are

HS5JS1•S2 , HB50, V5( An~S11S2!•In , ~11!

with N516 bath spins. The exchange parameterJ516.0~an-
tiferromagnetic coupling between the central spins!, while
An are uniformly distributed between 0 and20.5. The initial
state of the compound systemuC0&5uc0& ^ ux0& is the prod-
uct of the initial stateuc0& of the central system, andux0& of
the bath. In this case,uc0&5u↑↓&, i.e., the first central spin is
in the stateS1

z(t50)511/2, and the second spin is in th
stateS2

z(t50)521/2. The initial state of the bathux0& is the
linear superposition of all basis states with random coe
cients. Physically, this situation corresponds to the case
the temperatureu which is high in comparison with the bat
energiesAn , but is much lower than the system’s energyJ
~note thatJ@An in this case!.

The initial state of the central system is a superposition
two eigenstates ofH: the state with the total spinS51 and
Sz50, and the state with the total spinS50. These states
have different energies, and, for example, the dynamics
S1

z(t) is represented by oscillations with the frequencyJ.
Due to interaction with the spin bath, these oscillations
damped~see Fig. 2!. To study this damping in detail, we tak
the Suzuki-Trotter time stepDt50.035,T52Dt, and watch
the system fromt50 until tmax5800T. If we do not need

FIG. 2. Time dependence of the oscillations of the expecta
value ofS1

z(t) in the two-spin system decohered by a spin bath
05670
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such a high resolution, we increaseT. In Table I, we present
the CPU time needed to perform the simulations using
Suzuki-Trotter and Chebyshev methods, along with the
sulting error d ~which should not be confused with th
‘‘nominal’’ precision of the Chebyshev scheme,e). The error
d has been obtained from comparison with the ‘‘referenc
Chebyshev run (e510212), and is equal to the maximum o
the absolute errors of the quantities~all normalized to unity!
2S1

a , 2S2
a , 4S1

aS1
b (a,b5x,y,z), and the so-called ‘‘qua-

dratic entropy’’ @28# S(2)512Tr rS
2 . These quantities have

been calculated and compared at regular intervals of len
T. Their calculation increases the number of computatio
so that the tests 1, 2, and 3, which are otherwise equiva
for the Suzuki-Trotter method, require more and more C
time.

As one can see from Table I, for realistic values of t
maximum errord;0.531022, and even for not very long
runs, the Chebyshev scheme can be faster than the Su
Trotter method by a factor of up to 4, and the efficiency
the Chebyshev scheme grows fast with increasingT. How-
ever, this straightforward comparison is too crude, and Ta
I is only an illustration of basic features of the Chebysh
method. To model fast oscillations which decay slowly~often
with a decay time of the order of the decoherence timeTdec),
we should makeT significantly smaller than the oscillatio
period tosc52p/J, in order to correctly determine the am
plitude of oscillations at a given time.

Therefore, to track the damping of oscillations, we use
two-leap approach: first, we make a large time leap of len
T1 (T1@tosc, butT1!Tdec), and then we make a numbern2
~usually 15–20! of smaller stepsT2 such thatT2!tosc but
n2T2>tosc, resolving in detail one period of oscillations an
extracting the amplitude. By repeating this two-stage
quencentot times, we can reliably track the change of th
oscillation amplitude with time. The test examples of th
approach have been taken from our recent work@29#. We
have performed the same kind of simulations as descri
above, withN516 bath spins, repeating the two-leap s
quencentot58 times, each time making one long leapT1
followed byn2521 short leapsT2. The results of these test
are presented in Table II. Again, the Chebyshev-ba
method can be up to three times faster than the Suz
Trotter algorithm@19,20#.

Finally, we have tested the Chebyshev scheme in
problem of determining the pointer states, employing an
ample from our work@10#. This example is interesting als

n

e
TABLE I. Comparison of the Suzuki-Trotter scheme~abbreviated as ST! with the Chebyshev schem
~abbreviated as Ch! for the problem of oscillation decay.

Test Dt T tmax d e CPU time

1, Ch 200Dt 8T 131025 1026 22 min
1, ST 0.035 200Dt 8T 0.4431022 80 min
2, Ch 8Dt 200T 0.331024 1026 59 min
2, ST 0.035 8Dt 200T 0.4831022 89 min
3, Ch 2Dt 800T 0.5531023 1026 226 min
3, ST 0.035 2Dt 800T 0.4831022 156 min
2-5
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TABLE II. Comparison of the Suzuki-Trotter scheme~abbreviated as ST! with the Chebyshev schem
~abbreviated as Ch! for the problem of oscillation decay, employing the two-leap approach with differenT1

andT2.

Test Dt T1 T2 d e CPU time

4, Ch 150Dt Dt 0.431024 1026 61 min
4, ST 0.02 150Dt Dt 0.231022 144 min
5, Ch 300Dt Dt 0.431024 1026 75 min
5, ST 0.02 300Dt Dt 0.331022 221 min
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because it deals with the physically important case of a s
bath possessing chaotic internal dynamics, which is relev
for the majority of realistic spin baths~such as nuclear spin
or impurity spin baths!. The Hamiltonian describing the sys
tem is

HS5JS1•S2 , V5( AnS1•In , ~12!

i.e., the bath spins are coupled only with the first central s
and the bath Hamiltonian is now

HB5(
n

hzI k
z1 (

^n,n8&

Unn8I n
xI n8

x . ~13!

In our simulations we usedh50.1 andUnn8 randomly dis-
tributed in the interval@20.013,0.013#. This Hamiltonian is
known to result in stochastic behavior@30#; we have checked
the level statistics independently, and found that it clos
follows the Wigner-Dyson distribution.

To determine the pointer states, we need to find the
ments of the reduced density matrixrS(t) in the long-time
limit t→`. We start att50 from the state of the compoun
system which is the product of the states of the bath and
central system~as above!, but the initial state of the centra
spins now is the singletuc0&5(1/A2)@ u↑↓&2u↓↑&]. Because
of decoherence, the final state of the central system is mi
and rS5w1up1&^p1u1w2up2&^p2u, whereup1& and up2& are
the pointer states, which are superpositions of the st
u↑↑&, u↓↓& u↑↓&, andu↓↑&. As we found in@10#, the form of
this superposition is determined by the ratioJ/b, whereb
5(nAn

2 . For J/b;1, the pointer states are very close to t
singletS50 and tripletS51, Sz50 states, and forJ!b, the
pointer states are close tou↑↓& andu↓↑&. Thus, the quantities
characterizing the type of the pointer state are the value
the nondiagonal elements of the density matrixrS in the
basisu↑↑&, u↓↓& u↑↓&, and u↓↑&. In particular, the elemen
rS

125^↑↓urSu↓↑& is a very suitable quantity to characteriz
the pointer state. This nondiagonal element is close to z
for J!b, and gradually increases in absolute value with
creasingJ.

Typical results for temporal evolution of the elements
the density matrixrS are shown in Fig. 3. One can see that
this situation wedo not need to use the two-leap approa
with different T1 and T2. The relaxation~after some initial
period! is slow, and no fast oscillations of considerable a
plitude exist at long times, so that the one-leap approac
sufficient. Thus, the efficiency of the Chebyshev-bas
05670
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scheme is expected to be very good. This is indeed the c
as Table III demonstrates. The results presented there c
spond toJ50.1. The Chebyshev-based scheme is faster t
the Suzuki-Trotter method by up to a factor of 8.

We checked our conclusions on many other cases, w
the central systems made of up toM54 spins, and with the
baths made of up toN522 spins, with different Hamilto-
nians and different values of the Hamiltonian parameters.
found that the Chebyshev-based method gives a signifi
increase in the simulation speed for all problems where
value ofT can be made sufficiently large.

V. SUMMARY

Theoretical studies of spin-bath decoherence are imp
tant for many areas of physics, including quantum mechan
and quantum measurement theory, quantum computing, s
state physics, etc. Decoherence is a complex many-b
phenomenon, and numerical simulation is an important t
for its investigation. In this paper, we studied the efficien
of a numerical scheme based on the Chebyshev expan
We presented specific details of the application of t
method to spin-bath decoherence modeling. To assess
efficiency of the simulation method, we used model pro
lems which we have encountered in our previous studie

FIG. 3. Temporal evolution of different elements of the dens
matrix r: diagonal elements corresponding to the statesu↑↑&, u↑↓&,
u↓↑&, and u↓↓& ~the four upper curves!, and the nondiagonal ele
mentrS

12 ~the lowest curve!. Very slow relaxation is better seen fo
the uppermost curve~the diagonal element corresponding to t
stateu↑↑&) which has a small negative slope. Note that the two lin
in the middle ~the second and the third lines from the top, t
diagonal elements corresponding to the statesu↑↓& and u↓↑&, re-
spectively! are very close to each other att>200, as expected for a
near-equilibrium~although not completely relaxed! situation.
2-6
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TABLE III. Comparison of the Suzuki-Trotter scheme~abbreviated as ST! with the Chebyshev schem
~abbreviated as Ch! for the problem of determining the pointer states.

Test Dt T tmax d e CPU time

6, Ch 100Dt 500T 0.231023 1026 19 min
6, ST 0.14 100Dt 500T 0.731022 105 min
7, Ch 10Dt 5000T 0.131022 1026 52 min
7, ST 0.14 10Dt 5000T 0.831022 117 min
8, Ch 1000Dt 50T 0.331026 1026 13 min
8, ST 0.14 1000Dt 50T 0.831022 107 min
a
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spin-bath decoherence. We compared the Chebyshev-b
scheme with a fast method based on the Suzuki-Trotter
composition. We found that in many cases the former give
considerable increase in the speed of simulations, somet
by up to a factor of 8~for the problem of finding the system’
pointer states!, while in studying the decoherence dynamic
the increase in speed is less drastic~a factor of 2–3!, but still
considerable. This conclusion holds for many types of c
tral systems and spin baths, with different Hamiltonians.
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@24# M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, Phys

Rep.324, 1 ~2000!.
@25# H. Wang, J. Chem. Phys.113, 9948~2000!.
@26# M. Thoss, H. Wang, and W. H. Miller, J. Chem. Phys.115,

2991 ~2001!.
@27# V. V. Dobrovitski, H. A. De Raedt, M. I. Katsnelson, and B. N

Harmon, e-print quant-ph/0112053.
@28# Quadratic entropyS(2)512Tr rS

2 characterizes how mixed is
the state of the central system; for pure statesS(2)50.

@29# A. Melikidze, V. V. Dobrovitski, H. A. De Raedt, M. I.
Katsnelson, and B. N. Harmon~unpublished!.

@30# B. Georgeot and D. L. Shepelyansky, Phys. Rev. E62, 6366
~2000!.
2-7


