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Quantum Monte Carlo method for attractive Coulomb potentials

J. S. Kole and H. De Raedt
Institute for Theoretical Physics and Materials Science Centre, University of Groningen, Nijenborgh 4,

NL-9747 AG Groningen, The Netherlands
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Starting from an exact lower bound on the imaginary-time propagator, we present a path-integral quantum
Monte Carlo method that can handle singular attractive potentials. We illustrate the basic ideas of this quantum
Monte Carlo algorithm by simulating the ground state of hydrogen and helium.
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I. INTRODUCTION

Quantum Monte Carlo~QMC! simulation is a powerful
method for computing the ground state and nonzero temp
ture properties of quantum many-body systems@1,2#. There
are two fundamental problems that limit the application
these methods. The first and most important is the min
sign problem, which we do not address in this paper~see,
however,@3,4#!. The second problem arises if one wants
simulate systems with attractive singular potentials, the C
lomb interaction being the prime example. The purpose
this paper is to present an approach that solves the l
problem in a form that fits rather naturally in the standa
path integral QMC~PIQMC! approach and leaves a lot o
room for further systematic improvements.

Let us first recapitulate the basic steps of the procedur
set up a PIQMC simulation. WritingK andV for the kinetic
and potential energy, respectively, the first step is to appr
mate the imaginary-time propagator by a product of sh
time imaginary-time propagators. The standard approac
to invoke the Trotter-Suzuki formula@5,6#,

e2b(K1V)5 lim
m→`

~e2bK/me2bV/m)!m, ~1!

to construct a sequence of systematic approximationsZm to
the partition functionZ @6,7#,

Z5Tr exp~2bH !5 lim
m→`

Zm ~2!

Zm5E dr1•••drm)
n51

m

^r nue2bK/mur n11&e
2bV(r n11)/m,

~3!

wherer m115r 1 and use has been made of the fact that
potential energy is diagonal in the coordinate representat
Taking the limit m→`, Eq. ~3! yields the Feynman path
integral @8# for a system with HamiltonianH5K1V. Ex-
pression~3! is the starting point for the PIQMC simulation

In the case of the attractive Coulomb interaction, it is ea
to see why the standard PIQMC approach fails. Let us t
the hydrogen atom as an example. The Hamiltonian rea

H52
\2

2M
¹22

q2

r
, ~4!
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whereq denotes the charge of the electron andM5me /(1
1me /mp), me(mp) being the mass of the electron~proton!.
Replacing the imaginary-time free-particle propagator in E
~3! by its explicit, exact expression,

^r ue2bK/mur 8&5S mM

2pb\2D 3/2

expS 2
mMux2x8u2

2b\2 D ,

~5!

we obtain

Zm5S mM

2pb\2D 3m/2E dr1•••drm

3expF2
mM

2b\2 (
n51

m

~r n2r n11!2G
3expF1

bq2

m (
n51

m
1

r n
G . ~6!

PIQMC calculates the ratio of integrals such as Eq.~6! by
using a Monte Carlo procedure to generate the coordin
$r 1 , . . . ,r m%. The integrand in Eq.~6! serves as the weigh
for the importance sampling process. As the latter tends
maximize the integrand, it is clear that because of the fac
exp(1bq2m21rn

21), the points$r 1 , . . . ,r m% will, after a few
steps, end up very close to the origin. In the case of a sin
lar, attractive potential, importance sampling based on
~6! fails. Using instead of the simplest Trotter-Suzuki fo
mula ~1! a more sophisticated one@9# only makes things
worse because these hybrid product formulas contain der
tives of the potential with respect to the coordinates.

The problem encountered in setting up a PIQMC sche
for models with a singular, attractive potential is just a s
nature of the fundamental difficulties that arise when o
tries to define the Feynman path integral for the hydrog
atom @10#. The formal solution to this problem is know
@10,11#. It is rather complicated and not easy to incorpora
in a PIQMC simulation.

In essence, the method proposed in this paper is simila
the one used to solve the hydrogen path integral, i.e., use
quantum fluctuations to smear out the singularity of the
tential. Mathematically we implement this idea by applyin
Jensen’s inequality to the propagator@12#. Applications of
the Feynman path-integral formalism are often based o
©2001 The American Physical Society04-1
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combination of Jensen’s inequality and a variational
proach@8,10#, so it is not a surprise that similar tricks ma
work for PIQMC as well.

The paper is organized as follows. In Sec. II, we give
simple derivation of an exact lower bound on the imagina
time propagator. This inequality naturally defines a seque
of systematic approximationsẐm to the partition function.
Although eachẐm looks very similar toZm , the former can
be used for PIQMC with attractive, singular potentials. F
pedagogical reasons, in Sec. III we illustrate the approach
presenting an analytical treatment of the harmonic oscilla
In Sec. IV, we give the explicit form of the approxima
propagator for the attractive Coulomb potential and pres
PIQMC results for the ground state of the hydrogen and
lium atom.

II. LOWER BOUND ON THE PROPAGATOR

Consider a system with HamiltonianH5K1V and a
complete set of states$ux&% that diagonalizes the Hermitia
operatorV. In the case in whichV contains a singular attrac
tive part, we replaceV5 lim

e→0
Ve by a regularVe(x).

2` and take the limite→0 at the end of the calculation
Using the Trotter-Suzuki formula, we can write

^xue2t(K1Ve)ux8&5 lim
m→`

^xu~e2tK/me2tVe /m!mux8&, ~7!

5 lim
m→`

E dx1•••dxn)
i 51

m

^xi ue2tK/muxi 11&e
2tVe(xi )/m,

~8!

5 lim
m→`

E dx1•••dxn)
i 51

m

^xi ue2tK/muxi 11&e
2tVe(xi )/m

E dx1•••dxn)
i 51

m

^xi ue2tK/muxi 11&

3E dx1•••dxn)
i 51

m

^xi ue2tK/muxi 11&. ~9!

If ^xue2tKux8&>0 for all t, x, andx8, the function

r~$xi%!5)
i 51

m

^xi ue2tK/muxi 11&

Y S E dx1•••dxn

3)
i 51

m

^xi ue2tK/muxi 11& D ~10!

is a proper probability density. Clearly, Eq.~10! is of the
form *dx1•••dxnr($xi%) f ($xi%) so that we can apply Jens
en’s inequality
01670
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E dx1•••dxnr~$xi%!eg($xi %)

>expS E dx1•••dxnr~$xi%!g~$xi%! D ~11!

and obtain

^xue2t(K1Ve)ux8&

>^xue2tKux8& lim
m→`

expS 2
t

m (
i 51

m E dx1•••dxm

3

Ve~xi !)
n51

m

^xnuetK/muxn11&

^xue2tKux8&
D , ~12!

>^xue2tKux8& lim
m→`

expS 2
t

m (
i 51

m E dxi

3
^xuetK/muxi&Ve~xi !^xi uetK/mux8&

^xue2tKux8&
D . ~13!

For m→`, the sum overn can be replaced by an integra
over imaginary time. Finally, we lete→0 and obtain@12#

^xue2t(K1V)ux8&

>^xue2tKux8&

3expH 2E
0

t

du
^xue2uKVe2(t2u)Kux8&

^xue2tKux8&
J .

~14!

Note that the left-hand side of Eq.~14! reduces to the stan
dard, symmetrized Trotter-Suzuki formula approximati
@13,14# if we replace the integral overu by a two-point
trapezium-rule approximation. This replacement a
changes the direction of inequality as can been seen dire
from the upper bound@12#,

^xue2t(K1V)ux8&

<^xue2tKux8&

3expH 2E
0

t

du lnS ^xue2uKe2tVe2(t2u)Kux8&

^xue2tKux8&
D J

<^xue2tKux8&e2tV(x). ~15!

Expression~14! can be used to define a new type of a
proximant to the partition function, namely,
4-2
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Ẑm5S M

2pt\2D 3m/2E dr1•••drm

3 )
n51

m

expF2
M

2t\2
~r n2r n11!2

2E
0

t

du
^r nue2uKVe2(t2u)Kur n11&

^r nue2tKur n11&
G , ~16!

wheret5b/m. The simplest approximantẐ1 corresponds to
Feynman’s variational approximation to the full Feynm
path integral@8,10#. The main difference between Eqs.~3!
and ~16! is that the bare potentiale2tV(x) is replaced by an
effective potential that is obtained by convoluting the ba
potential and free-particle propagatorse2uK and e2(t2u)K.
Convolution smears out singularities. As we show below
the case of the attractive Coulomb interaction, express
~14! is finite for any choice ofx andx8. For the approximants
Ẑm to be useful in PIQMC, it is necessary that the integ
overu be done efficiently. In the next two sections, we sh
how this can be done.

III. ILLUSTRATIVE EXAMPLE

It is instructive to have at least one example for which
details can be worked out analytically, without actually usi
PIQMC. Not surprisingly, this program can be carried out
the harmonic oscillator. For notational convenience, we w
consider the one-dimensional model HamiltonianH5K1V,
with K52(\2/2M )d2/dx2 and V5Mv2x2/2. Calculating
the matrix element̂ xue2uKVe2(t2u)Kux8& in Eq. ~16! is a
straightforward excercise in perfoming Gaussian integ
@15#. We obtain

Ẑm5S mM

2pb\2D m/2E dx1•••dxm

3 )
n51

m

expF2
mM

2b\2
~xn2xn11!22

bMv2

6m S xn
21xn11

2

1xnxn111
b\2 D G . ~17!
2mM

uk
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The integrand in Eq.~17! is a quadratic form and can b
diagonalized by a Fourier transformation with respect to
indexn. Evaluation of the resulting Gaussian integrals yie

Ẑm522m/2 expS 2
b2\2v2

12m D )
n50

m21 F11
b2\2v2

3m

2S 12
b2\2v2

6m D cosS 2pn

m D G21/2

. ~18!

Taking the partial derivative of2 ln Ẑm with respect tob
gives the corresponding approximation to the energy:

TABLE I. Numerical results for the exact energy of the ha

monic oscillator (E), and approximations based on Eqs.~19! (Êm)
and~20! (Em). We use units such that\v51 andb is dimension-
less.

b m Em E Êm

1 1 1.00000 1.08198 1.16668
10 1.08101 1.08198 1.08292
50 1.08194 1.08198 1.08202
100 1.08197 1.08198 1.08199
500 1.08198 1.08198 1.08198

5 1 0.20000 0.50678 1.03333
10 0.49199 0.50678 0.51938
50 0.50617 0.50678 0.50694
100 0.50678 0.50678 0.50679
500 0.50678 0.50678 0.50679

10 1 0.10000 0.50005 1.76667
10 0.44273 0.50005 0.54316
50 0.49757 0.50005 0.50234
100 0.49942 0.50005 0.50064
500 0.50002 0.50005 0.50007
Êm5
b\2v2

6m F11 (
n50

m21
21cos~2pn/m!

12cos~2pn/m!1b2\2v2@21cos~2pn/m!#/6m
G . ~19!
m
e
e

o

For comparison, if we use of the standard Trotter-Suz
formula, we obtain@7#

Em5
b\2v2

2m2 (
n50

m21
1

12cos~2pn/m!1b2\2v2/2m2
.

~20!
i In Table I, we present numerical results obtained fro
Eqs.~19! and ~20! and compare with the exact value of th
energyE5(\v/2)coth(b\v/2). Note that the average of th

two approximations, i.e., (Êm1Em)/2, is remarkably close to
the exact valueE, an observation for which we have n
mathematical justification at this time.
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IV. ATTRACTIVE COULOMB POTENTIAL

As a second example, we will consider a neutral syst
consisting of two electrons with opposite spin and a nucle
The Hamiltonian reads@16,17#

H52
\2

2M1
¹1

22
\2

2M2
¹2

22
q2

ur 1u
2

q2

ur 2u
1

2q2

ur 12r 2u
,

~21!
r
o

ion
t i

01670
m
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where the vectorsr 1 andr 2 describe the position of the two
electrons, with the nucleus placed in the origin. It is conv
nient to introduce the notationKi52Di¹ i

2 , Di5\2/2Mi ,
Vi5V(r i), V125V(r 12r 2), and V(r )5q2/ur u, for i 51,2.
Application of inequality~14! requires the evaluation of
als
I ~r 1 ,r 2 ,r 18 ,r 28!52

E
0

t

du^r 1r 2ue2u(K11K2)~V11V222V12!e
2(t2u)(K11K2)ur 18r 28&

^r 1r 2ue2b(K11K2)ur 18r 28&

52

E
0

t

du^r 1ue2uK1V1e2(t2u)K1ur 18&

^r 1ue2tK1)ur 18&
2

E
0

t

du^r 2ue2uK2V2e2(t2u)K2ur 28&

^r 2ue2tK2ur 28&

12

E
0

t

du^r 1r 2ue2u(K11K2)V12e
2(t2u)(K11K2)ur 18r 28&

^r 1r 2ue2t(K11K2)ur 18r 28&
, ~22!

where we made use of the fact that@K1 ,V2#5@K2 ,V1#50. It is sufficient to consider the last term of Eq.~22!. Inserting a
complete set of states for both particles, we obtain

I 12~r 1 ,r 2 ,r 18 ,r 28!5

E
0

t

duE dr19E dr29^r 1r 2ue2u(K11K2)ur 19r 29&V~r 192r 29!^r 19r 29ue
2(t2u)(K11K2)ur 18r 28&

^r 1r 2ue2t(K11K2)ur 18r 28&
. ~23!

Inserting the explicit expression for the free-particle propagator~5!, a straightforward manipulation of the Gaussian integr
in Eq. ~23! gives

I 12~r 1 ,r 2 ,r 18 ,r 28 ,D !5E
0

t

duE drS t

4pu~t2u!D D 3/2

V~r !expH 2
@tr 2~t2u!~r 12r 2!2u~r 182r 28!#2

4ut~t2u!D J , ~24!
whereD5D11D2.
In the case of the Coulomb potential, the integral over

can be evaluated analytically by changing to spherical co
dinates. The remaining integral overu is calculated numeri-
cally. In practice, it is expedient to replace the integrat
overu by an integration over an angle. An expression tha
adequate for numerical purposes is

I 12~r 1 ,r 2 ,r 18 ,r 28 ,D !

52tq2E
0

p/2

df

3
erf@~4tD !21/2u~r 12r 2!tanf1~r 182r 28!cotfu#

u~r 12r 2!tanf1~r 182r 28!cotfu
.

~25!

It is easy to check thatI 12(r 1 ,r 2 ,r 18 ,r 28 ,D) is finite. The
r-

s

expressions for the first and second contributions in Eq.~22!
can be obtained from Eq.~25! by setting (D2 ,r 2 ,r 28) and
(D1 ,r 1 ,r 18) equal to zero, i.e., I 1(r 1 ,r 18 ,D1)
5I 12(r 1,0,r 18,0,D1) and I 2(r 2 ,r 28 ,D2)5I 12(0,r 2,0,r 28 ,D2).

For the helium atom,M5M15M2, and themth approx-
imant to the partition function reads

Ẑm
He5S M

2pt\2D 3mE dr1•••drmdr18•••drm8

3expH 2
M

2t\2 (
n51

m

@~r n2r n11!21~r n82r n118 !2#J
3expH t (

n51

m

@ I 1~r n ,r n11 ,D1!1I 2~r n8 ,r n118 ,D1!

22I 12~r n ,r n11 ,r n8 ,r n118 ,2D1!#J , ~26!
4-4
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whereas in the case of the hydrogen atom we have

Ẑm
H5S M

2pt\2D 3m/2E dr1•••drm

3expH 2
M

2t\2 (
n51

m

~r n2r n11!2

1t (
n51

m

I 1~r n ,r n11 ,D1!J , ~27!

with t5b/m. As the integrands in Eqs.~26! and ~27! are
always finite, expressions~26! and ~27! can be used to per
form PIQMC simulations.

In the path integral formalism, the ground-state energy
obtained by setting b→` and b/m→0, i.e., E

5 lim
b→`

lim
b/m→0

Êm . Of course, in numerical work, tak

ing one or both of these limits is impossible. In Tables II a
III, we present numerical results of PIQMC estimates of
ground-state energyE of the hydrogen and helium atom
These results have been obtained from five statistically in
pendent simulations of 100 000 Monte Carlo steps per de
of freedom each. The systematic errors due to the discre
tion of the path integral are hidden in the statistical noi
The PIQMC procedure we have used is standard@1,7# except
for a trick we have used to improve the efficiency of sa
pling the paths, details of which are given in the Append
Although a ground-state calculation pushes the PIQM
method to the point of becoming rather inefficient, the n
merical results are in satisfactory agreement with the kno
values.

V. DISCUSSION

We have shown that it is possible to perform PIQM
simulations for quantum systems with attractive Coulo
potentials. Instead of the conventional Trotter-Suzuki f

TABLE II. Path-integral quantum Monte Carlo results for th
ground-state energy of the hydrogen Hamiltonian, in units ofq2/a0

(a05\2/Mq2). The exact value isE520.5.

b m Êm
H

20 400 20.496 (60.004)
20 800 20.503 (60.005)
40 800 20.498 (60.006)

TABLE III. Path-integral quantum Monte Carlo results for th
ground-state energy of the helium Hamiltonian, in units ofq2/a0.
The experimental value isE522.904.

b m Êm
He

10 400 22.84 (60.02)
10 800 22.88 (60.02)
10 1200 22.92 (60.03)
01670
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mula approach, one can use Eq.~16! to construct a path
integral that is free of singularities. In practice, a numeri
calculation of the latter requires only minor modifications
a standard PIQMC code.

The efficiency of the PIQMC method described above c
be improved with relatively modest efforts. Instead of usi
the free-particle propagatorK, we are free to pick any othe
model HamiltonianH0 for which the matrix elements o
e2tH0 are positive and integrals involving these matrix e
ments are known analytically. An obvious choice would
to take forH0 a set of harmonic oscillators. The matrix el
ments ofe2tH0 are Gaussians and hence the conditions u
to derive Eq.~14! are satisfied. If necessary, the approxima
Ẑm can be improved further by optimization of the param
eters of the oscillators. Form51, this approach is identica
to the variational method proposed by Feynman and Klein
@18–22# and independently by Giachetti and Togne
@23,24#.

Recently, a systematic approximation scheme was p
posed, combining the smearing of the potential with the
mulant expansion@25–28#. In view of the good PIQMC re-
sults obtained with the primitive formalism adopted in th
paper, the application of these more sophisticated schem
PIQMC seems promising. Using a more accurate effec
potential will yield results of the same quality with fewe
time slices (m). However, the computational work require
to numerically evaluate the effective potential will increa
with its accuracy. A good compromise between improv
accuracy on the one hand and increasing computational w
on the other will have to be found. Extending the PIQM
method in this direction is left for future research.

APPENDIX

In PIQMC, the simplest method for sampling paths is
change one degree of freedom at each Monte Carlo s
Usually, this is rather inefficient and one adds Monte Ca
moves that make global changes of the path, e.g., moves
resemble classical motion. In this appendix, we presen
more sophisticated scheme, which we found performed v
well at very low temperature. The basic idea is to chan
variables such that the kinetic-energy term in the path in
gral becomes a diagonal quadratic form, i.e.,

(
k51

m

~xk2xk11!25 (
k52

m

yk
2 , ~A1!

where xm115x1. After some straightforward algebra, on
finds that the transformation from the$xi% to the$yi% is given
by

yk
25

m2k12

m2k11 S xk2
~m2k11!xk211xm11

m2k12 D 2

. ~A2!

The expression forxk in terms of the$ui% reads

xk5y11(
j 52

k
m2k11

m2 j 11 S m2 j 11

m2 j 12D 1/2

yj , 1,k<m,

~A3!
4-5
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with x15y1. From Eq.~A3!, we conclude that the computa
tional work for making a global change of the path~i.e.,
simultaneously changing allyi) is linear inm, hence optimal.
o

n

ys

h

cs

01670
It is also clear that the variabley1 plays the role of the
‘‘classical’’ position. The variablesy2 , . . . ,ym describe the
quantum fluctuations.
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