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Efficient scheme for numerical simulations of the spin-bath decoherence
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We demonstrate that the Chebyshev expansion method is a very efficient numerical tool for studying
spin-bath decoherence of quantum systems. We consider two typical problems arising in studying decoherence
of quantum systems consisting of a few coupled sginsdetermining the pointer states of the system @ind
determining the temporal decay of quantum oscillations. As our results demonstrate, for determining the
pointer states, the Chebyshev-based scheme is at least a factor of 8 faster than existing algorithms based on the
Suzuki-Trotter decomposition. For problems of the second type, the Chebyshev-based approach is 3—4 times
faster than the Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide spectrum of
systems, with different spin baths and different Hamiltonians.
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I. INTRODUCTION its density matrix is a projector, i.ep3(0)=ps(0). At
t>0, this property is lost, and the system appears in a mixed

Recently, a great deal of attention has been devoted to thstate. It has been shown that, even for relatively small inte-
study of quantum computatidi,2]. For many physical sys- grable and nonintegrable systems, the mixing is sufficient for
tems, basic quantum operations needed for implementatiothe time-averaged, quantum dynamical properties of the sub-
of quantum gates have been demonstrated. To be practical sgstem to agree with their statistical mechanics valués
qguantum computer should contain a large number of qubit®iagonalizing the density matrixs, we can find théinstan-
(some estimates give up to ®@ubits [3]) and be able to taneous states of the systefuy;(t)) and (instantaneoysoc-
perform many hundreds of quantum gate operations. Howeupation numbers of these stawwgt). It is generally as-
ever, these requirements are not easy to satisfy in expersumed(and is true for all cases we kngwhat in “regular”
ments. A real two-state quantum system is different from thesituations, the statels);(t)) quickly relax to some limiting
ideal qubit. The system interacts with its environment, andstates|p;), called “pointer states.” This processlecoher-
this leads to a loss of phase relations between different statesice is, in most cases, much faster than the relaxation of the
of the quantum computédecoherengg 47|, causing rapid occupation numbersy;(t) to their limiting values(which
accumulation of errors. Detailed theoretical understanding oforrespond to thermal equilibrium of the system with the
the decoherence process is needed to prevent this. bath.

More generally, decoherence is an interesting many-body The theoretical description of decoherence, i.e., a descrip-
quantum phenomenon which is fundamental for many areagon of the evolution of the central system from its initial
of quantum mechanics, quantum measurement theory, etpure statey, to the final mixed state, and finding the final
[4,5]. It also plays an important role in solid state systemspointer stategp;), is a very difficult problem of quantum
and might suppress quantum tunneling of defects in crystalfhany-body theory. Some simple models can be solved ana-
[7] and spin tunneling in magnetic molecules and nanopartytically, for some more complex models different approxi-
ticles[8,9], or destroy the Kondo effect in a dissipationlessmations can be employed, such as the Markov approximation
mannerf10]. That is, decoherence in many physical systemgor the bath, which assumes that the memory effects in the
can have experimentally detectaliend sometimes consid- path dynamics are negligible. The special case of the envi-
erablg consequences, and extensive theoretical studies of desnment consisting of uncoupled oscillators, the so-called
coherence are needed to understand the behavior of thesgson bath, is also rather well understood theoretically. But,
systems. although the model of the boson bath is applicable for de-

Formally speaking, decoherence is a dynamical developscription of a large number of possible types of environments
ment of quantum correlationgntanglementbetween the (phonons, photons, conduction electrons,)dfg], it is not
central system and its environment. Let us assume that inyniversal.
tially the central system is in the stdtg,) and the environ- A particularly important case where the boson bath de-
ment is in the statéyo), so that the state of the compound scription is inapplicable is the decoherence caused by an en-
system (central system plus bathis |W(t=0))=]yq) vironment made of spins, e.g., nuclear spins or impurity
®|xo)- In the course of dynamical evolution, the direct prod- spins(the so-called spin-bath environmgrBimilarly, deco-
uct structure of the stat&(t)) is no longer conserved. If we herence caused by some other types of quantum two-level
need to study only the properties of the central system, weystems can be described in terms of the spin bath. Analyti-
can consider the reduced density matrix of the central syseal studies of the spin-bath decoherence are difficult, and the
tem, i.e., the matrixpg(t)=Trg| W (t))(W(t)|, where Tg spin-bath decoherence of many-body systems is practically
means tracing over the environmental degrees of freedonunexplored yet. In this situation, numerical modeling of spin-
Initially, ps(0)=|o){ 10|, the system is in a pure state, and bath decoherence becomes an invaluable research tool.
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The most direct approach to studying spin-bath decohemN environmental spinsl,, (1,=1/2, n=1,... N). The
ence is to compute the dynamical evolution of the wholeHamiltonian governing behavior of the whole “compound”
compound system by directly solving the time-dependensystem(the central spin§,, plus the bath spink,) is
Schralinger equation of the model system. Even for a mod-
est number of spins, say 20, such calculations require con- H=Ho+V=HstHg+V, 1)
siderable computational resources, in particular because to o
study decoherence we have to follow the dynamical evoluWhereHsandg are the “bare” Hamiltonians of the central
tion of the system over substantial periods of time. Therefor§ystem and the bath, respectively, ands the system-bath
efficiency of these simulations. lowing general forms of the Hamiltonians:

In this paper, we apply the Chebyshev expansion method
to simulate models for the spin-bath decoherence. This = @ gagr aga
method has been widely applied bef¢t®—1§ to study the Hs (m,zm’> a:;yyz I SmSn % a:;y,z HinSm
dynamics of large quantum systems, but, to our knowledge,
has never been used for simulations of systems made of large o ava wa
numbers of coupled quantum spins. We show that for realis- Hp= 2 2 Lot n’+; 2 Haln
tic problems and typical values of parameters this method is
a very efficient tool. We compare this approach with algo-
rithms based on the Suzuki-Trotter decomposifiah] and v=> > ALSmln (2
the short-time iterative LanczdSIL) method[14,22,23. We (mn) a=xy.z

find that for a large class of problems relevant for decoherwe assume that the Hamiltonidi does not explicitly de-

ence studies, the Chebyshev polynomial expansion metho nd on time. i Il exchange interaction constaniE
gives a significant increase in the simulation speed, soméa—ed AO d eI,I €., a Ie cha g? fieldd tn t,'
times up to a factor of 8, in comparison with algorithms an Aﬁkr: ah (ter>]<_terna kmagtn.e Ic Ie'bl at1re co(r;slan t'm
[19,2Q based on Suzuki-Trotter decompositid@4]. We il- time. oug IS makes 1t impossible to model a time-
lustrate this point by test examples that we have encounter pendent quantum gate operation, the investigation of the
in our previous studies of the dynamics of spin-bath deCo_undamental properties of spin-bath decoherence is not seri-

herence. We also find that the short-time iterative LanczogUSIy affected by this requirement. The dynamics of the

method is significantly slower than both Suzuki-Trotter andmOdEI (1) is already too compllex'to be StUd'e.d ana[ytlcally,
Chebyshev's methods. and for general, when noa priori knowledge is available,

The remainder of the paper is organized as follows. Inthe only option is to solve the time-dependent Sdimger

Sec. Il, we describe the model and the approaches used fgfuation of the whole cqmpound system numerlcally. That
S, we choose some basis states for the Hilbert space of the

the decoherence simulations. In Sec. Ill, we describe the Spaé:ompound systerthe simplest choice is the direct product
cific details of application of Chebyshev’s expansion metho f the state$]) and| |} for each spir§,, 1,). We represent

to the spin-bath decoherence simulations. In Sec. 1V, wé't itial state of th d svst tor in thi
present the results of our test simulations. A brief summary i ninitiai state ot the compound sys el as a vector in IS
asis set, and the Hamiltoni&i is represented as a matrix,

given in the Sec so that the Schdinger equation

(n,n’)y @=X.y.Z a=x,y,z

Il. SIMULATIONS OF THE SPIN-BATH DECOHERENCE: idW(t)/dt=HW(t) 3

THE MODEL AND NUMERICAL APPROACHES . . . . . . .
is a system of first-order ordinary differential equations with

We focus on decoherence in quantum systems of sever#he initial conditionW (t=0)="¥,.
coupled spins. This type of quantum system is of particular The length of the vectow is 2M*N: for typical values
interest for quantum computations, since a qubit can be regvl =2 andN=20, an exact solution of about41(® differ-
resented as a quantum spin 1/2, and qubit-based quantugmtial equations becomes a serious task. Moreover, the inter-
computation is, in fact, the controlled dynamics of a systemaction between the central spins is often much bigger than
made of many spins 1/2. Such systems are also of primarthe coupling with the environment or coupling between the
interest for studying many solid state problems, since arbath spins, so that the systé®) is often stiff. Simple meth-
electron is a particle with spin 1/2, and its orbital degrees obds, e.g., predictor-corrector schemes, perform rather poorly
freedom are often irrelevant. Thus, a system made of several this case, and very small integration steps are needed to
coupled spins 1/2 is a good model for investigating a largepbtain a reliable solution.
class of important problems both in quantum computing and Algorithms based on the Suzuki-Trotter decomposition
in solid state theory. The approach described below can biel9,20 can solve Eq(3) for sufficiently long timegessential
easily extended to arbitrary spin values, but discussion ofo determine the pointer states of the central systdthey
simulations with arbitrary spins is beyond the scope of thiscan handle Hamiltonians with explicit dependence on time,
paper. are unconditionally stable, exactly preserve the unitarity of

We consider the following class of models. There is aquantum evolution, and the time step can be made more than
central system made d#l coupled spinsS,, (S,=1/2, m  an order of magnitude bigger than in the typical predictor-
=1,... M). The spinsS, interact with a bath consisting of corrector method. Moreover, as our experience shows, for a
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scheme based on the Suzuki-Trotter decomposition, a largects (i.e., the number of important single-spin wave
part of the total numerical error is accumulated in the totaffunctions products is very largelt is probable that many
phase of the wave functionV’(t)), and does not affect any problems of spin-bath decoherence can be efficiently treated
measurable physical quantitiésbservables However, for by the MCTDH method, but the corresponding study re-
reasonably large systems, this scheme is still slow, and sim@uires a separate extensive research effort, which is beyond
lations of decoherence last for up to 200 CPU hours on a S@he framework of our paper.

3800 supercomputer. The problem of long simulation times

becomes especially prominent if we need to find the pointer [ll. CHEBYSHEV’'S METHOD FOR SPIN-BATH

states, or if the dynamics of the central system is much faster DECOHERENCE

than the decoherence rate. We found that in these circum-
stances the method based on Chebyshev's expansion b&-)
comes a very efficient tool to study problems of decoher-

ence. o _
Along with the Chebyshev expansion method, the short PO =exp(—itH)¥o=U0)Wo, “@

iterative Lanczos approadi14,22,23, which is also based \yhereu(t)=exp(~itH) is the evolution operator. An effec-
on the power-series expansion (_)f Fhe evolution operator, wage way [12—1§ of calculation of the exponent of a large
found_ to be efficient for many_5|mllar problems of quantum yatrix 7/ is to expand it in a series of the Chebyshev poly-
cheml_stry. We have tested this met_hod, but our results argomials of the operatot. Below, we describe the specific
negative. The low-order SIL methddith a small number of - yetails of application of the Chebyshev method to spin-bath
Lanczos iterations per step, usually less thah @¥es an  yocoherence simulations.
unacceptable error, even for very short time steps. On the The Cheb : _

: . yshev polynomial$,(x)=coskarccox) are
other hand, the high-order SIL methodith more than 25  yafined forx e[ — 1,1]. Thus, the Hamiltoniaf first should
Lanczos iterations per stgps noticeably slower than the be rescaled by the factd, (the range of values of the sys-

approach based on Chebyshev’'s expansion. We believe th@tm, d shifted b di | f th _
the poor performance of the SIL method originates from the[em,z gggrrg;/ and shifted byE, (median value of the sys

fact that for a small number of Lanczos iteratiane., for
the low-order SIL method only a very limited part of the 1
spectrum is described correctly. For a typical problem where Ec=§(Emax+ Emin)y  Eo=Emax— Emins
the SIL method is known to be very effectie.g., wave
packet propagation most of the relevant basis states have
energy close to the energy of a wave packet. Only these
relevant states should be accurately described, while an ac-
curate description of the whole energy spectrum is excessive.
In contrast, in a typical spin-bath decoherence problem, a
large number of bath states with very different energies are

involved in the decoherence process. Correspondingly,  this way, the rescaled operat6e=2(H—E,)/E, is also
large part of the spectrum should be taken into account, angounded by—1 and 1: —1=<(G)<1, i.e —Cls<q>|g|cp>

the high-order SIL integrator should be employed, reducinggl for any state vectofd) such that{®|d)=1. For spin
the perfqrmance of the SIL method. . . systems, the Hamiltonian is bounded both from above and
5'9”“"0?”‘ speed-up can be qch|eved by employmg From below, and the operata@f can be found.
radically different approach, by using an approximate form In the specific case considered in this paper, when the
of the wave function of the total systefoentral system plus Hamiltonian # is defined by Eq.(2), we ta'ke E
bath. In particular, the multiconfigurational time-dependent:2 MaX(E.y)s|Ennasl). For this choice.—E0,/2<(H><Eo/20
H minisI=max/* ’ = = .
;|Cail(ratrr]$e(2/ICTlchI;|r) rr?]ﬁtjhe(:)lﬂml;ggoLﬁki(:tzwgégoair\:aenrgeef}h Correspondingly, we can take.=0; this choice is legiti-
9. 9 ’ ate, and, although it might be not optimal for some prob-

MCTDH ap_proach uses an approxima.te representation of thI%ms it still results in very good performance of Cheby-

wave function, based on the assymptlon that the wave funcs'hev’s methodsee below: Since mai)= | ]| is the norm

tion of the total system can be written as a superposition of & S : .
. y . ) of the Hamiltonian, the value dg, can be estimated using

relatively small number of “configurations,” i.e., products of Cauchy’s inequalityE /2= | Hg| + | Hgl| + [V Similarly

time-varying spin wave functions. The MCTDH method is 0 S B ' :

the method of choice when the dimensionality of a single-

particle Hilbert space is large, and the multiparticle quantum |Hgl= Z E [

correlations are associated with a superposition of a small (mm’) @=Xy.z

number of products of single-particle wave functions. The

problems considere_d in our paper present an opposite situa- +E 2 [He ISl

tion. The bath consists of many spins 1/2, i.e., we have only m a=X\y.z

two orbitals per particléspin), and the single-particle evolu- 1 1

tion is very simple, while the complex many-particle quan- => > Z|J;m,|+2 > §|Hg|, (6)

tum correlations are responsible for most of the physical ef- (mm') a=X.y.z m a=xy.z

For a time-independent Hamiltonian, the solution of Eq.
can be formally written as

Emin=Min(H)=min (®|H|D),
(®|®)=1

Emax=maxH)= max (®|H|D). (5)
(®|D)=1

ISl S |
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and|Hg|| and||V| can be estimated in the same manner. As

a result, we have an estimaig<E,, where _5
e

1, 1 . 1 ©

El: E _E §|‘Jmm'|+ 2 §|an’|+ 2 §|Amn| %
(m,m’} a=x,y,z <n'nf> (m,n) [

©

+ 2 [Hal+ 2 [Hyl, @) 3

m n -

o

X

and the operatog can be defined a§=2H/E,, which sat-
isfies the inequality-1<(G)<1.

The Chebyshev expansion of the evolution operbkft)
[see Eq(4)] now looks like

w FIG. 1. Dependence of the order of the Chebyshev expat&ion
U(t)=exp(—i7G)= 2 ¢ Tk(G) (8) on the value ofr=E;t/2. The solid circles correspond to the mini-
k=0 mum value e=10"° of the expansion coefficient,; the open

circles correspond te=10"°.

wherer=E;t/2. The expansion coefficientg can be calcu- _ _

lated using the orthogonal property of the polynomialsciency, the Chebyshev method is not always the best choice

Ti(X): for real research, and its efficiency should be studied in every
separate case.

ag (1 Te(x)exp—ixr) q (—D(n. (9
Ck=— ——— ax=a(—I 7), IV. SIMULATION RESULTS
Ay 12 K k

We assess the usefulness of the Chebyshev method for a
whereJ,(7) is the Bessel function okth order, anda,=2 wide spectrum of decoherence problems, by considering two
for k=0 anda,=1 for k=1. The successive terms in the central problems of decoherence, the description of damping
Chebyshev series can be efficiently determined using the ref quantum oscillations in a system, and determination of the
cursion pointer states. In fact, there is no strict boundary: in studying

both problems, we track the evolution of the system, check-
T 1(9) =2GT(G) —T_1(G) (10 ing its state at regular intervals of length but in studying
the oscillation decay the intervalis much smaller than the
with the conditionsT,(G) =1, T,(9)=G. Thus, to find the characteristic decoherence tirig,., while in studying the
vector' ¥ (t), we just need to sum successively the terms ofpointer statesT is larger thanT yg.

the series(8), using Eq.(10) for calculation of the subse- In spite of the asymptotic advantages of the Chebyshev-
quent terms, until we reach some predefined vaduef k,  based scheme, it is nat priori clear if it is efficient for
which is determined by the required precision. realistic problems, when the required numerical erfois

The high precision of this scheme originates from the factnodest(say, =10 2-10"3). Also, if we track the dynam-
that, fork> 7, the value of a Bessel function decreases suics of the decoherence process, we make many steps of mod-
perexponentiallyd,(7)~ (7/k)¥, so that termination of the est lengthT, and the overhead associated with the use of the
series(8) at k=K leads to an error that decreases superexChebyshev expansion might be significéste Fig. L
ponentially with increasindl. In practice,K=1.5r already To study this issue, we have performed several types of
gives a precision of 10’ or better in most cases. For the numerical tests. The timing information reported in this pa-
same reason, this scheme is asymptotically more efficienger has been obtained from calculations on a SGI Origin
than any time-marching scheme. For given sufficiently smalB800 (500 MH2) system, using sequential, single-processor
error €, the number of operatiors,, needed for finding the code. The order of Chebyshev's expanskrhas been de-
wave function at timeT, i.e., ¥ (T), grows linearly withT ~ fined by the prespecified precision We determined the
for the Chebyshev-based scheme. For a marching scheme wiinimum value ofK such that|c,|<e for k=K, starting
order r with the time stepAt, the numerical error iss  from the valueKy=[1.17] ([x] is the integer part of), and
~(At)'T, so that for givene and T, the number of opera- adjusting it as needed. Each simulation has been performed
tions needed iNy,=T/At~T**" growing superlinearly three times: (i) using the Chebyshev method witk
with increasingT. For very long-time simulations, and when =102 the reference runii) using Chebyshev’s method
very high precision is necessary, the Chebyshev method iwith e=10"°-10°, and (iii) using the scheme based on
more efficient than any time-marching scheme known to usSuzuki-Trotter decompositiofil9,20. Previously we have
However, in practice, a precision better than 0.5—-1 % is verysed the latter to study spin-bath decoherdi€e27). In this
rarely needed. Similarly, very long-time simulations arepaper, we have chosen to consider the same problems as in
rarely of interest: in most cases, the simulations are interestur previous work on this subject, in order to avoid the im-
ing only until the dynamics of the system exhibits some non-pression that the tests have been constructed to favor one
trivial behavior. Therefore, in spite of its asymptotic effi- particular method.
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0.50 Fe such a high resolution, we increaseln Table |, we present
3 the CPU time needed to perform the simulations using the
025t Suzuki-Trotter and Chebyshev methods, along with the re-
= A ’“- . 7‘ :r‘;r . sulting error 6 (which should not be confused with the
¥y~ 0.00 M r Iﬁ%f%@%‘#" “nominal” precision of the Chebyshev schenw), The error
A L. u ﬂﬂ. s 6 has been obtained from comparison with the “reference”
025 (14 Chebyshev run¢=101?), and is equal to the maximum of
I the absolute errors of the quantitiggdl normalized to unity
-0.50 |, ' . . . 2Sy, 2S5, 4SSP (a,B=x,y,2), and the so-called “qua-
5 10 15 dratic entropy”[28] S®=1—Trp3. These quantities have
Time been calculated and compared at regular intervals of length

T. Their calculation increases the number of computations,
5o that the tests 1, 2, and 3, which are otherwise equivalent
for the Suzuki-Trotter method, require more and more CPU

FIG. 2. Time dependence of the oscillations of the expectatio
value of Si(t) in the two-spin system decohered by a spin bath.

First ider the problem of oscillations damping in" e
Irst, we consider the problem of oscillalions damping I ¢ gne can see from Table I, for realistic values of the

the central system of two spins coupled by Heisenberg ex-___. . -2

chgnge, interacting with the bath: We studied this problen)imﬁ);r?ﬁ;n C?k:gi)rjshgilszclhoem,eacn;n ebvee ?afsct)(rarn&ta\ée{r):elosnl?zuki-

using the Sy;ukrTrotter scheme in RE27]. The Hamilto- Trotter method by a factor of up to 4, and the efficiency of

hians describing the bath and the system are the Chebyshev scheme grows fast with increagingdow-
ever, this straightforward comparison is too crude, and Table

Hs=JS,-S,, Hg=0, V=2, A,(S;+S,)-1,, (1) lis only an illustration of .bas_ic featgres of the Chebyshev

method. To model fast oscillations which decay slovdften

with a decay time of the order of the decoherence figg),

we should maker significantly smaller than the oscillation

periodt,s.=2/J, in order to correctly determine the am-

plitude of oscillations at a given time.

with N= 16 bath spins. The exchange paraméter16.0(an-
tiferromagnetic coupling between the central spinghile
A, are uniformly distributed between 0 antD.5. The initial
state of the compound systénifo) =|1/0)®|xo) is the prod- Therefore, to track the damping of oscillations, we use the
uct of the initial statd o) of the central system, arjgto) of  yo-leap approach: first, we make a large time leap of length
Fhe bath. In this caséy)=|11), i.e., the first cent_ral_ spin is Ty (T1>toee, bUtT;<Tged, and then we make a numbey
in the stateS;(t=0)=+1/2, and the second spin is in the (usually 15—20 of smaller stepsT, such thatT,<t,. but
stateS;(t=0)= — 1/2. The initial state of the bafly,) isthe  n,T,>t,.., resolving in detail one period of oscillations and
linear superposition of all basis states with random coeffiextracting the amplitude. By repeating this two-stage se-
cients. Physically, this situation corresponds to the case Q‘iuer\cenmt times, we can reliably track the change of the
the temperaturé which is high in comparison with the bath oscillation amplitude with time. The test examples of this
energiesA,, but is much lower than the system’s ened)y approach have been taken from our recent W@®. We
(note thatJ>A,, in this casg have performed the same kind of simulations as described
The initial state of the central system is a superposition okbove, withN=16 bath spins, repeating the two-leap se-
two eigenstates of{: the state with the total spiS=1 and guencen,,;=8 times, each time making one long ledp
S,=0, and the state with the total spB=0. These states followed byn,= 21 short leapd,. The results of these tests
have different energies, and, for example, the dynamics ofre presented in Table Il. Again, the Chebyshev-based
7(t) is represented by oscillations with the frequenty method can be up to three times faster than the Suzuki-
Due to interaction with the spin bath, these oscillations aréTrotter algorithm[19,20.
dampedsee Fig. 2 To study this damping in detail, we take Finally, we have tested the Chebyshev scheme in the
the Suzuki-Trotter time stept=0.035, T=2At, and watch  problem of determining the pointer states, employing an ex-
the system front=0 until t,;,5,=800T. If we do not need ample from our worK10]. This example is interesting also

TABLE |. Comparison of the Suzuki-Trotter scherfebbreviated as §Twith the Chebyshev scheme
(abbreviated as QHor the problem of oscillation decay.

Test At T tmax é € CPU time
1, Ch 20@t 8T 1x10°% 106 22 min
1, ST 0.035 200t 8T 0.44x 1072 80 min
2, Ch 8At 200T 0.3x107* 10°6 59 min
2, ST 0.035 At 200T 0.48x 1072 89 min
3, Ch 2At 800T 0.55x 102 1078 226 min
3, ST 0.035 At 800T 0.48x 102 156 min
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TABLE II. Comparison of the Suzuki-Trotter schenf@bbreviated as STwith the Chebyshev scheme
(abbreviated as QHor the problem of oscillation decay, employing the two-leap approach with diff@rgnt

andT,.

Test At T, T, ) € CPU time
4, Ch 15\t At 0.4x10°4 1078 61 min
4, ST 0.02 150t At 0.2x 102 144 min
5, Ch 30QAt At 0.4x10°4 10°© 75 min
5, ST 0.02 300t At 0.3x10°? 221 min

because it deals with the physically important case of a spischeme is expected to be very good. This is indeed the case,
bath possessing chaotic internal dynamics, which is relevargs Table 1l demonstrates. The results presented there corre-
for the majority of realistic spin bathsuch as nuclear spins spond toJ=0.1. The Chebyshev-based scheme is faster than
or impurity spin baths The Hamiltonian describing the sys- the Suzuki-Trotter method by up to a factor of 8.
tem is We checked our conclusions on many other cases, with
the central systems made of upNb=4 spins, and with the
—1a. _ ) baths made of up ttN=22 spins, with different Hamilto-
Hs=I5%, V 2 AnSt-ln. (12 nians and different values of the Hamiltonian parameters. We
. . . . . found that the Chebyshev-based method gives a significant
i.e., the bath spins are coupled only with the first central SPIMNincrease in the simulation speed for all problems where the

and the bath Hamiltonian is now value of T can be made sufficiently large.

HB=§n: hzlﬁ+<2> UnnInly - (13 V. SUMMARY
n,n
) } ) Theoretical studies of spin-bath decoherence are impor-

In our simulations we usedl=0.1 andU,,, randomly dis-  tant for many areas of physics, including quantum mechanics
tributed in the interval —0.013,0.013. This Hamiltonian is  3nq quantum measurement theory, quantum computing, solid
known to result in stochastic behavi@0]; we have checked giate physics, etc. Decoherence is a complex many-body
the level statistics independently, and found that it closelyjohenomenon, and numerical simulation is an important tool
follows the Wigner-Dyson distribution. _ for its investigation. In this paper, we studied the efficiency

To determine the pointer states, we need to find the elesf 3 numerical scheme based on the Chebyshev expansion.
ments of the reduced density matyx(t) in the long-time  \ve presented specific details of the application of this
limit t—oc. We start at=0 from the state of the compound method to spin-bath decoherence modeling. To assess the
System Wh|Ch iS the pI‘OdUCt Of the states Of the bath and thgfﬁciency of the Simu|ation method' we used mode| prob_
central systemas abovg but the initial state of the central |ems which we have encountered in our previous studies of
spins now is the singléiy) = (1/y2)[|11)—]]1)]. Because
of decoherence, the final state of the central system is mixed, 0.50
and ps=wy|p1){P1|+W.|p2){p2|, where|p,) and|p,) are ] E’:
the pointer states, which are superpositions of the states
[T1), [LL)|T]), and|| T). As we found in[10], the form of ] p’

this superposition is determined by the rafith, whereb
=EnAﬁ. ForJ/b~1, the pointer states are very close to the
singletS=0 and tripletS=1, S,=0 states, and fa¥<b, the
pointer states are closeftb|) and|| 1). Thus, the quantities
characterizing the type of the pointer state are the values of

-0.25 1

Elements of pg
o o
s &

-0.50

the nondiagonal elements of the density majixin the —
basis|T1), |11} [T]), and|[T). In particular, the element 0 500 1000 1500 2000
ps?=(11|pg 1) is a very suitable quantity to characterize Time

the pointer state. This nondiagonal element is close to zero
for J<b, and gradually increases in absolute value with in-

creasingJ.
12 (the lowest curve Very slow relaxation is better seen for

FIG. 3. Temporal evolution of different elements of the density
matrix p: diagonal elements corresponding to the stités, |11),

. . [LT), and|]|) (the four upper curvesand the nondiagonal ele-
Typical results for temporal evolution of the elements ofmempS

the density matrips are shown in Fig. 3. One can see that in the yppermost curvéthe diagonal element corresponding to the
this situation wedo notneed to use the two-leap approach state|11)) which has a small negative slope. Note that the two lines
with different T; and T,. The relaxation(after some initial  in the middle (the second and the third lines from the top, the
period is slow, and no fast oscillations of considerable am-diagonal elements corresponding to the states and || 1), re-
plitude exist at long times, so that the one-leap approach ispectively are very close to each othertat 200, as expected for a
sufficient. Thus, the efficiency of the Chebyshev-basedear-equilibrium(although not completely relaxgdituation.
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TABLE Ill. Comparison of the Suzuki-Trotter scheni@bbreviated as STwith the Chebyshev scheme
(abbreviated as QHor the problem of determining the pointer states.

Test At T tmax ) € CPU time
6, Ch 10Qt 500T 0.2x10°2 1078 19 min
6, ST 0.14 100t 500T 0.7X 102 105 min
7, Ch 100t 50007 0.1x10°? 107 52 min
7, ST 0.14 10t 5000T 0.8x 1072 117 min
8, Ch 100@t 50T 0.3x10°° 106 13 min
8, ST 0.14 1000t 50T 0.8x 1072 107 min
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