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A microscopic model of the molecular magnet V15 is used to study mechanisms for the adiabatic change of
the magnetization in time-dependent magnetic fields. The effects of the Dzyaloshinskii-Moriya interaction, the
most plausible source for the energy-level repulsions that lead to adiabatic changes of the magnetization, are
studied in detail. We find that the energy-level repulsions that result from this interaction exhibit a strong
dependence on the direction of the applied field. We also discuss the role of magnetic anisotropy in the
molecule Mn12-acetate.
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I. INTRODUCTION

Recently, magnetic molecules such as Mn12 or V15 have
attracted a lot of interest. These nanomagnets are often used
to study explicit real-time quantum dynamics, e.g., tunneling
of the magnetization and quantum(de)coherence.1–22 As a
result of the very weak intermolecular interactions, experi-
ments can directly probe the magnetization dynamics of the
individual molecules. In particular, the adiabatic change of
the magnetization at low temperature is governed by the dis-
crete energy-level structure.23–27

The adiabatic change of the magnetization requires some
interactions that yield energy-level repulsions, i.e., interac-
tions that do not commute with the magnetization. The
Dzyaloshinskii-Moriya(DM) interaction is the most likely
candidate for such an interaction.11,28,29In the case of aniso-
tropic high-spin molecules such as Mn12 and Fe8, simplified
anisotropic single-spin models for a specific spin multiplet
can approximately reproduce the gaps of the level repulsions.
However, the case of V15 is more complicated because V15
has half-odd-integer spin and the time-reversal symmetry en-
forces at least a twofold degeneracy of the energy levels at
zero field.

The possibility that the DM interaction might be the main
mechanism for the adiabatic change for the magnetization in
V15 has been explored in earlier work29,30but the dependence
of the energy-level scheme on the direction of the magnetic
field was not considered. In this paper we further elaborate
on this issue and demonstrate that the effect of the DM in-
teraction on the magnetization dynamics strongly depends on
the direction of the applied magnetic field. This directional
dependence has not been observed in experiments on V15.
Therefore the DM interaction generally does not explain why
the magnetization changes as the magnetic field is swept.

It has been pointed out that the DM interaction is accom-
panied by a higher-order correction term that restores the
SU(2) symmetry.31–34 In this paper, we focus on the effects
of the DM interaction and leave the inclusion of the higher-
order term for future study. As another source of level repul-
sion, we might consider the hyperfine interaction with the
nuclear spin. The effects of the hyperfine interaction have
already been discussed in Ref. 52.

As the DM interaction has a vector character and is an-
isotropic, the dynamics of the magnetization is expected to
depend on the direction of the magnetic field. First we study
the characteristic properties of the DM interaction for a sim-
plified model of V15, namely, three spins on a triangle. Then
we confirm the properties found in the three-spin model by
full diagonalization of the 15-spin model of V15. In order to
bridge the energy scales involved(e.g., from 800 K, a typical
energy scale for the interaction between individual magnetic
ions, to about 10−2 K, a typical energy scale for energy-level
splittings), the calculation of the energy levels of the many-
spin Hamiltonian has to be very accurate. We have tested
various standard algorithms to compute the low-lying states.
For systems that are too large to be solved by full exact
diagonalization(such as the 15-spin V15 model), we use the
Lanczos method with full orthogonalization(LFO), a Cheby-
shev polynomial projector(CPP) method, and a power
method with additional subspace diagonalization. These al-
gorithms can solve the rather large eigenvalue problems with
sufficient accuracy. The consistency of the data obtained by
different methods gives extra confidence in the numerical
results.

The magnetic properties of molecules such as Mn12 are
often studied by considering a simplified model for the mag-
netic energy levels for a specific spin multiplet, e.g.,S=10.
However, for these and other, similar, magnetic molecules
that consist of several magnetic moments[in the case of
Mn12, eight Mn3+ sS=2d and four Mn4+ sS=3/2d], the reduc-
tion of the many-body Hamiltonian to an effective Hamil-
tonian for a specific spin multiplet is nontrivial. Magnetic
anisotropy, a result of the geometrical arrangement of the
magnetic ions within a molecule of low symmetry, mixes
states of different total spin and enforces a treatment of the
full Hilbert space of the system. For Mn12, the dominant
contribution to the magnetic mixing due to spin-orbit inter-
actions is also given by the DM interaction.35,36 In principle,
this type of interaction can change energy-level crossings
into energy-level repulsions. The presence of the latter is
essential to explain the adiabatic changes of the magnetiza-
tion at the resonant fields.23–27 Thus, a minimal magnetic
model Hamiltonian should contain(strong) Heisenberg inter-
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actions, DM interactions, and a coupling to the applied mag-
netic field.11,28–30,37–42Experiments on Mn12 suggest that the
energy gaps related to the transition from a state with mag-
netizationM <−10 to a state with magnetizationM ,4 are
of the order of 10−9 K.43 Such gaps are too small to detect
with standard precision(13–14 digits) calculations, and
therefore in this paper we present only the global energy-
level diagram obtained from microscopic model calculations.

The paper is organized as follows. In Sec. II we analyze a
reduced three-spin model withC3 symmetry for the V15 mol-
ecule. Results for the energy-level schemes for a 15-spin
model of the V15 are presented in Sec. III. In Sec. IV we
discuss the effects of anisotropic terms and the cases with
less symmetry. In Sec. V, we report results for Mn12. In Sec.
VI we give our conclusions. In Appendixes A and B, we
briefly discuss some analytical solutions and the numerical
algorithms that we use to compute the energy levels, respec-
tively.

II. TRIANGLE MODEL WITH C3 SYMMETRY

The V15 molecule hasC3 symmetry but is not invariant
for mirror reflection about the triangle plane. Therefore we
take as a simplified model for the V15 molecule, a system of
three spins on a triangle withC3 symmetry only. We choose
the z axis to lie along the axis ofC3 symmetry. The Hamil-
tonian is given by

H = − o
i=1

3

Ji,i+1Si ·Si+1 + o
ki,jl

Di,j · fSi 3 Sjg − h · So
i

SiD ,

s1d

where J1,2=J2,3=J3,1;J denotes the exchange interaction
and h represents the applied magnetic field. In general we
can choose any direction of the DM vectorDi,j unless there
is some additional symmetry. In the present case, because of
the C3 symmetry, thez component of the DM vectors must
all be equal, i.e.,

D1,2
z = D2,3

z = D3,1
z ; Dz. s2d

If the system has mirror reflection symmetry about the tri-
angle plane thenDz=0. Thex andy components of the DM
vector,Di,j

x andDi,j
y , must obey the relation
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whereDx;D1,2
x andDy;D1,2

y .
In Appendix A we give the analytic expressions for the

eigenvalues and eigenvectors of model(1) in the case that

the applied field is parallel to thez axis and the conditions
(2) and(3) hold. Then the Hamiltonian(1) is block diagonal,
the matrix containing four blocks of 232 matrices. The
(eight-dimensional) Hilbert space separates into four two-
dimensional spaces:

hu3/2,3/2l,ualj, hu3/2,1/2l,uālj,

hu3/2,1/2l,ub̄lj, hu3/2,3/2l,ublj, s4d

where the stateuS, Ml denotes an eigenstate of the Heisen-
berg model with total spinS and magnetizationM. The ex-
pressions for the orthonormal statesual and ubl are given in

Appendix A. The stateuāl sub̄ld denotes the stateual subld
with all spins reversed. From Eq.(4) it follows that there is
no mixing among the four levels withS= ±1/2, andthere-
fore they simply cross each other. From the analytical solu-
tion it is also easy to see that there are no energy-level re-
pulsions ath=0. Furthermore, one can show analytically that
it is impossible to change the magnetization from −3/2 to
+3/2 by(adiabatically) reversing the external field along the
z axis.28

In the top panel of Fig. 1 we show the energy levels as a
function of the strengthh of the applied magnetic field for
the caseDx=Dy=Dz. The field is aligned along thez axis. It
is evident that there is no level mixing ath=0. It is important
to note that the small energy difference between the first

FIG. 1. (Color online) Energy levels of Hamiltonian(1) for J
=−2.5 K,Dx=Dy=Dz=0.25 K. At each value ofh the slope of each
level gives the corresponding value of the projection of the total
magnetization on the magnetic field axis. Top: Applied magnetic
field h parallel to thez axis. Bottom: Applied magnetic fieldh along
the x axis.
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excited state and the degenerate ground states ath=0 is not
the minimum energy difference of the avoided level crossing
(nearh=0). Therefore, ath=0 there is no adiabatic change of
the magnetization. On the other hand, if we apply the mag-
netization along thex direction (i.e., perpendicular to the
symmetry axis of the triangle), then two of the states become
degenerate. We find two nearly degenerate avoided level
crossings, as shown in the bottom panel of Fig. 1. As an
intermediate case, in Fig. 2 we show the energy-level dia-
gram for the case that the magnetic field is tilted by 45° with
respect to thez axis fh=hs1,0,1d /Î2g. Then, there is a
simple crossing at zero field and an avoided level crossing
between the levels ofM = ±1/2 at afinite magnetic field.
Indeed, a closer look at the level diagram(see the bottom
panel in Fig. 2) reveals that the minimum energy difference
between the two pairs of levels does not occur at zero field
but at h<0.35 T. This implies that the Landau-Zener-
Stückelberg transition from theu1/2,−1/2l to the u1/2,1/2l
level does not take place ath=0 but ath<0.35 T. In con-
clusion, the position and the energy splitting of the avoided
level crossing that is responsible for the adiabatic change
depend on the direction of the field.

The numerical results discussed above have been obtained
for Dx=Dy=Dz. In Ref. 22 the DM vector is taken parallel to
they axis at all the bonds and the field is applied along thez
axis. For the present model, this case corresponds to the case
with only Dz sDx=Dy=0d and a field applied in thex direc-

tion. In this case, the gap opens symmetrically with respect
to the applied field.22 However, Ref. 22 did not address the
dependence on the direction of the magnetic field. In the next
section we repeat the analysis of this dependence for a 15-
spin model of the V15 molecule.

III. 15-SPIN MODEL FOR THE VANADIUM COMPLEX
V15

A. Spin interactions in V15

In Fig. 3, we show the schematic diagram of the dominant
magnetic(Heisenberg) interactions in the 15-spin model of
the V15 molecule (K6fV15

IVAs6O42sH2Odg ·8H2O). The mag-
netic structure consists of two hexagons with sixS=1/2
spins each, enclosing a triangle with threeS=1/2 spins. All
dominant Heisenberg interactions are antiferromagnetic. The
dimension of the Hilbert space of this model is 215=32 768.
The minimal Hamiltonian is given by expression(1) with 15
instead of three spins.22,28,29,40The Heisenberg interactions
Ji,j in Eq. (1) between the vanadium atoms are defined ac-
cording to Fig. 3. For simplicity, we assume thatDi,j =0 ex-
cept for bonds for which the Heisenberg exchange constant
is the largest(i.e., equal toJ).29,40 Rotations of 2p /3 and
4p /3 around the axis perpendicular to and passing through

FIG. 2. (Color online) Top: Energy levels of Hamiltonian(1) for
J=−2.5 K, Dx=Dy=Dz=0.25 K, and the applied magnetic fieldh
=hs1,0,1d /Î2 tilted by 45° with respect to thez axis. Bottom:
Detailed view of theh dependence of the four lowest energy levels.
At each value ofh the slope of each level gives the corresponding
value of the projection of the total magnetization on the magnetic
field axis.

FIG. 3. Schematic diagram of the magnetic interactions in
model (1) of the V15 molecule.
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the center of the hexagons leave the V15 complex invariant.
This enforces the constraints(2) and (3) on the values of
Di,j.

29,30

B. Energy-level diagrams

In this section, we will study the energy eigenvalues for
various sets of parameters of the Hamiltonian, i.e.,Jij and/or
Di j , which have so far been proposed for the 15-spin model
of V15.

4,18,29,40

First let us study the case of the model parameters given
in Ref. 40,

J = − 800 K, J1 = J8 = − 54.4 K,

J2 = J9 = − 160 K, J3 = J4 = J5 = J6 = 0. s5d

In the absence of DM interactions, our method reproduces
the energy gap between the ground state and the first excited
state ath=0 to be a value of 4.124 78 K in agreement with
the result of Ref. 40. This value is in reasonable agreement
with the experimental value of approximately 3.7 K.43 This
energy gap causes a transition between the statesu1/2,1/2l
and u3/2,3/2l which takes place ath<2.8 T (because 1 T
corresponds to 1.343 K), in good agreement with the experi-
mental value 2.8 T.

Following Ref. 30, we now take for the DM interaction
parameters

D1,2
x = D1,2

y = D1,2
z = 40 K, s6d

which is approximately 5% of the largest Heisenberg cou-
pling. Using the rotational symmetry of the hexagon it fol-
lows from Eq. (3) that D3,4

x =14.641 K, D3,4
y =−54.641 K,

D3,4
z =40 K and D5,6

x =−54.641 K, D5,6
y =14.641 K, D5,6

z

=40 K. If the two hexagons are not equivalent we cannot
reduce the number of free parameters by using a symmetry
argument(see below). However, for simplicity, we may as-
sume that thesx,yd positions of the spins on the lower hexa-
gons differ from those on the upper hexagon by a rotation
aboutp /3. This yields for the remaining model parameters

D10,11
x =−14.641 K, D10,11

y =54.641 K, D10,11
z =40 K, D12,13

x

=−40 K, D12,13
y =−40 K, D12,13

z =40 K, and D14,15
x

=54.641 K,D14,15
y =−14.641 K,D14,15

z =40 K. For this choice
of model parameters, the eight lowest energies of the V15
model (1) for two values of the applied magnetic field(h
=0 andh=4 T) along thez axis can be found in Table I.
From Table I we see that for zero field the DM interaction
splits the doubly degenerate doublets ofS=1/2 states into
two doublets ofS=1/2 states. The difference in energy be-
tween the doubly degenerate, first excited states and the two
fold degenerate ground states has a value of 0.0085 K. This
value is much smaller than the experimental estimate of
0.05 K,22 but of the same order of magnitude as the value
cited in Ref. 29. The next four higher levels areS=3/2
states. The energy-level splitting between theS=3/2 andS
=1/2 states is 4.1 K.

Next, we study the parameter set of Ref. 29:

J = − 800 K, J1 = J8 = − 225 K,

J2 = J9 = − 350 K, J3 = J4 = J5 = J6 = 0. s7d

In the absence of DM interactions, the energy gap between
the fourfold degenerate ground state and the first excited
state is 3.61 K, in full agreement with the result of Ref. 29.
Note that this value of the gap is fairly close to the experi-
mental value of 3.7 K.43 Taking for the DM interactions

D1,2
x = D14,15

x = 25 K,

D3,4
x = D5,6

x = D10,11
x = D12,13

x = − 12.5 K,

D3,4
y = − D5,6

y = − D10,11
y = D12,13

y = − 21.5 K, s8d

our calculation for the splitting between the two doubly de-
generateS=1/2 levels yields 0.0037 K, about a factor of 2
larger than the value cited in Ref. 29. For the energy splitting
between theS=1/2 andS=3/2 levels we obtain 3.616 K
instead of the value 3.618 K given in Ref. 29. These differ-
ences seem to suggest that a perturbation approach29 for the
DM interaction may not be sufficiently accurate for quanti-
tative purposes.44

Finally, we study a parameter set obtained from a first-
principles calculation18

J = − 809 K, J8 = − 120 K,

J9 = 120 K, J1 = − 30 K, J2 = − 122 K, J3 = − 3 K,

J4 = − 11 K, J5 = − 3 K, J6 = − 2 K s9d

(see Table I in Ref. 18). This set yields an energy gap of
4.915 K, as given in Ref. 18. Adding a DM interaction with
the parameters(8) does not significantly change the energy
gap between the singlet and triplet states.

In Fig. 4 we show the results for the set(7) and the DM
interaction parameters of(6). For the energy gap at zero
field, we find 3.7 K(instead of 4.1 K for theJ’s of Ref. 40),
in good agreement with the experimental estimate of 3.7 K.43

The results for the zero-field energy gap suggest that there
are many different sets of model parameters that approxi-

TABLE I. The eight lowest eigenvaluesEi and total spinSi of
the corresponding eigenstates of the V15 model (1) with model pa-
rameters taken from Ref. 40 for two values of the external applied
field h parallel to thez axis. The values of the DM vectors are given
in the text. The distance betweenEi and the exact eigenvalue closest
to Ei is Di =kwi u sH−Eid2uwil1/2,10−9 for i =1,… ,7.

i Ei sh=0d Si sh=0d Ei sh=4 Td Si sh=4 Td

0 −3679.53623744 0.51 −3683.51181131 1.50

1 −3679.53623744 0.51 −3682.21997451 0.51

2 −3679.52777009 0.51 −3682.18488706 0.53

3 −3679.52777009 0.51 −3678.11784886 1.50

4 −3675.42943612 1.50 −3676.84225573 0.52

5 −3675.42943612 1.50 −3676.83951808 0.51

6 −3675.42325141 1.50 −3672.74011178 1.50

7 −3675.42325141 1.50 −3667.37940477 1.50
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mately reproduce the experimental gap between the singlet
and triplet states. However, as we show below, the energy
gap at zero field does not necessarily correspond to the gap
of a level repulsion that is required for an adiabatic change of
the magnetization.

We now study the energy-level diagram as a function of
the direction of the magnetic field. As shown in the bottom
panel of Fig. 4, when the field is parallel to the symmetry
axis the energy levels ofM = ±1/2 simply cross, just as in
the case of the top panel of Fig. 1. In Fig. 5, we present
results for the cases where the angle between the applied
field and thez axis is 45° and 90°, respectively. Clearly, we
find the same type of dependence of the energy levels on the
angle of the field as in the case of the three-spin model(see
bottom panel of Fig. 2 and bottom panel of Fig. 1, respec-
tively). Exactly the same qualitative features are obtained for
the other sets of parameters(7) and (9) (results not shown).

Up to now, we used DM vectors that satisfy the rotational
symmetry of a hexagon, and we took the same DM vectors
for the other hexagon for simplicity.29 However, if there is
some symmetry that connects the upper and lower hexagons,
we have a relation between the DM vectors on both hexa-
gons. In concert with the relations between the exchange
couplings, let us assume that the upper and lower hexagons
are related to each other by a 180° rotation around a vector
that passes through V atom number 7(see Fig. 3) and the
middle of the line connecting the two other V atoms of the
triangle. This symmetry operationX transforms the sites

hs1,2d , s3,4d , s5,6dj into hs14,15d , s10,11d , s12,13dj. If
we place they axis along the line through V atom number 7
and through the middle of the line connecting V atoms 8 and
9, and if we takeD1,2=sDx,Dy,Dzd as the reference DM
vector, the other DM vectors are given by

D3,4= R2D1,2, D5,6= RD1,2,

D14,15= XD1,2, D10,11= RXD1,2,

D12,13= R2XD1,2. s10d

Here R denotes a rotation of the hexagons around 2p /3 in
the plane of the hexagons. The energy-level diagrams for the
set(5) and(6), with the additional constraint imposed by the
above symmetry, are qualitatively similar to those obtained
in Figs. 4 and 5(results not shown).

Summarizing, as in the case of the three-spin model, all
our results for the 15-spin V15 model clearly demonstrate
that the mixing of levels strongly depends on the direction of
the magnetic field. It seems therefore that this dependence is
a generic feature of the DM interaction.

FIG. 4. (Color online) Top: The eight lowest energy levels of
V15 model (1) with model parameters taken from Ref. 29 as a
function of the applied magnetic fieldh parallel to thez axis. The
values of the DM vector are given in the text. Bottom: Detailed
view of the four lowest energy levels ath<0.

FIG. 5. (Color online) Same as the right panel in Fig. 4 except
that the applied magnetic fieldh=hs1,0,1d /Î2 is tilted by 45° with
respect to thez axis (top) andh is along thex axis (bottom).
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IV. EFFECTS OF LOWER SYMMETRY

We now discuss the effects of distortion of the triangle
and anisotropic exchange interactions in the triangle model
of V15 on the energy-level diagram forh<0. When the tri-
angle is distorted(J1,2ÞJ2,3ÞJ3,1ÞJ1,2) the degeneracy of
the two doublets ath=0 is lifted, even ifDx=Dy=Dz=0. In
Figs. 6 and 7 we show data forJ1,2=−2.5 K, J2,3=−2.0 K,
and J3,1=−3.0 K and Dx=Dy=Dz=0.25 K for the applied
magnetic fieldh=hs1,0,1d /Î2 tilted by 45° with respect to
the z axis, and for field directions parallel to thez axis and
along thex axis. Unless the field is parallel to thez axis, the

energy-level diagrams are qualitatively similar to those of the
undistorted triangle(see Figs. 1 and 2), that is, crossings at
h=0 and level repulsions close toh=0 but not ath=0. How-
ever, in the case of an undistorted triangle with anisotropic,
antiferromagnetic exchange interactions(i.e., different for
the x,y, and z components of the spins) and Dx=Dy=Dz
=0.25 K, the energy-level diagrams are qualitatively similar
to the ones of the undistorted triangle(results not shown).

V. MANGANESE COMPLEX: Mn 12

The four inner Mn4+ ions in the Mn12 molecule
[Mn12sCH3COOd16sH2Od4O12·2CH3COOH·4H2O], have
spin S=3/2. Theother eight Mn3+ ions have spinS=2. The
dimension of the Hilbert space of this system is 44358

=108. If the total magnetization is a conserved quantity, it
can be used to block-diagonalize the Hamiltonian, allowing a
numerical study of models of this size.41,45 However, to
study the adiabatic change of magnetization, we have to take
into account all the states, and the dimension of the matrix
becomes prohibitively large. Thus we need to simplify the
model in order to reduce the dimension. A drastic reduction
of the number of spin states can be achieved by assuming
that the strong antiferromagnetic Heisenberg interactionJ8
between an inner ion and its outer neighbor allows the re-
placement of the magnetic moment of an inner ion by an
effective S=1/2 moment. The schematic diagram of this
simplified (but still complicated) model37 is shown in the top
panel of Fig. 8. The dimension of the Hilbert space of this
model is 24354=104. In the following we study this simpli-
fied model.

The Hamiltonian for the magnetic interactions of the sim-
plified Mn12 model can be written as37

H = − JSo
i=1

4

SiD2

− J8 o
si,jdPB

Si ·Sj − Kzo
i=1

4

sSi+4
z d2

+ o
si,jdPB

Di,j · fSi 3 Sjg − o
i=1

8

h ·Si , s11d

where the index 1ø i ø4 s5ø i ø8d refers toS=1/2 sS=2d
spins and B denotes the set of pairs B
=hs1,5d ,s1,8d ,s2,5d ,s2,6d ,s3,6d ,s3,7d ,s4,6d ,s4,8dj. The
first two terms describe the isotropic Heisenberg exchange
between the spins. The third term(Kz) describes the single-
ion easy-axis anisotropy ofS=2 spins. The fourth term rep-
resents the antisymmetric DM interaction in Mn12. The vec-
tor Di,j determines the DM interaction between theith S
=1/2 spin and thej th S=2 spin. The last term describes the
interaction of the spins with the external magnetic fieldh.
Note that the factorgmB is absorbed in our definition ofh.
Model (11) reproduces experimental data, such as the split-
ting of the neutron scattering peaks, the results of electron
paramagnetic resonance measurements, and the temperature
dependence of the magnetic susceptibility.37

The first three terms in the Hamiltonian(11) conserve the
z component of the total spinMz=oi=1

8 Si
z. The DM interac-

tion, on the other hand, mixes states with different total
spins. Hence, the DM interaction can change level crossings

FIG. 6. (Color online) Energy-level diagram of the Hamiltonian
(1) of a distorted triangle with model parametersJ1,2=−2.5 K,
J2,3=−2.0 K, J3,1=−3.0 K, and Dx=Dy=Dz=25 K. The applied
magnetic fieldh=hs1,0,1d /Î2 is tilted by 45° with respect to thez
axis.

FIG. 7. (Color online) Same as Fig. 6 except that the applied
magnetic fieldh is parallel to thez axis (top) and along thex axis
(bottom).
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into level repulsions. Therefore, the presence of the DM in-
teraction may be sufficient to explain the experimentally ob-
served adiabatic changes of the magnetization.

The fourfold rotational-reflection symmetry(S4) of the
Mn12 molecule imposes some relations between the DM vec-
tors. There are only three independent DM parameters:37

Dx;D1,8
x , Dy;D1,8

y , and Dz;D1,8
z , as indicated in Fig. 8.

The parameters of the model(11) have been estimated by
comparing experimental and theoretical data. In this paper
we will use the parameter set B from Refs. 37 and 42:J
=23.8 K, J8=79.2 K, Kz=5.72 K, Dx=22 K, Dy=0, andDz
=10 K. Although the amount of available data is not suffi-
cient to fix all these parameters accurately, we expect that the
general trends in the energy-level diagram will not change
drastically if these parameters change relatively little.

In Table II we present results for the energy and total spin
of the 21 lowest states forh=0 andh=5 T (in these calcu-
lations h is parallel to thez axis). The numerical results
obtained by full exact diagonalization(LAPACK), the Lanczos
method with full orthogonalization(see Appendix B), and
the Chebyshev-polynomial-based projector method(see Ap-
pendix B) are the same to working precision(about 13 dig-

its). Clearly there are states with total spin eight, nine, and
ten within these 21 lowest eigenstates. Although the total
magnetization is not a good quantum number, we can label
the various eigenstates by their(calculated) magnetization.

The S=10 single-spin model for Mn12

H = − DsSzd2 − hSz, s12d

whereD denotes the uniaxial anisotropy, is often used as a
starting point to interpret experimental results.6,7,12–14,40The
energy levels of this model exhibit crossings at the resonant
fields h= ±Dn for n=−10,… ,10, in qualitative agreement
with our numerical results(shown in the bottom panel of Fig.
8) for the microscopic model(11). A fit of the first eight level
crossings of model(12) to the data of Fig. 8 yieldsD
<0.74 K, in good agreement with experiments.6,7 The
Hamiltonian of the single-spin model(12) commutes with
the magnetizationSz and therefore its energy diagram dis-
plays only level crossings, no level repulsions. Adding aniso-
tropy of the formCsS+

4+S−
4d to model(12) changes the esti-

mated value ofD and leads to level repulsions when the
magnetization changes by 4.37,46–49

It is also of interest to compare the level splitting ath
=0 obtained by lowest-order degenerate perturbation theory
of model (12) with fourth-order anisotropy of the formS+

4

+S−
4 (Refs. 47, 50, and 51)

DEl+1,l = 32DS C

16D
Dm/2 1

fsm/2 − 1d ! g2

sS+ md!
sS− md!

, s13d

for m even (DEl+1,l =0 for m odd) with the result of the
microscopic model calculation based on model(11). In Eq.
(13) l denotes the perturbed eigenstates in increasing order of
energy andm is the magnetic quantum number of the unper-
turbed states.47 Using the valuesD<0.69 K, C/D<5.7
310−5 obtained by fitting the single-spin model to experi-
mental data,47 the energy gap form=6 is given by

DE13,12< 0.000 22 K. s14d

Taking into account that(because of the presence ofS<9
states) the correspondingS<10 levels of model(11) are the
14th and 15th lowest energy levels, Table II shows that for
h=0, DE13,12=0.000 42 K. In view of the uncertainties on
the estimates of the various model parameters, the difference
of only a factor of 2 is remarkably small. From this compari-
son, we may conclude that the DM interaction leads to en-
ergy gaps that are of the same order of magnitude as the gaps
due to the fourth-order termsS+

4+S−
4 in the single-spin model.

In the bottom panel of Fig. 8 we show the results for the
lowest 21 energy levels of the Mn12 model as a function of
the applied magnetic field as obtained by LFO. The applied
magnetic field is parallel to thez axis. In Fig. 8 solid
(dashed) lines represent eigenstates withS<10 (9) (within
an error of about 10%). Also eigenstates withS<8 appear
for h.4 but these are not shown for clarity. For the Mn12
model, the DM induced energy splittings between theS
<10,M <−10 state and other states are less than 10−6 K.
Adding an extra transverse field by tilting theh field by 5°
with respect to thez axis does not change this conclusion
(results not shown).

FIG. 8. Top: Schematic diagram of the magnetic interactions of
the simplified model(11) of the Mn12 molecule(Ref. 37). Black
circles,S=1/2; open circles,S=2. Also shown are the DM vectors
(for i , j and Di,j =−D j ,i). Bottom: (Color online) The 21 lowest
energy levels of the Mn12 model (11) as a function of the applied
magnetic fieldh. Solid lines, eigenstates withS<10; dashed lines,
eigenstates withS<9. The applied magnetic fieldh is parallel to
the z axis.
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Finally, we added to model(11) the next-to-lowest order
relativistic correction to the local anisotropy that is compat-
ible with the symmetry of the square37

H1 = K1fsS1
xd2 + sS2

yd2 + sS3
xd2 + sS4

yd2g. s15d

Although we took a perhaps unrealistically large value of
K1 sK1=Kz/2d, we were unable to detect energy-level repul-
sions up to theM <−10,M <3 transition (results not
shown). On the other hand, in experiments,6,7,12 adiabatic
changes of the magnetization have been observed ath
<3.4 T sMz<−10→Mz<4d and h<3.9 T sMz<−10
→Mz<3d and the magnitude of the energy splittings is of
the order of 10 nK.43 The precision of the present calcula-
tions is about 10−6 K. Thus, it is consistent that within the
(very high) resolution in theh field and the 13-digit precision
of the calculation, no information about the gap could be
extracted. The algorithms developed for the work presented
in this paper can be used for 33-digit calculations without
modification.

It has already been demonstrated that the many-spin
model (11) can reproduce neutron scattering data, high-
frequency electron spin resonance, and the temperature de-
pendence of the magnetic susceptibility of the Mn12
system.37 Our results for the energy-level diagram show fea-
tures (for example, the presence ofS=9 levels, see Fig. 8)
that are not accounted for by a single-spinS=10 model for

Mn12. In Sec. III we discussed the properties of the level
repulsions due to the DM interactions in the V15 system. For
the Mn12 system we expect to find similar behavior. How-
ever, we find that the energy differences at the crossing
points are smaller than the 10−6 K accuracy of our numerical
calculations. Therefore in this section we studied the main
features of the energy-level diagram of Mn12. In principle, it
is possible to leave theS<10 multiplet by sweeping the
magnetic field but for Mn12 the probabilities for these tran-
sitions are also smaller than the 10−6 K accuracy of our nu-
merical calculations. Finally, there is the possibility that cou-
plings such as the hyperfine interaction also yield level
repulsions with energy-level splittings that are significantly
larger than those generated by the DM interaction. We leave
the study of these interesting topics for future research.

VI. DISCUSSION

We have studied the dependence of the energy-level dia-
grams, with level repulsions due to the Dzyaloshinskii-
Moriya interaction, on the direction of the applied magnetic
field. We found that the dependence on the direction of the
magnetic field seems to be generic, at least if the system has
C3 symmetry. Our numerical data suggest that the three-spin
model reproduces the main features of the 15-spin model of
V15. The presence of the Dzyaloshinskii-Moriya interaction
allows for adiabatic changes of the magnetization but, ac-

TABLE II. The 21 lowest eigenvaluesEi and total spinSi of the corresponding eigenstates of the Mn12

model (11) for two values of the external applied fieldh along thez axis. The distance betweenEi and the
exact eigenvalue closest toEi is Di =kwi u sH−Eid2uwil1/2,10−10 for i =1,… ,7. Note that forh=0 the levels
12, 13, 18, 19, and 20 belong to theS<9 subspace and not to theS<10 subspace.

i Ei sh=0d Si sh=0d Ei sh=5 Td Si sh=5 Td

0 −812.771882673675 9.72 −878.203468556749 9.77

1 −812.771882673460 9.72 −857.042137859145 9.78

2 −798.326618260922 9.72 −837.727273846391 9.76

3 −798.326618261122 9.72 −820.218084451590 9.73

4 −785.677644659194 9.70 −816.530388063144 8.82

5 −785.677644658983 9.70 −804.449056631056 9.69

6 −774.774953284432 9.68 −804.242954124067 8.77

7 −774.774953284294 9.68 −798.519706376890 8.82

8 −765.549187817101 9.65 −790.336285910398 9.65

9 −765.549187333902 9.65 −788.717912654407 8.78

10 −757.919915510036 9.61 −782.037906282298 8.82

11 −757.919915509970 9.61 −777.789121186874 9.60

12 −757.673722613912 8.77 −774.222534072884 8.79

13 −757.673722613981 8.77 −773.614730624955 8.80

14 −751.806498916496 9.57 −766.993852023410 8.80

15 −751.806072514140 9.57 −766.720405060281 9.55

16 −747.135398548595 9.54 −760.807893152451 8.79

17 −747.135398548602 9.54 −760.482768227423 8.12

18 −746.357522623039 8.77 −757.060762637193 9.51

19 −746.357522623082 8.77 −754.700878489864 8.59

20 −745.778951523327 8.70 −753.310517350023 8.78

De RAEDT et al. PHYSICAL REVIEW B 70, 064401(2004)

064401-8



cording to our calculations, the value of the resonant field for
the u1/2,−1/2l to u1/2,1/2l transition changes with the di-
rection of the magnetic field. The Dzyaloshinskii-Moriya in-
teraction not only lifts the degeneracy but, depending on the
direction of the field with respect to the symmetry axis, also
shifts the resonant point away fromh=0.

The butterfly hysteresis loop observed in time-resolved
magnetization measurements has been interpreted in terms of
a combination of a Landau-Zener-Stückelberg transition at
zero field and spin-phonon coupling.16,22 Our results show
that unless the field is applied in a special direction(x or y
direction in this case), the adiabatic magnetization process is
no longer symmetric with respect to the field. The depen-
dence on the direction of the field should lead to observable
changes in the hysteresis loops. So far, only weak directional
dependence has been reported in experiments.43 Therefore,
it seems that it is necessary to explore other mechanisms
that yield energy-level repulsions such as hyperfine
interactions.52
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APPENDIX A: DIAGONALIZATION OF MODEL (1)

Here we collect some analytical results of the solution of
the eigenvalue problem of Hamiltonian(1). We consider only
the case of a magnetic field that is parallel to thez axis fh
=s0,0,hzdg. For a DM vector satisfying the conditions(2)
and (3) the eight eigenvalues are given by

E0,1=
− Î3Dz + 4hz ± Î9Dx

2 + 9Dy
2 + sÎ3Dz − 3J + 2hzd2

4
,

E2,3=
− Î3Dz − 4hz ± Î9Dx

2 + 9Dy
2 + sÎ3Dz − 3J − 2hzd2

4
,

E4,5=
Î3Dz ± Î3Dx

2 + 3Dy
2 + sÎ3Dz + 3J − 2hzd2

4
,

E6,7=
Î3Dz ± Î3Dx

2 + 3Dy
2 + sÎ3Dz + 3J + 2hzd2

4
,

sA1d

where Dx=D1,2
x , Dy=D1,2

y , and Dz=D1,2
z . Substituting the

values of all model parameters, we recover the results ob-
tained by numerical diagonalization. Forhz=0 there are four
pairs of twofold degenerate levels. Although it is possible to
find analytical expressions for the case that the magnetic

field is parallel to thex axis, the expressions themselves are
rather long and not very illuminating. Therefore they are not
given here.

For a magnetic field parallel to thez axis, a straightfor-
ward calculation shows that

kHu3/2,3/2l = −
3sJ + 2hzd

4
ku3/2,3/2l +

3sDx + iDyd
4

kual,

H2ku3/2,3/2l =
9fsJ + 2hzd2 + Dx

2 + Dy
2g

16
ku3/2,3/2l

−
3sDx + iDydsÎ3Dz + 4hzd

8
kual,

Hku3/2,1/2l = −
3J + 2hz

4
ku3/2,1/2l −

Î3sDx + iDyd
4

kuāl,

H2ku3/2,1/2l =
s3J + 2hzd2 + 3sDx

2 + Dy
2d

16
ku3/2,1/2l

−
3sDx + iDydDz

8
kuāl, sA2d

whereuāl denotes the stateual with all spins reversed and

ual =
1

2Î3
fs1 − iÎ3du ↓ ↑ ↑ l

+ s1 + iÎ3dku ↑ ↓ ↑ l − 2fku ↑ ↑ ↓ lg. sA3d

The expressions forH u3/2,−3/2l ,H2u3/2,−3/2l ,H u3/2,
−1/2l, andH2u3/2,−1/2l are obtained from Eqs.(A2) and
(A3) by changing the sign ofhz andDy and replacingual by

ubl =
− 1

2Î3
fs1 − iÎ3dku ↑ ↓ ↓ l

+ s1 + iÎ3du ↓ ↑ ↓ l − 2fku ↓ ↓ ↑ lg. sA4d

Note thatkaubl=0. From Eq.(A2) it follows that for the
external field parallel to thez axis, model(1) does not allow
transitions from the state with all spins up(down) to the state
with two spins down(up). Therefore, if initially the system is
in the state with all spins down, adiabatically sweeping the
field from a large negative value to a large positive value will
not yield the final state with all spins up.

APPENDIX B: NUMERICAL METHODS

A theoretical description of quantum dynamical phenom-
ena in the Mn12 and V15 nanomagnets requires detailed
knowledge of their energy-level schemes. Disregarding the
fascinating physics of the nanomagnets, the calculation of
the eigenvalues of their model Hamiltonians is a challenging
problem in its own right. First, the(adiabatic) quantum dy-
namics of these systems is mainly determined by the(tiny)
level repulsions. Therefore the calculation of the energy lev-
els of these many-spin Hamiltonians has to be very accurate
in order to bridge the energy scales involved(e.g., from
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500 K to<10−19 K). Second, the level repulsions originate
from the DM interactions which mix states with different
magnetization. In principle, this prevents the use of the mag-
netization as a vehicle to block-diagonalize the Hamiltonian
and effectively reduce the size of the matrices that have to be
diagonalized. If a level repulsion involves states of signifi-
cantly different magnetization(e.g.,Mz=−10 andMz=10) a
perturbative calculation of the level splitting would require
going to rather high order(at least 20), a cumbersome pro-
cedure. Therefore it is of interest to explore alternative routes
to direct but accurate, brute-force diagonalization of the full
model Hamiltonian.

As a nontrivial set of reference data, we used the eigen-
values obtained by full diagonalization(using standard
LAPACK algorithms) of the 10 000310 000 matrix represent-
ing model (11).42 For one set of model parameters, such a
calculation takes about 2 h of CPU time on an Athlon
1.8 GHz, 1.5 Gbytes system. Clearly this is too slow if we
want to compute the energy-level diagram, in particular if we
want to estimate the structure of the level splittings. At the
resonant fields we need the eigenvalues for many values of
h. Furthermore, in the case of V15 this calculation would take
about 30 times longer and require about 15 Gbytes of
memory which, for present-day computers, is too much to be
of practical use.

We have tested different standard algorithms to compute
the low-lying eigenvalues of large matrices. The standard
Lanczos method(including its conjugate gradient version) as
well as the power method53,54 either converge too slowly,
lack the accuracy to resolve the(nearly) degenerate eigen-
values, on sometimes even completely fail to correctly repro-
duce the low-lying part of the spectrum. This is not a sur-
prise. By construction these methods work well if the ground
state is not degenerate and there is little guarantee that they
will work if there are(nearly) degenerate eigenvalues.53,54 In
particular, the Lanczos procedure suffers from numerical in-
stabilities due to the loss of orthogonalization of the Lanczos
vectors.53,54 It seems that model Hamiltonians for the nano-
scale magnets provide a class of(complex Hermitian) eigen-
value problems that are hard to solve.

Extensive tests led us to the conclusion that only the
Lanczos method with full orthogonalization53,54 and the
Chebyshev-polynomial-based projector method discussed
below can solve these rather large and difficult eigenvalue
problems with sufficient accuracy. The former is significantly
faster than the latter but using both gives extra confidence in
the results.

1. Lanczos method with full orthogonalization

In the LFO, each time a new Lanczos vector is generated
we explicitly orthogonalize(to working precision) this vector
to all, not just to the two previous, Lanczos vectors.53,54With
some minor modifications to restart the procedure when the
Lanczos iteration terminates prematurely, aftern steps this
procedure transforms then3n matrix H into a tridiagonal
matrix that is comparable in accuracy to the one obtained
through Householder tridiagonalization but offers no
advantages.54 In our case we are interested only in a few

low-lying eigenstates ofH. Thus we can exploit the fact that
projection onto the(numerically exact) subspace of dimen-
sionk sk!nd built by the Lanczos vectors will yield increas-
ingly accurate estimates of the smallest(largest) eigenvalues
and corresponding eigenvectors ask increases.

In practice, to compute theM lowest energy levels, the
LFO procedure is carried out as follows.

(1) Perform a Lanczos step according to the standard pro-
cedure.

(2) Use the modified Gramm-Schmidt procedure to or-
thogonalize the new Lanczos vector with respect to all pre-
vious ones.53,54

(3) Compute the matrix elements of the tridiagonal ma-
trix.

(4) At regular intervals, diagonalize the tridiagonal ma-
trix, compute the approximate eigenvectorswi , mi
=kwi uH uwil, and Di

2=kwi u sH−mid2uwil for i =1,… ,M, and
check if all Di are smaller than a specified threshold. If so,
terminate the procedure(the exact eigenvalueEi closest tomi
satisfiesmi −DøEi ømi +Did. If not, continue generating new
Lanczos vectors, etc.

2. Chebyshev polynomial projector method

As an alternative to the LFO, we have used a power
method53,54 based on the matrix exponentiale−tH.55 Writing
the random vectorCs0d in terms of the(unknown) eigenvec-
tors hfij of H, we find

Cstd = e−tE0ff0kf0uCs0dl + e−tsE1−E0df1kf1uCs0dl

+ e−tsE2−E0df2kf2uCs0dl + ¯ g, sB1d

showing limt→`Cstd / iCstd i~f0 if kf0uCs0dlÞ0. In this
naive matrix-exponential version of the power method, con-
vergence to the lowest eigenstate is exponential int if
E1.E0.

The case of degeneratesE0=E1=¯ d or very closesE0

<E1< ¯ d eigenvalues can be solved rather easily by apply-
ing the projector to a subspace instead of a single vector, in
combination with diagonalization ofetH within this
subspace.55 First we fix the dimensionk of the subspace by
takingk equal to or larger than the desired number of distinct
eigenvalues. The projection parametert should be as large as
possible but nevertheless sufficiently small so that at least the
first k terms survive one projection step. Then we generate a
set of random initial vectorsCis0d for i =1,… ,k and set the
projection countn to zero. We compute thek lowest eigen-
states by the following algorithm.55

(1) Perform a projection step Cifsn+1dtg
=e−tHCisntd for i =1,… ,k.

(2) Compute the k3k matrices. A=kCifsn
+1dtg uetH uCifsn+1dtgl=kCifsn+1dtg uCisntdl and B=kCifsn
+1dtg uCifsn+1dtgl. Note thatA is Hermitian andB is posi-
tive definite.

(3) Determine the unitary transformationU that solves
the k3k generalized eigenvalue problemAx=lBx. Recall
that k is small.

(4) Compute Ci8fsn+1dtg = o j=1
k Ui,jC j fsn+1d tg for i

=1,… ,k.
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(5) SetCifsn+1dtg=Ci8fsn+1dtg for i =1,… ,k.
(6) Computemi =kCifsn+1dtg uH uCifsn+1dtgl and check

if Di
2=kCifsn+1dtg u sH−mid2uCifsn+1dtgl is smaller than a

specified threshold fori =1,… ,k. If yes, terminate the calcu-
lation. If no, increasen by 1 and repeat the procedure.

We calculatee−tHC by using the Chebyshev polynomial
expansion method.56–60 First we compute an upper boundR
of the spectral radius ofH (i.e., iH i øR) by repeatedly using
the triangle inequality.60 From this point on we use the “nor-

malized” matrix H̃=s2H /R−1d /2. The eigenvalues of the

Hermitian matrix H̃ are real and lie in the interval
f−1,1g.53,54 Expanding the initial valueCs0d in the (un-

known) eigenvectorsf j of H̃ sor Hd we find

Cstd = e−tHCs0d = ezH̃Cs0d = o
j

ezẼjf jkf juCs0dl,

sB2d

wherez=−tR. We find the Chebyshev polynomial expansion
of Cstd by computing the Fourier coefficients of the function

ezcosu.61 Alternatively, since −1ø Ẽj ø1, we can use the ex-

pansion ezẼj = I0szd+2om=1
` ImszdTmsẼjd where Imszd is the

modified Bessel function of integer orderm (Ref. 61) to
write Eq. (B2) as

Cstd = FI0szdI + 2o
m=1

`

ImszdTmsH̃dGCs0d. sB3d

Here,I is the identity matrix andTmsH̃d is the matrix-valued
Chebyshev polynomial defined by the recursion relations

T0sH̃dCs0d = Cs0d, T1sH̃dCs0d = H̃Cs0d, sB4d

and

Tm+1sH̃dCs0d = 2H̃TmsH̃dCs0d − Tm−1sH̃dCs0d, sB5d

for mù1. In practice we will sum only contributions with
møM where M is chosen such that, for all
m.M , u Imszd / I0szdu is zero to machine precision. Then
it is not difficult to show that ie−tH / I0szd− I

−2om=1
M fImszd / I0szdgTmsH̃di is zero to machine precision too

[instead ofe−tH we can equally well usee−tH / I0szd as the
projector].

Using the downward recursion relation of the modified
Bessel functions, we can computeK Bessel functions to ma-
chine precision using of the order ofK arithmetic
operations.61,62 A calculation of the first 20 000 modified
Bessel functions takes less than 1 s on a Pentium III
600 MHz mobile processor, using 14–15 digit arithmetic.
Hence this part of a calculation is a negligible fraction of the
total computational work for solving the eigenvalue problem.
Performing one projection step withe−tH amounts to repeat-
edly using recursion(B5) to obtain T̃msBdCs0d for k
=2,… ,M, multiply the elements of this vector byImszd, and
add all contributions.
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