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We study the magnetic properties of itinerant quantum magnetic particles, described by a generalized
Hubbard model with large spin �S�1 /2�, which may be realized in optical lattices of laser-cooled atom
systems. In fermion systems �half-integer spins�, an extended form of Nagaoka ferromagnetism may be real-
ized. However, as novel aspects of the large-spin cases, we found that the condition on the lattice connectivity
is more stringent than in the case of S=1 /2 particles and that the system shows a peculiar degenerate structure
of the ground state in which the ferromagnetic state is included. In contrast, it turns out that the ground state
of itinerant bosonic systems �integer spins� has a degenerate structure similar to that of fermion system with
S�1 /2 regardless of the shape, connectivity, or filling of the lattice, and that the state with the maximum total
spin is always one of the ground states. Because the system consists of 2S+1 types of particles and we study
a SU�2S+1� invariant model, the degeneracy of the ground state is given by the multiplets of the fully
symmetric Young tableau of SU�2S+1� if the state with maximum total spin belongs to the ground state.
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I. INTRODUCTION

The origin of magnetism is attributed to the quantum-
mechanical interaction of particles, which carry spin. In the
so-called localized spin systems, the Pauli principle plays an
essential role and the magnetic interaction is expressed by
the Heisenberg interaction,1 the exchange integral between
atoms being the dominant term. Not only the two-spin inter-
action but also multispin interactions may contribute to give
rise to exotic magnetic states. In particular, various effects of
the multispin interaction in 3He have been reported.2,3 For
itinerant electron systems, the origin of the magnetic order,
and of ferromagnetic order, in particular, has been studied
extensively. Itinerant electron systems are often described by
tight-binding models such as the Hubbard model.4 Nagaoka
pointed out that the ground state of the Hubbard model may
be a ferromagnetic state �Nagaoka-ferromagnetic state� if the
number of electrons is reduced by one from half-filling,
where half-filling means that the number of particles is the
same as the number of the lattice sites.5 This interesting fer-
romagnetic state has been studied extensively and its math-
ematical structure is well understood.6,7 Various properties of
this state have been explored, see, for example, Refs. 8–10.
The Nagaoka-ferromagnetic state is established if the so-
called “connectivity condition” �to be explained later� on the
lattice is satisfied. In the Nagaoka-ferromagnetic state, the
energy of the system is minimized when the total spin of the
system takes the maximum value. On the other hand, the
ground state of the half-filled system is a singlet state, that is,
its total spin is zero. Elsewhere, we have studied how the
magnetic state changes between these two states when an
electron is removed from the system and demonstrated an
adiabatic change between these states.11

Magnetism has primarily been studied in electron systems
for which the spin S=1 /2. However, recently, developments

in the field of laser-cooled atomic systems have opened new
possibilities to realize artificial tight-binding quantum system
such as the Hubbard model.12,13 In contrast to the electron
systems, in optical lattices the spin of trapped atoms is not
necessarily S=1 /2 but can take larger half-integer or integer
values. In the latter case, the system contains bosons, not
fermions. It is, therefore, of interest to study itinerant mag-
netism of systems with S�1 /2. The present paper presents a
study of such systems.

II. MODEL

We consider a tight-binding model, which consists of the
hopping term and a repulsive on-site interaction

H = − t �
�ij�,M

�ci,M
† cj,M + cj,M

† ci,M� + �
i=1

N

U�ni,M� , �1�

where ci,M
† and ci,M are the annihilation and creation opera-

tors of a particle �fermion or boson depending on its spin� of
the magnetization M at a site i, respectively, ni,M is the num-
ber operator

ni,M = ci,M
† ci,M , �2�

for the particle of spin S, M =−S ,−S+1, . . . ,S, and U�ni,M�
represents the on-site repulsive interaction. For the system
with S=1 /2, we take for U�ni,M� the standard form

U�ni,M� = U0ni,−1/2ni,1/2, �3�

and for larger S�1 /2 we extend it as
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U�ni,M� =
1

2
U0Ni�Ni − 1� , �4�

where Ni=�Mni,M and U0 is assumed to be positive. While
the repulsion is usually attributed to the Coulomb interaction
in the case of S=1 /2, we adopt this form for the cases of
S�1 /2 by assuming that multiple atoms on the same site
would cause the energy to increase. The detailed form of the
interaction U�ni,M� does not affect the conclusion of the
present study as far as the energy increases significantly
when a site is occupied by more than one particle.

It should be noted that the present model has SU�2S+1�
symmetry.14 Although this symmetry property depends on
the form of U�ni,M�, the symmetry of the hopping term plays
major role in the present study and our result will not
change as long as there is a strong repulsive interaction on
each site.

In order to study magnetic properties of the system, we
introduce spin operators for the magnetization
S= �Si

x ,Si
y ,Si

z� of the particles, where

Si
z = �

M=−S

S

Mni,M . �5�

Hereafter, we use the operators Si
+=Si

x+ iSi
y and Si

−=Si
x− iSi

y,
which are expressed in terms of ci,M

† and ci,M

Si
+ = �

M

��S − M��S + M + 1�ci,M+1
† ci,M �6�

and

Si
− = �

M

��S + M��S − M + 1�ci,M−1
† ci,M , �7�

where S is the total spin of each particle, and M is the z
component of the magnetization. To discuss the magnetic
properties of the states, we adopt the usual notation �S ,M�,
where S is the total spin S and M is the magnetization. The
action of the operators in Eqs. �6� and �7� on the state �S ,M�
is given by the relations

Si
+�S,M� = ��S − M��S + M + 1��S,M + 1� �8�

and

Si
−�S,M� = ��S + M��S − M + 1��S,M − 1� . �9�

In order to explicitly compute matrix elements of the opera-
tors, it is convenient to introduce orthonormal basis states. In
the case of fermion systems, we adopt the form

��� = ci,M
†

¯ cj,M�
† �0� , �10�

where i� j, and M �M� if i= j. With this definition, the op-
erations in Eqs. �6� and �7� do not change the order of cre-
ation operators in Eq. �10�. In the case of bosons, more than
two particles with the same M can occupy the same site and
the normalized basis states take the form

��� =
�ci,M

† �ni,M
¯ �cj,M�

† �nj,M��0�

�ni,M! ¯ �nj,M�!
� �ni,M� ¯ �nj,M�� .

�11�

For boson systems, the order of i and j and M and M� is not
relevant. The total spin of the whole system is given by

S2 = �Sx�2 + �Sy�2 + �Sz�2 =
S+S− + S−S+

2
+ �Sz�2, �12�

where Sx=�iSi
x, Sy =�iSi

y, and Sz=�iSi
z, and S�=�iSi

x� iSi
y.

We denote the value of the total spin of the system by Stot,
i.e., Stot�Stot+1�= �S2�.

III. CONSERVATION OF THE NUMBER OF PARTICLES
OF DIFFERENT SPINS AND GROUND-STATE

DEGENERACY

It should be noted that the Hubbard Hamiltonian con-
serves the number of particles

nM = �
i=1

N

ni,M �13�

for each M. To describe the set of nM of states, it is conve-
nient to introduce the notation

	nM
 = �nS,nS−1, ¯ ,n−S� , �14�

where �M=−S
+S nM =N. It is important to note that except for

S=1 /2, the operator Si
+Sj

−+Si
−Sj

+ changes the set 	nM
. For
example, if S=1, application of Si

+Sj
−+Si

−Sj
+ to states in the

set �n1=0 , n0=2 , n−1=0�, creates states in the set
�n1=1 , n0=0 , n−1=1�. Thus, except for S=1 /2, the matrix
element �	nM� 
�Si

+Sj
−+Si

−Sj
+�	nM
� can be nonzero even if

	nM
� 	nM� 
. Thus, the operation of Si
+Sj

−+Si
−Sj

+ on each state
with given 	nM
 must be treated carefully.

Let us denote by �G ,M� the ground state in the space with
the magnetization M. Because the Hamiltonian H and S�

commute with each other, S−�G ,M� is also a ground state
because

HS−�G,M� = S−H�G,M� = EGS−�G,M� . �15�

However, the set of numbers 	nM
 is not necessarily con-
served, that is,

S−H�G,M,	nM
� = EGS−�G,M,	nM
�

= EG �
	nM� 


a	nM� 
�G,M − 1,	nM� 
� , �16�

where �G ,M , 	nM
� denotes one of basis states with fixed
	nM
 that contribute to the expansion of �G ,M� in terms of
basis states. The energy of this state is given by
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EG =
�G,M,	nM
�S+HS−�G,M,	nM
�
�G,M,	nM
�S+S−�G,M,	nM
�

=
�	nM� 
�a	nM� 
�2�G,M − 1,	nM� 
�H�G,M − 1,	nM� 
�

�	nM� 
�a	nM� 
�2�G,M − 1,	nM� 
�G,M − 1,	nM� 
�
.

�17�

Because

�G,M − 1,	nM� 
�H�G,M − 1,	nM� 
�

�G,M − 1,	nM� 
�G,M − 1,	nM� 
�
� EG, �18�

in order to satisfy the relation in Eq. �17�, the state in each
set of numbers 	nM� 
 must be the ground state, i.e.,

�G,M − 1,	nM� 
�H�G,M − 1,	nM� 
�

�G,M − 1,	nM� 
�G,M − 1,	nM� 
�
= EG, �19�

and thus

H�G,M − 1,	nM� 
� = EG�G,M − 1,	nM� 
� . �20�

This shows that the same ground-state energy is found for all
sets 	nM� 
 except if a	nM� 
=0. This structure of degeneracy
reflects the fact that the rank of the SU�2S+1� is larger than
1 for S�1 /2. If the ground state is a fully symmetric state,
its degeneracy is given by the multiplets of the fully sym-
metric Young tableau of a given number of particles, as we
demonstrate in the following sections.

IV. GROUND STATE OF A FERMION SYSTEM WITH S= 3
2

A. Subspaces due to conservation of particle number of
each M

Let us now study the dependence of the ground-state
energy on U0. We illustrate the properties of the
model by considering a simple system with four
particles. We study the case of S=3 /2 on the five-site
lattice depicted in Fig. 1�a�. Qualitatively, our conclusions
do not change if we consider more complicated lattices.
Figure 2�a� shows the ground-state energies for the
sets 	nM
= �n3/2 ,n1/2 ,n−1/2 ,n−3/2�= �4,0 ,0 ,0� , �3,1 ,0 ,0� ,
�2,2 ,0 ,0� , �2,1 ,1 ,0� , �1,1 ,1 ,1�, corresponding to systems
in which the number of different states is 5, 50, 100, 250, and

625, respectively. The energy does not depend on the value
of M, and thus the energy-level structure is same for the
cases with the same set of numbers, e.g., for
�3,1 ,0 ,0� , �3,0 ,1 ,0� , ¯ , �0,0 ,1 ,3�. For a small value of
U0, the ground-state energies are all different. As U0 in-
creases, the ground-state energies of �3,1,0,0�, �2,2,0,0�, and
�2,1,1,0� become degenerate with that of �4,0,0,0�. This fact
indicates that the lowest energy state in these sets has total
spin Smax. However, we find that the energy of the lowest
energy state in the set �1,1,1,1� is always smaller than that of
�4,0,0,0�. This means that even at large U0 the ground state
has total spin S�Smax. Therefore, in the present case the
Nagaoka-ferromagnetic state, that is, the state of the maxi-
mum total spin, is not the ground state, even at large values
of U0.

In general, when there are multiple conserved quantities
that do not commute with each other, each energy eigenstate
of the system is usually degenerate as shown by Eq. �20�.15

In the present model, the total magnetization and the set 	nM

are conserved. In fact, the model is invariant under the SU�4�
operation whose rank is three. The eigenstates belong to vari-
ous subspaces represented by the Young tableau. In the case
where a state with the maximum total spin belongs to the

(b)(a)

FIG. 1. Lattices: �a� five sites and six bonds; �b� lattice �a� with
two additional bonds.
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FIG. 2. �Color online� Energies of the ground state for several
sets of �n3/2 ,n1/2 ,n−1/2 ,n−3/2�. �a� A system with four particles on
the lattice shown in Fig. 1�a�. The solid line denotes the ground-
state energy for �4,0,0,0�, circles: �3,1,0,0�, squares: �2,2,0,0�, tri-
angles: �2,1,1,0�, and bullets: �1,1,1,1�. �b� Same as �a� but for the
lattice shown in Fig. 1�b�.
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ground state, the ground state has the multiplets of the fully
symmetric Young tableau. The ground state depicted in Fig.
2�a� is not of this type, but belongs to some other subspace.

Let us study the total spin of the states in Fig. 2�a�. Figure
3 shows the U0 dependence of the total spin of the lowest
energy state for the sets 	nM
 on the lattice of Fig. 2�a�. The
total spin of the ground state is zero for all U0, and thus we
find that the state is spin singlet.

Next, we also study the change in the total spin of other
states as a function U0. The total spin of states in the sub-
space �4,0,0,0� is Smax= �3 /2��4=6. For small values of U,
the total spin of states in the subspace �3,1,0,0� is less than
Smax, but it becomes Smax when the ground-state energy be-
comes degenerate to that of the �4,0,0,0� subspace. The
ground-state energies of �2,2,0,0� and �2,1,1,0� become de-
generate to that of �4,0,0,0� at certain values of U0. However,
the total spin of the lowest energy state of these sets does not
reach Smax. This fact agrees with the earlier argument that if
S−�G ,M� consists of more than one set of 	nM
, neither of
these sets yields an eigenstate of the total spin although each
of them have the same ground-state energy. Therefore, the
expectation value of the total spin is not necessarily an inte-
ger.

B. Connectivity condition for the system with S= 3
2

Note that the lattice shown in Fig. 1�a� satisfies the so-
called connectivity condition for the case of S=1 /2 and the
Nagaoka-ferromagnetic state is realized at large U0. How-
ever, for S=3 /2, we find that the fully symmetric state is not
a ground state. As is well known,6,7 the Nagaoka-
ferromagnetic state is realized when we can produce all pos-
sible configurations by hopping without producing doubly
occupied sites �the connectivity condition�. For S=1 /2 �two
types of particles� and the lattice shown in Fig. 1�a�, this
condition is satisfied and the Nagaoka-ferromagnetic state is
realized. However, in the case of S=3 /2 particles with dif-
ferent magnetizations, i.e., M =−3 /2,−1 /2,1 /2,3 /2, the
connectivity condition is not satisfied. Indeed, the configura-
tion depicted in Fig. 4�a� cannot be changed into that of Fig.
4�b� by hopping only.

In order to re-establish the connectivity condition we may
add bonds and construct the lattice depicted in Fig. 1�b�. This
lattice has loops with an odd number of bonds and, therefore,
we need to change the sign of some hopping integrals. Then,
we find that the Nagaoka-ferromagnetic state is realized, as is
clear from Fig. 2�b�. Summarizing, we have shown that
S=3 /2 itinerant particle systems may exhibit Nagaoka ferro-
magnetism although the connectivity condition is more dif-
ficult to satisfy.

C. Structure of the ground state

We found that the ground state in each subspace for a set
	nM
 is unique but in each subspace we have one state with
the same energy. In Table I, we list all the sets 	nM
. The
structure indicates that there is a state with
Stot=6, 4, 2, and 0. In the case of S=1 /2, i.e., the case SU�2�
whose rank is one, there is a one-to-one correspondence be-
tween the magnetization M and 	n+ ,n−
, as is clear from
Table I. Thus, when we create states by applying S− from the
all-up state, we have only the state with Stot=2 for the four-
spin system. In contrast, in the case of S=3 /2, i.e., the case
SU�4� whose rank is three, we create different sets by apply-
ing S−. As we mentioned in Sec. III, the created states are
degenerate ground states. Therefore, the structure displayed
in Table I is intrinsic for systems with S=3 /2,5 /2, . . .. The
number of states is 35, which is the number of multiplets of
the fully symmetric Young tableau of length four for SU�4�.

V. GROUND STATE OF A BOSON SYSTEM
WITH S=1

Next, we study a system of S=1 particles, namely, a bo-
son system. Figure 5 shows the ground-state energies for the
sets 	nM
= �n1 ,n0 ,n−1�= �4,0 ,0� , �0,4 ,0� , �3,1 ,0� , �3,0 ,1� ,
�2,2 ,0� , �2,1 ,1� , �1,2 ,1�, corresponding to systems in
which the number of different states is 70, 70, 175, 175, 225,
375, and 375, respectively. Surprisingly, we find that the en-
ergies are the same for all the cases, regardless of U0. The
total spin of the different ground states are also plotted in
Fig. 5. It is clear that the magnetic properties of the boson
system are very different from that of the fermion system.
The values of the total spin are less than the maximum value
�Stot=4� except for �4,0,0� and �3,1,0�, which reflects the fact
that the eigenstate of maximum total spin contains more than
two sets of 	nM
, as in the case of the S=3 /2 system.

0 200
0

1

2

3

4

5

6

U0

Stot

FIG. 3. �Color online� The total spin Stot of the lowest energy
state for the cases shown in Fig. 2�a�. The legend is the same as in
Fig. 2.

3/2

1/2 −1/2

−3/2

3/2 1/2

−1/2−3/2

(b)(a)

FIG. 4. Nearest-neighbor hopping cannot change configuration
�a� into �b� without creating double occupancy.
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We find a ground state in each set, just as in the case of
S=3 /2. We list the sets in Table II. Again we find degenerate
ground states with Stot=4, 2, and 0, which is an intrinsic
property of systems with S�1 /2. The degeneracy of the
ground state is 15, which is the number of the multiplets of
fully symmetric Young tableau of length four for SU�3�.

Moreover, we find that even in the half-filled case, in the
boson system the total spin takes the maximum value. For
instance, for a system of four atoms on a simple square lat-
tice �corresponding to the half-filled case�, the ground state is
the same for all sets 	nM
 �results not shown�.

This property of boson systems can be understood as fol-
lows. Consider the subspace for a fixed set 	nM
. All the
off-diagonal matrix elements of the Hamiltonian H are −t or
zero. By subtracting an appropriate multiple of the unit ma-
trix, also the diagonal elements can be made negative or

zero. Thus, all the elements of the shifted matrix H̃ are either
negative or zero. In our model, all the sites are connected by
bonds and, therefore, there exist a number n�0 such that all

the elements of H̃2n are positive. Then, the Perron-Frobenius

theorem tells us that there exist a unique eigenstate of H̃2n

with an eigenvalue that is larger than the absolute value of all
other eigenvalues. This unique eigenstate is, therefore, the
ground state of H, which is totally symmetric with positive
coefficients, and contains the state of the maximum total
spin. However, as we mentioned above, this ground state has
an intrinsic degeneracy with respect to subspaces that have
different 	nM
 because we can always start from the state
with all maximum spins and let S− create different sets of
	nM� 
. The states that are generated in this manner have all
positive coefficients and are, therefore, ground states too.
Clearly, this property does not depend on the connectivity of
the lattice or on the value of U0.

In contrast, for fermion systems, it is in general impos-
sible to transform H such that all elements have the same
sign but in those cases for which such a transformation exist,
which is precisely the condition of Nagaoka ferromagnetism,
we can apply the same arguments as in the boson case to
prove that the ground state of H is totally symmetric with
positive coefficients and contains the state of the maximum
total spin.

VI. SUMMARY AND DISCUSSION

We have studied the magnetic properties of the ground
state of itinerant systems with S�1. We found that fermion
systems �S=3 /2� support an extended form of Nagaoka fer-
romagnetism but that the connectivity condition is more dif-
ficult to satisfy because of the presence of particles with
different magnetizations. When the maximum Stot state is the
ground state, the system has a degenerate ground state in
each set 	nM
 listed in Table I. Thus the ground-state mani-

TABLE I. Sets of particles of different M��0� 	nM
 for the cases of S=3 /2 and 1/2. For S=3 /2, we list
the sets for positive M only.

S=3 /2

M 6 5 4 3 2 1 0

	nM
 �4,0,0,0� �3,1,0,0� �3,0,1,0� �3,0,0,1� �0,4,0,0� �0,3,1,0� �1,0,3,0�
�2,2,0,0� �1,3,0,0� �2,1,0,1� �2,0,1,1� �0,3,0,1�

�2,1,1,0� �1,2,1,0� �1,2,0,1� �2,0,0,2�
�2,0,2,0� �1,1,2,0� �0,2,2,0�

�1,1,1,1�
S=1 /2

M 2 1 0 −1 2

	nM
 �4,0� �3,1� �2,2� �1,3� �0,4�

TABLE II. Sets of particles of different M��0� 	nM
 for the
case of S=1.

S=1

M 4 3 2 1 0

	nM
 �4,0,0� �3,1,0� �3,0,1� �2,1,1� �0,4,0�
�2,2,0� �1,3,0� �2,0,2�

�1,2,1�

0 200

-10

-5

0

5

Stot

E

U0

FIG. 5. �Color online� Ground-state energies E and the corre-
sponding total spin Stot as a function of U0 for four S=1 bosons and
various �n1 ,n0 ,n−1� on the lattice shown in Fig. 1�a�. The solid line
denotes data for �4,0,0�, solid triangles: �3,1,0�, open triangles:
�3,0,1�, open squares: �2,2,0�, reversed triangles: �2,1,1�, crosses:
�1,2,1�, and bullets: �0,4,0�.
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fold consists of not only the state of the maximum Stot but
also of states with smaller values of Stot, reflecting the SU�4�
symmetry of the model. This degenerate structure is intrinsic
for the systems with S�1 /2, where several sets of 	nM
 exist
for a given value of M.

For boson systems �S=1� we found that there is a ground
state in each set of 	nM
 and that, due to the SU�3� symmetry,
the same type of degenerate ground-state structure appears as
the one found for S=3 /2, but in this case regardless of the
value of U0 and of the shape of the lattice, which is an
intrinsic property of the bosonic case. Thus, we conclude that
boson itinerant magnetic systems always have a state with
the maximum total spin belonging to the manifold of ground
states. This property follows quite naturally from the fact that
the Hamiltonian of the boson system can be transformed
such that all elements have the same sign, implying that the

ground state is fully symmetrized. In contrast, for fermion
systems we need an additional condition, the condition for
the Nagaoka ferromagnetism, for the ground state to have the
maximum total spin. We expect that these properties will be
confirmed in real experimental systems.

ACKNOWLEDGMENTS

The authors thank Y. Takahashi for valuable discussions.
The present work was supported by Grant-in-Aid for Scien-
tific Research on Priority Areas, and also by the Next Gen-
eration Super Computer Project, Nanoscience Program from
MEXT of Japan. The numerical calculations were supported
by the supercomputer center of ISSP of Tokyo University.
Partial support by NCF, The Netherlands is gratefully ac-
knowledged.

1 W. Heisenberg, Z. Phys. 38, 411 �1926�; 49, 619 �1928�.
2 M. Roger, J. H. Hetherrington, and J. M. Delriew, Rev. Mod.

Phys. 55, 1 �1983�.
3 T. Momoi, P. Sindzingre, and N. Shannon, Phys. Rev. Lett. 97,

257204 �2006�.
4 J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 �1963�.
5 Y. Nagaoka, Phys. Rev. 147, 392 �1966�.
6 A. Mielke and H. Tasaki, Commun. Math. Phys. 158, 341

�1993�.
7 H. Tasaki, Prog. Theor. Phys. 99, 489 �1998�.
8 E. Müller-Hartmann, J. Low Temp. Phys. 99, 349 �1995�.
9 W. O. Putikka, M. U. Luchini, and M. Ogata, Phys. Rev. Lett.

69, 2288 �1992�.
10 Y. Watanabe and S. Miyashita, J. Phys. Soc. Jpn. 66, 2123

�1997�; 68, 3087 �1999�.

11 S. Miyashita, Prog. Theor. Phys. 120, 785 �2008�.
12 M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch,

Nature 415, 39 �2002�; L. Santos, M. A. Baranov, J. I. Cirac,
H.-U. Everts, H. Fehrmann, and M. Lewenstein, Phys. Rev. Lett.
93, 030601 �2004�.

13 Y. Takahashi �private communication�.
14 C. Honerkamp and W. Hofstetter, Phys. Rev. Lett. 92, 170403

�2004�; A. Rapp, W. Hofstetter, and G. Zarand, Phys. Rev. B 77,
144520 �2008�; A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu,
P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Kukin, and
A. M. Roy, arXiv:0905.2610 �unpublished�; M. A. Cazalilla, A.
F. Ho, and M. Ueda, arXiv:0905.4948 �unpublished�.

15 L. D. Landau and E. M. Lifshitz, “Quantum Mechanics” Course
of Theoretical Physics �Elsevier, Amsterdam, 1977�.

MIYASHITA, OGATA, AND DE RAEDT PHYSICAL REVIEW B 80, 174422 �2009�

174422-6


