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We demonstrate that decoherence of many-spin systems can drastically differ from decoherence of single-
spin systems. The difference originates at the most basic level, being determined by parity of the central
system, i.e., by whether the system comprises even or odd number of spin-1/2 entities. Therefore, it is very
likely that similar distinction between the central spin systems of even and odd parity is important in many
other situations. Our consideration clarifies the physical origin of the unusual two-step decoherence found
previously in the two-spin systems.
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I. INTRODUCTION

Reduced dynamics of a small quantum system coupled to
a bigger environment has recently become the subject of par-
ticularly active investigation. In fields like quantum optics1

and quantum computation,2 there is a naturally defined dis-
tinct “central” system(i.e., an atom or a qubit) which inter-
acts with its environment, and whose dynamics is of primary
importance. Similar situations are often encountered in the
condensed matter physics, e.g., when considering a heavy
particle tunneling in a crystal, tunneling centers in glasses,5

Kondo systems,4 etc. This problem is also of importance
when a naturally defined central system is absent, such as in
a recently developed promising approach to the theory of
strongly correlated systems, the dynamical mean-field theory
(for review, see Ref. 3). In this approach, the system of in-
teracting particles in a crystal is replaced by an “effective
impurity” in a self-consistently defined thermostat.

So far, quantum evolution of a single two-level system
(or, equivalently, a single spin-1/2 entity) interacting with a
bath of bosons5 or spins6,7 has been studied in much detail.
In contrast, the central systems comprising several strongly
interacting spins 1/2 have not been that extensively investi-
gated. A general analysis of the two-spin central system in-
teracting with a bath of bosons has been presented in Ref. 8,
but more detailed considerations are lacking. Several inter-
esting cases of a two-spin system coupled to a spin bath have
been considered in Refs. 9 and 10, and it has been demon-
strated that behavior of many-spin central systems can be
very different from a single-spin case. Consideration of
many-spin central systems is of particular importance for
possible implementation of quantum computations which use
several strongly coupled two-level systems for encoding of a
single qubit.11,12 This representation allows using the
“decoherence-free subspaces” and error-correcting schemes
developed for multispin qubits.13,14

In this work, based on an exactly solvable but realistic
model, we show explicitly that decoherence of a two-spin-
1/2 system can be qualitatively different from decoherence
of a single spin 1/2. We demonstrate that this difference

originates at the most basic level, and is determined prima-
rily by parity of a central system, i.e., by whether the central
system comprises even or odd number of spin-1/2 entities.

It is known that the parity of the spin system is the cause
of the drastically different behavior in the tunneling of mag-
netization in a wide class of spin systems such as magnetic
nanoparticles and molecular magnets where the tunneling is
due to magnetic anisotropy or magnetic field.15,16 In this pa-
per, we explore a different effect, in which the parity of the
central system determines the long-time dynamics of the de-
coherence process. We emphasize that in the system consid-
ered here the quantum oscillations are caused by the isotro-
pic exchange interaction and are independent of the
symmetry of the crystal field and external magnetic field;
thus the short-time oscillations do not depend on the parity.

Although there are many possible central systems coupled
to various kinds of spin baths, the generic differences be-
tween the many-spin and the single-spin central systems can
be understood based on simple models. An instructive model
of a many-spin central system interacting with a spin bath,
has been recently analyzed by Dobrovitskiet al.9 This model
describes(at least, qualitatively) the main features of such
central systems as magnetic molecules, quantum dots or im-
purity spins which experience decoherence from the nuclear
spin bath. In these systems, the dominant interaction with the
nuclear spins can be approximated by the isotropic Heisen-
berg interaction, since anisotropic interactions are often
small. The model is defined by the Hamiltonian:

H = CW 2 + 2CW o
k=1

N

JksWk, s1d

which describes the central system composed of two spins:

CW =cW1+cW2, c1=c2=1/2, which is coupled by Heisenberg ex-
change interaction toN environmental spinssk=1/2, k
=1. . .N. Note that the environmental spins do not have their
own dynamics. This may be viewed as a limited case where
the dynamics of the central system is much faster than that of
the environment.
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A special feature of this model, which makes it different
from the “central spin” models considered by Garg, or
Prokof’ev and Stamp,6,7 is the fact that in our treatment the
central system is not reduced to the doublet of lowest states.
This feature is crucial to the results discussed below.

One is interested in the time evolution of the initial
system-plus-environment state which is taken in the form:

uil = u↑lc1
u↓lc2p

k=1

N

uilsk
. s2d

The initial states of the environmental spinsuilsk
are assumed

random and uncorrelated. The initial state of the system is a
superposition of the singlet and triplet states of the two cen-
tral spins:

u↑lc1
u↓lc2

=
1
Î2

su1,0lC + u0,0lCd, s3d

where we have introduced notationuC,CzlC for the central
spin. One considers the problem of the decay of this coherent
singlet-triplet superposition in the central system due to its
interaction and subsequent entanglement with the environ-
mental spins. In particular, one is interested in the time de-
pendence of the expectation value of thez component of the
first spin ks1

zstdl, wheres1
z is the Pauli matrix acting on the

state ofcW1. In the absence of the coupling to the environment
this quantity exhibits periodic oscillations between +1 and
−1 caused by the first term in Eq.(1); coupling to the envi-
ronment is expected to damp these oscillations.

In the work reported in Ref. 9 a numerical investigation of
this problem was performed. Among many surprising fea-
tures in the behavior of the above system, it was observed
that after an initial fast decay of the oscillations ofks1

zstdl the
amplitude showed a saturation at the value of 1/3. Subse-
quently, the oscillations demonstrate a much slower decay,
which is consistent with the 1/t conjecture, and which leads
to a complete suppression of oscillations. The main motiva-
tion of this paper was to understand the cause of the satura-
tion and the subsequent slow decay.

While the model Eq.(1) is hard to treat analytically, we
simplified it by setting allJk’s equal. This allowed us to solve
the model exactly. The solution turned out to reproduce
quantitatively several key features of the numerical results
reported in Ref. 9. In fact, it reproduced the fast initial decay
of the amplitude of oscillations and its subsequent saturation
at 1/3. It also offers a way to qualitatively understand the
cause of the long-time tail. Most importantly, it answers the
question: why is the decay of oscillations in our model much
slower compared to a more conventional exponential decay
of oscillations in, say, the spin-boson models.5 The cause is
the integer value of total spin of the central system.

This work shows that integer spins, in contrast to half-
integer spins, may, under suitable circumstances, exhibit
quantum oscillations over much longer times. From the per-
spective of the theory of quantum phase transitions, this
work also offers a simple example of emergent power-law
correlations usually associated with criticality.

II. Jk=J MODEL

To make analytical progress we consider a simplified
model where we take all coupling constantsJk=J to be equal
while preserving random uncorrelated initial states of the en-
vironmental spins. The Hamiltonian takes the form

H = CW 2 + 2JCW SW = s1 − JdCW 2 + JsCW + SWd2 − JSW2, s4d

which describes the coupling of the central spinCW =cW1+cW2 to

the total spin of the environmentSW =osWk. We are interested in
the expectation value of thez component ofcW1: ks1

zstdl,
wheres1

z is the Pauli matrix acting on the state ofcW1. Note,
that the assumed initial condition Eq.(2) corresponds to the
superposition of states with differentS. The Hamiltonian Eq.

(4) conservesSW2, therefore the matrix elementks1
zstdl can be

decomposed as

ks1
zstdl = o

S

kSus1
zstduSlPsSd, s5d

where PsSd is the weight of the state with the total spinS
given the random uncorrelated initial states ofsWk. We thus are
led to the problem of first calculatingPsSd.

Before proceeding with the actual calculation an impor-
tant comment is in order. Since Eq.(5) looks like an average
over all possible initial orientations of the environmental
spins one might interpret the above quantityks1

zstdl as an
ensemble-averaged expectation value. Quite importantly, in
the case where the number of environmental spins is large
the actual weight of the state with total spin of the environ-
mentS tends to the ensemble-averaged quantityPsSd. There-
fore, in this limit Eq.(5) describes well the evolution of the
central system in a single realization of the experiment.

In the basis wheresWk are good quantum numbers the ini-
tial density matrix is, by assumption, a 2N32N matrix:

ri
S= 2−NI , s6d

whereI is a unit matrix. Let us make a unitary transforma-

tion to the basis spanned by the eigenstates ofSW2. There are

N different values thatSW2 can take. To preserve the dimen-
sionality of the Hilbert space we conclude that some(in fact
almost all) of these latter states are degenerate. A unitary
transformation will leave the initial density matrix un-
changed. This means that

PsSd = 2−NGsSds2S+ 1d, s7d

whereGsSd is the degeneracy of the state with total spinS
(with Sz fixed). To calculateGsSd we change variables and
introducegskd=GsN/2−kd. The state with the maximum to-
tal spinS=N/2 is unique and is the state where allsWk’s point
up (we chooseSz=S), thereforegs0d=1. Next, a state with
S=Sz=N/2−1 should be a superposition of the states with
N−1 spins up and one spin down. There areC1

N=N such
states [CM

N =N! / M ! sN−Md! is the binomial coefficient].
However, among such states there aregs0d=1 states withS
=N/2 andSz=N/2−1 which have to be excluded. General-
izing to arbitraryk we get:
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gskd = Ck
N − o

i=0

k−1

gsid = Ck
N − Ck−1

N = Ck
NSN − 2k + 1

N − k + 1
D . s8d

We thus have the result for the weight of the state with spin
S:

PsSd = 2−NCN/2−S
N s2S+ 1d2

N/2 + S+ 1
<

8S2/N
Î2pD

e−S2/2D, D = N/4,

s9d

where we have used a well-known approximation for the
binomial distribution described by the first two factors
above. One can easily check thate0

`PsSddS=1, i.e., the ap-
proximations we made preserve the normalization of the
probability.

We have thus reduced the problem to finding the time
evolution of the initial state:

ufl = e−iHtuil, s10d

uil =
1
Î2

su1,0lC + u0,0lCduS,SzlS, s11d

estimating the spin polarizationkf us1
zufl, and averaging the

result with respect toSz (trivial) andS [according to Eq.(9)].
There are two circumstances that greatly simplify the calcu-
lation. First, the Hamiltonian acting on the singlet state
u0,0lC gives zero, therefore the evolution of the second term
in Eq. (11) is trivial. Second, the symmetry of the Hamil-
tonian with respect tocW1 andcW2 implies that given the above
initial condition we havekf us1

zufl=−kf us2
zufl. Thus, we can

calculate the expectation value ofs−
z =ss1

z−s2
zd /2 instead.

For this operator we have:s−
zu1,0lC= u0,0lC, s−

zu0,0lC
= u1,0lC, s−

zu1, ±1lC=0. Taking all this into account, we see
that

kf us1
zufl = Rektue−iHtutl, s12d

utl = u1,0lCuS,SzlS. s13d

From Eq.(4) it is clear that the above matrix element can be
easily calculated after going to the basis with well defined

total spinLW =CW +SW. The necessary Clebsch-Gordan decompo-
sition (in the limit S@1 of interest to us) is:

utl <Î1 − sSz/Sd2

2
suS+ 1,SzlL − uS− 1,SzlLd +

Sz

S
uS,SzlL,

s14d

where we have introduced the notationuL ,LzlL. In this basis
we easily calculate using Eq.(4):

kf us1
zufl = cos 2s1 − JdtHF1 −SSz

S
D2Gcos 2JSt+ SSz

S
D2J .

s15d

Finally, we have to average this result overSz andS. The first
average is done trivially using the fact that(in the same limit

S@1) ksSzd2l=S2/3. The second average is calculated using
Eq. (9) which leads to a Gaussian integral. The result is:

ks1
zl = Astdcos 2s1 − Jdt, s16d

Astd =
1

3
+

2

3
s1 − NJ2t2de−NJ2t2/2. s17d

It should be stressed that this result isexact in the limit
N@1 sS@1d. We see that an initial exponential decay of the
amplitude of the oscillations is followed by a transient and
an eventual leveling atAstd=1/3.

To check the above results we have performed a direct
numerical solution of the Schrödinger equation correspond-

ing of the system with a HamiltonianH=J0CW
2+2CW ok=1

N JksWk,
Jk=J, which can be reduced to Eq.(1) by rescalingJ0→1,
J→J/J0, t→ tJ0. Exact diagonalization was used to find the
time evolution. An example of the results is shown in Fig. 1.
It shows the expectation value ofs1

z as a function of time.
The parameters are: the number of spinsN=13, J0=8, Jk
=J=0.128. This can be compared with the analytic result for
the same quantity which is given(after rescaling) by Eq.(16)
and is shown in Fig. 2. The numerical and analytical results
show excellent agreement.

Absence of the decay of the amplitude of oscillations at
long times is quite an unexpected result. Therefore it is worth
explaining it in more detail.

III. DISCUSSION OF THE RESULTS: SIMPLE PICTURE

One trivial situation where the oscillation of the central
spin does not decay is that of no interaction between the
central spin and the set of environmental spins. In the pres-
ence of such an interaction, however, one may still ask what

FIG. 1. Numerical simulation of 13 spins withJ0=8, Jk=J
=0.128. The figure shows the expectation value ofs1

z as a function
of time.

FIG. 2. Analytical result fors1
zstd with the same parameters as

those used in numerical simulations.
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are the conditions under which this interaction is ineffective
in damping the oscillations. A natural suggestion is to try to
find a state uCl of the combined system in which

kCuHintuCl=0. Since in our caseHint=2JCW SW, classically such
a stateuCl would correspond to vectorsC and S being or-

thogonal. The conditionCW SW =0 defines a plane in 3D space,
therefore one could argue that for the case of random initial

orientation ofSW the probability of being in the state with
Hint=0 is zero. Remarkably, the quantum nature of spins
proves the result to be quite different.

The correct way of treatingHint is, of course, to rewrite it
in the following form:

Hint = JsCW + SWd2 − JSW2 − JCW 2. s18d

Adding spinC=1 with spin S results in possible values of
total spinC+Sbeing:S−1, S, andS+1. It is the second case
in which the first two terms in Eq.(18) cancel each other.
The remaining last term does not depend onSand, therefore,
does not suppress the oscillation amplitude when the averag-
ing over S is performed and only shifts the oscillation fre-
quency of the central spin[this effect is reflected in Eq.
(16)]. The condition “C+S=S” is, thus, the closest analog of

the classical conditionCW SW =0. But, unlike in the classical
case, a simple Clebsch-Gordan algebra(see previous section)
shows that the probability of being in the subspace “C+S
=S” is actually finite and is equal to 1/3.

One can easily see now that this effect can only occur if
the central system has integer spin. Indeed, the condition
“C+S=S” can never be satisfied ifC is half-integer. These
considerations allow us to formulate the main result of the
paper: Based on a particular model of a central spin interact-
ing with randomly oriented environmental spins we have
been able to show that the decay of the oscillations of the
central spin is essentially different forintegercentral spins:
the decay is no longer exponential, instead the amplitude of
the oscillations saturates at a constant value.

Moreover, the results presented in this work make clear
the physical origin of the unusual two-step decoherence
found in Ref. 9, where the generic model Eq.(1) has been
considered with allJk being different. The first step of deco-
herence, associated with the initial decay of oscillations to
the value of 1/3, has been described in Ref. 9 using a mean-
field-like treatment of the spin bath, by replacing the inter-
action part of the Hamiltonian with a random classical static
field having Gaussian distribution. However, such a treat-
ment fails to describe the second step of decoherence, i.e.,
the long-time slow decay of oscillations. As the results above
demonstrate, the representation of a bath as a static random
field corresponds to the case of allJk being equal toJ. This
stems from the fact that the total spin of the bathS2 com-
mutes with the Hamiltonian(4), so that the bath dynamics in
the caseJk=J is trivial, and can be removed completely by a
transformation into the rotating coordinate system. Then, in
the rotating coordinate system the effect of the bath on the
central spins is equivalent to the action of a random static
field. Therefore, the initial decoherence is similar to the

“adiabatic decoherence” by a static spin bath, considered,
e.g., in Ref. 17.

Correspondingly, the second step of the decoherence pro-
cess, i.e., the long-time slow decay of quantum oscillations,
can be caused only by an internal evolution of the bath. For
all Jk being different,S2 does not commute with the interac-
tion part of the Hamiltonian(4), and, as a result, the system-
bath coupling induces a nontrivial dynamics inside the bath.
It is not surprising that the spin bath possessing a complex
dynamics cannot be represented as a random static magnetic
field acting on the system. Understanding this “minimally
nonadiabatic” decoherence regime represents a challenge for
future investigations.18

Summarizing, in this work we have demonstrated that de-
coherence of many-spin systems can drastically differ from
decoherence of single-spin systems. This difference origi-
nates at the most basic level, and is determined by parity of
the central system, i.e., whether the system comprises even
or odd number of spin-1/2 entities. Therefore, it is very
likely that similar distinction between the central spin sys-
tems of even and odd parity is important in many other situ-
ations. Moreover, our consideration clarifies the origin of the
unusual two-step decoherence found numerically in Ref. 9.
The exactly solvable model allows a clear demonstration that
the initial step of decoherence(associated with the saturation
of oscillations at the value of 1/3) is caused by “adiabatic
decoherence” by a static spin bath, while the subsequent
long-time slow decay is induced by a nontrivial internal dy-
namics of the spin bath. The model is applicable to the quali-
tative analysis of a range of experimental systems such as
magnetic molecules and shallow impurity spins in semicon-
ductors, which experience decoherence from the nuclear spin
bath. In these cases, the dominant interaction with the
nuclear spins is well approximated by the isotropic Heisen-
berg interaction(anisotropic interactions are often small).

Note added in proof.Recently, we learned of an interest-
ing development in the problem studied here. E. Yuzbashyan
et al., cond-mat/0407501, have shown that the quasi-
classical equations of motion of the spins are integrable. This
work raises two major questions:(1) Can one reproduce the
parity effect in decoherence found in the model by using the
quasi-classical approximation and studying the asymptotics
of the solution?(2) Is the full quantum-mechanical model
itself integrable? Answers to these questions can provide bet-
ter understanding of the decoherence in multi-spin systems.
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