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Quantum Monte Carlo method for attractive Coulomb potentials
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Starting from an exact lower bound on the imaginary-time propagator, we present a path-integral quantum
Monte Carlo method that can handle singular attractive potentials. We illustrate the basic ideas of this quantum
Monte Carlo algorithm by simulating the ground state of hydrogen and helium.
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[. INTRODUCTION whereq denotes the charge of the electron afid=m,/(1
+me/mp), mg(m,) being the mass of the electrgproton.
Quantum Monte CarldQMC) simulation is a powerful Replacing the imaginary-time free-particle propagator in Eq.

method for computing the ground state and nonzero temperd3) by its explicit, exact expression,
ture properties of quantum many-body systdth®]. There oo
are two fundamental problems that limit the application of _ BKIm| 1 mM mM|x—x"|?
these methods. The first and most important is the minus- (rle r')y= > B2 €X _Z—ﬁZ '
sign problem, which we do not address in this pafsee, B B )
however,[3,4]). The second problem arises if one wants to
simulate systems with attractive singular potentials, the Couye obtain
lomb interaction being the prime example. The purpose of

this paper is to present an approach that solves the latter mMm | Em2
problem in a form that fits rather naturally in the standard Zn= 5 f drqy---dr,
path integral QMC(PIQMC) approach and leaves a lot of 2mpBh
room for further systematic improvements. MM

Let us first recapitulate the basic steps of the procedure to Xex;{ _m E (r,— fn+1)2]
set up a PIQMC simulation. Writing andV for the kinetic 2Bh? i=1

and potential energy, respectively, the first step is to approxi- ) m
mate the imaginary-time propagator by a product of short- Xex;{ n ﬁ_q E i
time imaginary-time propagators. The standard approach is m =i,
to invoke the Trotter-Suzuki formuligb,6],

. (6)

PIQMC calculates the ratio of integrals such as Egj.by
e PKV)= |im (e~ AK/me=AVIM)m, (1) using a Monte Carlo procedure to generate the coordinates
m—e {rq, ... rmt The integrand in Eq(6) serves as the weight
) , for the importance sampling process. As the latter tends to
to construct a sequence of systematic approximatin$o  mayimize the integrand, it is clear that because of the factors
the partition functior? [6,7], exp(+Bg?m tr, 1), the points{ry, ... ry} will, after a few
steps, end up very close to the origin. In the case of a singu-

Z=Trexp—p H)_r:inwzm @ lar, attractive potential, importance sampling based on Eq.
(6) fails. Using instead of the simplest Trotter-Suzuki for-
m mula (1) a more sophisticated on®] only makes things
zm:J dry---drp [ (role #<™r . e AViarim worse because these hybrid product formulas contain deriva-
n=1 tives of the potential with respect to the coordinates.
©) The problem encountered in setting up a PIQMC scheme

for models with a singular, attractive potential is just a sig-
wherer . ;=r; and use has been made of the fact that theyature of the fundamental difficulties that arise when one
potential energy is diagonal in the coordinate representatioRies to define the Feynman path integral for the hydrogen
Taking the limit m—, Eq. (3) yields the Feynman path atom [10]. The formal solution to this problem is known
integral [8] for a system with Hamiltoniatd =K+V. Ex-  [10,11]. It is rather complicated and not easy to incorporate
pression(3) is the starting point for the PIQMC simulation. jn a PIQMC simulation.

In the case of the attractive Coulomb interaction, itis easy |In essence, the method proposed in this paper is similar to
to see why the standard PIQMC approach fails. Let us takehe one used to solve the hydrogen path integral, i.e., use the
the hydrogen atom as an example. The Hamiltonian reads quantum fluctuations to smear out the singularity of the po-

) ) tential. Mathematically we implement this idea by applying
h a Jensen’s inequality to the propagafd?]. Applications of

H=- 5= V32— —, (4) - :
2M r the Feynman path-integral formalism are often based on a
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combination of Jensen’s inequality and a variational ap- )
proach[8,10], so it is not a surprise that similar tricks may J dxg - - - dxyp({x;})edid
work for PIQMC as well.
The paper is organized as follows. In Sec. Il, we give a
simple derivation of an exact lower bound on the imaginary- =exp | dx;---dxpp({Xihg(xi}b) | - (11)
time propagator. This inequality naturally defines a sequence

of systematic approximationg,, to the partition function.

Although eachZ,, looks very similar toZ,, the former can

be used for PIQMC with attractive, singular potentials. For
pedagogical reasons, in Sec. lll we illustrate the approach by
presenting an analytical treatment of the harmonic oscillator.
In Sec. IV, we give the explicit form of the approximate
propagator for the attractive Coulomb potential and present
PIQMC results for the ground state of the hydrogen and he-
lium atom.

and obtain

<X|e_ T(K+V€)|XI>

m
2 f dxq- - -dXxp
=1

3=

=(x|e”™|x") lim exp| —

m—oe

m
V(X x| e™ /M x
Il. LOWER BOUND ON THE PROPAGATOR el ')nll (%l [Xn+2)

X , (12
Consider a system with HamiltoniaH=K+V and a (x|e"™|x")
complete set of statelgx)} that diagonalizes the Hermitian
operatorV. In the case in whiclV contains a singular attrac- m
tive part, we replace/=Iim o Ve by a regularV (x)> =(x|e”™|x") lim exp( _T E fdx-
€— = ) i
—o and take the limite—0 at the end of the calculation. m—ee mi=1
Using the Trotter-Suzuki formula, we can write (™I (%) ([ €™M ")
X|e™Mx IV () (x| e™ M| x’
(13
<X|e7‘r(K+VE)|X/>: lim <X|(eer/mefrVE/m)m|xr>, (7) <x|e‘TK|x’) )

m— o

m

. _ _ _ over imaginary time. Finally, we leé—0 and obtairf12]
= lim f dxg- - -dx, ][ (xi|e”™/M|x, ,  )e~ Velim
m—oo : : I+

=1

For m—oo, the sum ovem can be replaced by an integral

(8) <X|efﬂ'(K+V)|Xr>
m =(x|e”™|x")
f dx- .dxnil;[l (xile™ M g)em e r (x|e"uKkve (TmWK|x")
= lim m xexp — ' — K|y ?
m
xf dxg---dx, ][ (x;le= ™%, ). (9) Note that the left-hand side of E(l4) reduces to the stan-
i=1 dard, symmetrized Trotter-Suzuki formula approximation
[13,14 if we replace the integral oven by a two-point
If (x]e~™|x")=0 for all 7, x, andx’, the function trapezium-rule approximation. This replacement also

changes the direction of inequality as can been seen directly

m from the upper boung12],
p({xi})=£[1 (xile™ ™™ x; 1)

<X|e_T(K+V)|XI>

[ o =(xle ¢

p| - (<X|eUKeTVe(TU)K|X!>)}
il X ex —f duln —
><Hl<xi|efK'm|xi+1>) (10 0 (xle™*]x)

<(xJe"™®|x")e" V™, (15)

is a proper probability density. Clearly, E¢LO) is of the
form fdx;- - -dx,o({x;})f({x;}) so that we can apply Jens-  Expression(14) can be used to define a new type of
en’s inequality proximant to the partition function, namely,
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M 3m/2 TABLE |I. Numerical results for the exact energy of the har-
7 0= f dry---drp monic oscillator E), and approximations based on E{k9) (Em)
2mTh? and(20) (E,,). We use units such thdétw=1 andp is dimension-
m less.
[T exg— " :
anl eXF{ ZTﬁZ(rn rn+1) /3 m Em E Em
Td <I’n|67UKV67(77U)K|I’n+1> 1 1 1.00000 1.08198 1.16668
—f u v , (16) 10 1.08101 1.08198 1.08292
0 (role”™[rnsa) 50 1.08194 1.08198 1.08202
. ) A 100 1.08197 1.08198 1.08199
wherer= B/m. The simplest approximat; corresponds to 500 108198 108198 1.08198
Feynman’s variational approximation to the full Feynman
path integral[8,10]. The main difference between EqS8) 1 0.20000 0.50678 1.03333
and (16) is that the bare potentia™"V® is replaced by an 10 0.49199 0.50678 051938
effective potential that is obtained by convoluting the bare ' ' '
potential and free-particle propagatasf ande (7"WK, 50 0.50617 0.50678 0.50694
Convolution smears out singularities. As we show below, in 100 0.50678 0.50678 0.50679
the case of the attractive Coulomb interaction, expression 500 0.50678 0.50678 0.50679
(14) is finite for any choice ok andx’. For the approximants
Zm to be useful in PIQMC, it is necessary that the integral 110 gigggg 82888: ;;?gf;
overu t_Je done efficiently. In the next two sections, we show =0 0'49757 0'50005 0'50234
how this can be done. 100 0.49942 0.50005 0.50064
500 0.50002 0.50005 0.50007

IIl. ILLUSTRATIVE EXAMPLE

It is instructive to have at least one example for which the
details can be worked out analytically, without actually usingThe integrand in Eq(17) is a quadratic form and can be
PIQMC. Not surprisingly, this program can be carried out for giagonalized by a Fourier transformation with respect to the

the harmonic oscillator. For notational convenience, we Williygex . Evaluation of the resulting Gaussian integrals yields
consider the one-dimensional model Hamiltonks K +V,

with K= —(#2/2M)d?/dx? and V=M w?x?/2. Calculating
the matrix elementx|e” Ve (""WX|x") in Eq. (16) is a
straightforward excercise in perfoming Gaussian integrals Z,=2"m2 exy{—

ﬁzﬁsz)m—l [ ﬁzﬁzwz
+

[15]. We obtain 12m | a=o 3m
222 2 —-1/2
A mMm |\ ™2 B*h%w 2mn
m= J dx;- - -dXg _(1_ 6m co m (18
27 Bh>
m 2

H mM ) BMo* , . . o . .

x 11 exp - Zﬁﬁz(xn_xnﬂ) T Tem | XnT Xn+1 Taking the partial derivative of-InZ,, with respect tog

gives the corresponding approximation to the energy:

2mm) | 17

hZ
+ X Xp+1 Tt )

! 2+ cog 27n/m)

£ _,Bﬁzwz
A=0 1—cog2mn/m)+ B2h2w? 2+ cog2mn/m)]/6m|

~6m (19

m

For comparison, if we use of the standard Trotter-Suzuki In Table I, we present numerical results obtained from
formula, we obtair{7] Egs. (19 and(20) and compare with the exact value of the
, pm-1 energyE = (7 w/2)coth(Bhw/2). Note that the average of the
Em:'% @ > 1 _ two approximations, i.e. K+ E)/2, is remarkably close to
2m? n=0 1—cog2mn/m)+ B?h2w?/2m? the exact valueE, an observation for which we have no
(20 mathematical justification at this time.
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IV. ATTRACTIVE COULOMB POTENTIAL where the vectors, andr, describe the position of the two

As a second example, we will consider a neutral systerr?!ecnons_’ with the nucleus place_d n thez Onglf' I;[ IS conve-
consisting of two electrons with opposite spin and a nucleugli€nt to introduce the notatiok; = — Dini , Di=h"2M;,
The Hamiltonian readgl6,17] Vi=V(r)), Vi,.=V(r;—r5,), and V(r)=qg*/|r|, for i=1,2.

Application of inequality(14) requires the evaluation of
ﬁ2 h2 2 2 2 2
oo o B, @ A 208
2My 2M, Iral frof -~ [ro—ry]
(21

,
f du(ryry|le KD (v + Vv, — 2V e (UK )y
0

! ' —
I(ry,rp,ry,ro)= (rarole  BKIFKD|p 1

T T
f du(r,le UKy, e (T WKy 1y f du(r,le uKay, e~ (- WKa|p /)
0 0

(rae”™?r}) (role”™?r))

Jo du<r1r2| e U(K1+K2)V12e7(7'* U)(K1+K2)| riré>

+2 : (22

(rarple” " 2rirs)

where we made use of the fact th#t,,V,]=[K,,V;]=0. It is sufficient to consider the last term of H&2). Inserting a
complete set of states for both particles, we obtain

T
[Cau] ary [ arggrsrle e v - e O )

(raryle” " D|riry)

|12(r11r21r5_1r£): (23)

Inserting the explicit expression for the free-particle propagdpra straightforward manipulation of the Gaussian integrals
in Eq. (23) gives

¥ p[_ [7r = (r=u)(ry—rp)—u(r{—ry1’ o

T T
Ilz(rl,rz,rl,rz,D)=J’0duJ dr(m) V(r)ex Aur(r—u)D ,

whereD=D;+D,. expressions for the first and second contributions in(E).
In the case of the Coulomb potential, the integral over can be obtained from Ed25) by setting O,,r,,r5) and

can be evaluated analytically by changing to spherical coor¢(D,,r,,r;) equal to zero, i.e., I4(rq,r;,Dy)

dinates. The remaining integral ovelis calculated numeri- =115(r1,0r7,0D,) andl,(r,,r5,D5)=115(015,0r5,D5).

cally. In practice, it is expedient to replace the integration For the helium atomM=M,=M,, and themth approx-

overu by an integration over an angle. An expression that ismant to the partition function reads

adequate for numerical purposes is

M 3m
l12r1,r2,r1,12,D) 2:e=( ) fdr1~--drmdr1~-~drr'n

2 rh?
/2
= 27'q2J do
0

M m
Xexp{ - 27ﬁ2 r]zl [(rn_rn+l)2+(rn_rn+1)2]}
><erf[(47-D)*1’2|(rl—rz)tamzﬂ—(ri—ré)cotd)ﬂ

m
[(ry—rp)tang+(ry—ry)cote| Xexp{ > [11(rn,rae1,D)+1o(rn,rhyq,Dq)
n=1
(25)
It is easy to check that,y(rq,r,,ri,r5,D) is finite. The —2|12(rn,rn+1,rr’,,rr’1+l,2D1)]], (26)
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TABLE II. Path-integral quantum Monte Carlo results for the
ground-state energy of the hydrogen Hamiltonian, in unitg®é,
(ap=%2/Mg?). The exact value i€=—0.5.

B m EH

20 400 —0.496 (=0.004)
20 800 —0.503 (+0.005)
40 800 —0.498 (+0.006)

whereas in the case of the hydrogen atom we have

3m/2

AR M dry---dr
2 7h?2 ! m
m
Xexr{ Py zl (T The1)?

m

+Tn§lll<rn,rn+l,Dl> (27)

with 7= g/m. As the integrands in Eq$26) and (27) are

always finite, expression®6) and (27) can be used to per-
form PIQMC simulations.
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mula approach, one can use HA46) to construct a path
integral that is free of singularities. In practice, a numerical
calculation of the latter requires only minor modifications of
a standard PIQMC code.

The efficiency of the PIQMC method described above can
be improved with relatively modest efforts. Instead of using
the free-particle propagatdt, we are free to pick any other
model HamiltonianH, for which the matrix elements of
e~ ™Mo are positive and integrals involving these matrix ele-
ments are known analytically. An obvious choice would be
to take forH, a set of harmonic oscillators. The matrix ele-
ments ofe” "o are Gaussians and hence the conditions used
to derive Eq(14) are satisfied. If necessary, the approximant

Z, can be improved further by optimization of the param-
eters of the oscillators. Fan= 1, this approach is identical

to the variational method proposed by Feynman and Kleinert
[18-22 and independently by Giachetti and Tognetti
[23,24.

Recently, a systematic approximation scheme was pro-
posed, combining the smearing of the potential with the cu-
mulant expansiofi25-28§. In view of the good PIQMC re-
sults obtained with the primitive formalism adopted in this
paper, the application of these more sophisticated schemes to
PIQMC seems promising. Using a more accurate effective
potential will yield results of the same quality with fewer

In the path integral formalism, the ground-state energy igime slices (n). However, the computational work required

obtained by setting B—« and B/m—0, ie.,, E

=I|mﬁﬁx I|mB/rTHO E,,. Of course, in numerical work, tak-

to numerically evaluate the effective potential will increase
with its accuracy. A good compromise between improved
accuracy on the one hand and increasing computational work

ing one or both of these limits is impossible. In Tables Il andgn the other will have to be found. Extending the PIQMC
I”, we present numerical results of PlQMC estimates of thernethod in this direction is left for future research.

ground-state energ¥ of the hydrogen and helium atom.

These results have been obtained from five statistically inde-

APPENDIX

pendent simulations of 100 000 Monte Carlo steps per degree
of freedom each. The systematic errors due to the discretiza- In PIQMC, the simplest method for sampling paths is to
tion of the path integral are hidden in the statistical noisechange one degree of freedom at each Monte Carlo step.

The PIQMC procedure we have used is standard except

for a trick we have used to improve the efficiency of sam-
pling the paths, details of which are given in the Appendix.

Usually, this is rather inefficient and one adds Monte Carlo
moves that make global changes of the path, e.g., moves that
resemble classical motion. In this appendix, we present a

Although a ground-state calculation pushes the PIQMQmore sophisticated scheme, which we found performed very
method to the point of becoming rather inefficient, the nu-well at very low temperature. The basic idea is to change
merical results are in satisfactory agreement with the knowwariables such that the kinetic-energy term in the path inte-

values.

V. DISCUSSION

We have shown that it is possible to perform PIQMC

gral becomes a diagonal quadratic form, i.e.,

m m
> (=X 1)?= 2 V2, (A1)
k=1 k=2

Simula..tions for quantum SyStemS W|th attractive Cou.lomb\lvhere Xm+ 1= X1- After some Straightforward a|gebra, one
potentials. Instead of the conventional Trotter-Suzuki for-finds that the transformation from tkig;} to the{y;! is given

TABLE lll. Path-integral quantum Monte Carlo results for the
ground-state energy of the helium Hamiltonian, in unitsyéfa,.
The experimental value iE= —2.904.

B m Ene

10 400 —2.84 (+0.02)
10 800 —2.88 (+0.02)
10 1200 —2.92 (+0.03)

m—k+2 (M—K+1)Xe_ 1+ X1 2
2_ _
Ve m—kr 1) X m—k+2 - (A2)
The expression fox, in terms of the{u;} reads
+ﬁ m—k+1/m—j+1\? Lok
= - <
T & T imejr2) Y m.
(A3)
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with x,=y,. From Eq.(A3), we conclude that the computa- It is also clear that the variablg; plays the role of the
tional work for making a global change of the pafite.,  ‘“classical” position. The variabley,, . ...y, describe the
simultaneously changing all) is linear inm, hence optimal. quantum fluctuations.
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