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a b s t r a c t

We present a computer simulation model that is a one-to-one copy of an experimental realization of

Wheeler’s delayed-choice experiment that employs a single photon source and a Mach–Zehnder

interferometer composed of a 50=50 input beam splitter and a variable output beam splitter with

adjustable reflection coefficient R [V. Jacques, E. Wu, F. Grosshans, F. Treussart, P. Grangier, A. Aspect,

J.-F. Roch, Phys. Rev. Lett. 100 (2008) 220402]. For 0pRp0:5, experimentally measured values of the

interference visibility V and the path distinguishability D, a parameter quantifying the which-path

information (WPI), are found to fulfill the complementary relation V2 þ D2p1, thereby allowing to

obtain partial WPI while keeping interference with limited visibility. The simulation model that is solely

based on experimental facts that satisfies Einstein’s criterion of local causality and that does not rely on

any concept of quantum theory or of probability theory, reproduces quantitatively the averages

calculated from quantum theory. Our results prove that it is possible to give a particle-only description

of the experiment, that one can have full WPI even if D ¼ 0, V ¼ 1 and therefore that the relation

V2 þ D2p1 cannot be regarded as quantifying the notion of complementarity.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Particle–wave duality, a concept of quantum theory, attributes
to photons the properties of both wave and particle behavior
depending upon the circumstances of the experiment [1]. The
particle behavior of photons has been shown in an experiment
composed of a single beam splitter (BS) and a source emitting
single photons and pairs of photons [2]. The wave character has
been demonstrated in a single-photon Mach–Zehnder interfe-
rometer (MZI) experiment [2]. In 1978, Wheeler proposed a
gedanken experiment [3], a variation on Young’s double slit
experiment, in which the decision to observe wave or particle
behavior is made after the photon has passed the slits. The
pictorial description of this experiment defies common sense: The
behavior of the photon in the past is said to be changing from a
particle to a wave or vice versa.

Recently, Jacques et al. reported on an experimental realization
of Wheeler’s delayed-choice experiment using a single photon
source and a MZI composed of a 50=50 input BS and a variable
output BS with adjustable reflection coefficient R [4], a modifica-
tion of the experiment presented in Ref. [5] in which two 50=50
BSs were used. A schematic picture of the experimental set-up is

shown in Fig. 1. The reflection coefficient R of the variable beam
splitter ðBSoutputÞ can be controlled by a voltage applied to an
electro-optic modulator (EOM), making it act as a variable wave
plate. This can be done after each photon has entered the MZI. The
phase-shift F between the two arms of the MZI is varied by tilting
the polarizing beam splitter (PBS) of the variable output BS. For
0rRr0:5 measured values of the interference visibility V [6] and
the path distinguishability D [4], a parameter that quantifies
the which-path information (WPI), were found to fulfill the
complementary relation V2 þ D2r1. The extreme situations
ðV ¼ 0; D ¼ 1Þ and ðV ¼ 1; D ¼ 0Þ, obtained for R ¼ 0 and 0.5,
give full and no WPI, associated with particlelike and wavelike
behavior, respectively. By choosing 0oRo0:5 Jacques et al. claim
to have obtained partial WPI while keeping interference with
limited visibility [4], thereby having accomplished an affirmative
delayed-choice test of complementarity or wave–particle duality
as it is often phrased.

Although the detection events (detector ‘‘clicks’’) are the only
experimental facts, the pictorial description of Jacques et al. [4,5]
is as follows: Linearly polarized single photons are sent through a
50=50 PBS ðBSinputÞ, spatially separating photons with S polariza-
tion (path 0) and P polarization (path 1) with equal frequencies.
After the photon has passed BSinput , but before the photon enters
the variable BSoutput the decision to apply a voltage to the EOM is
made. The PBS of BSoutput merges the paths of the orthogonally
polarized photons travelling paths 0 and 1 of the MZI, but
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afterwards the photons can still be unambiguously identified by
their polarizations. If no voltage is applied to the EOM then R ¼ 0
and the EOM can be regarded as doing nothing to the photons.
Because the polarization eigenstates of the Wollaston prism
correspond to the P and S polarization of the photons travelling
path 0 an 1 of the MZI, each detection event registered by one of
the two detectors D0 or D1 is associated with a specific path (path
0 or 1, respectively). Both detectors register an equal amount of
detection events, independent of the phase shift F in the MZI. This
experimental setting, corresponding to the open configuration of
the MZI, clearly gives full WPI about the photon within the
interferometer (particle behavior), characterized by D ¼ 1. In this
case no interference effects are observed, corresponding with a
zero interference visibility ðV ¼ 0Þ. When a voltage is applied to
the EOM, then Ra0 (see Eq. (2) in Ref. [4]) and the EOM acts as a
wave plate rotating the polarization of the incoming photon by an
angle depending on R. The Wollaston prism partially recombines
the polarization of the photons that have travelled along different
optical paths with phase difference F (closed configuration), and
interference appears ðVa0Þ, a result expected for a wave. The
WPI is partially washed out, up to be totally erased when
R ¼ 0:5 ðD ¼ 0; V ¼ 1Þ.

The outcome of delayed-choice experiments [4,5,7–11], that is
the average results of many detection events, is in agreement with
wave theory (Maxwell or quantum theory). However, the pictorial
description explaining the experimental facts [5] defies common
sense: The decision to apply a voltage to the EOM after the photon
left BSinput but before it passes BSinput , influences the behavior of
the photon in the past and changes the representation of the
photon from a particle to a wave [5]. Although on one hand
quantum theory can be used to describe the final outcome of this
type of experiments (the average results of many detection
events), on the other hand it does not describe single events [1].
Therefore, it should not be a surprise that the application of
concepts of quantum theory to the domain of individual events
may lead to conclusions that are at odds with common sense.
Although not applying this reasoning to describe this type of
experiments could prevent us from making nonsensical conclu-
sions, this unfortunately would not give us a single clue as how to
explain the fact that individual events are observed experimen-
tally and, when collected over a sufficiently long time, yield
averages that agree with quantum theory.

Since no theory seems to exist that can give a sensical
description of the ‘‘whole’’ experiment, we adopted the idea to
search for algorithms that could mimic (simulate) the detection
events and experimental processes, including for example the
random switching of the EOM for each photon sent into the

interferometer. We moreover require that the algorithms used to
simulate the action of an optical element, such as a BS or wave
plate, on a photon should be independent of the experimental
setup. In other words, the algorithms to simulate an optical
component should be the same for all identical optical compo-
nents within the same experiment but also within a different
experiment. Hence, first solving the Schrödinger equation for a
given experimental configuration and then simply generating
events according to the resulting probability distribution is not
what we have in mind when we perform an event-by-event
simulation of the experiment. Similarly, first calculating the
quantum potential (which requires the solution of the Schrödin-
ger equation) and then solving for the Bohm trajectories is a
different kind of event-by-event simulation than the one we
describe in this paper. In this paper, the event-by-event simula-
tion algorithm reproduces the results of quantum theory, without
first solving a wave equation.

In this paper, we describe a model that, when implemented as
a computer program, performs an event-by-event simulation of
Wheeler’s delayed-choice experiment. Every essential component
of the laboratory experiment (PBS, EOM, HWP, Wollaston prism,
detector) has a counterpart in the algorithm. The data are
analyzed by counting detection events, just like in the experiment
[4,5]. The simulation model is solely based on experimental facts,
satisfies Einstein’s criterion of local causality and does not rely on
any concept of quantum theory or of probability theory. Never-
theless, our simulation model reproduces the averages obtained
from the quantum theoretical description of Wheeler’s delayed-
choice experiment but as our approach does not rely on concepts
of quantum theory and gives a description on the level of
individual events, it provides a description of the experimental
facts that does not defy common sense. In a pictorial description
of our simulation model, we may speak about ‘‘photons’’
generating the detection events. However, these so-called
photons, as we will call them in the sequel, are elements of a
model or theory for the real laboratory experiment only. The
experimental facts are the settings of the various apparatuses and
the detection events. What happens in between activating the
source and the registration of the detection events is not
measured and is therefore not known. Although we always have
full WPI of the photons in the closed configuration of the
interferometer (we can always track the photons during the
simulation), the photons build up an interference pattern at
the detector. The appearance of an interference pattern is
commonly considered to be characteristic for a wave. In this
paper, we demonstrate that, as in experiment, it can also be
build up by many photons. These photons have full WPI, never
directly communicate with each other and arrive one by one
at a detector.

The work described in this paper elaborates on the work
described in Ref. [12] to simulate the experiment reported in
Ref. [5]. The simulation model is built on earlier work [13–22]
that demonstrated that it may be possible to simulate quantum
phenomena on the level of individual events without invoking a
single concept of quantum theory. Specifically, we have demon-
strated that locally connected networks of processing units
with a primitive learning capability can simulate event-by-
event, the single-photon beam splitter and MZI experiments of
Grangier et al. [2] and Einstein–Podolsky–Rosen experiments
with photons [23–25]. Furthermore, we have shown that this
approach can be generalized to simulate universal quantum
computation by an event-by-event process [15,16]. Our event-
by-event simulation approach rigorously satisfies Einstein’s
criterion of local causality and builds up the final outcome that
agrees with quantum theory event-by-event, as observed in real
experiments.

Fig. 1. Schematic diagram of the experimental setup for Wheeler’s delayed-choice

gedanken experiment [4]. PBS, polarizing beam splitter; HWP, half-wave plate;

EOM, electro-optic modulator; RNG, random number generator; WP, Wollaston

prism; P,S, polarization state of the photon; F, phase shift between paths 0 and 1;

D0, D1, detectors.
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2. Simulation model

The simulation algorithm can be viewed as a message-
processing and message-passing process: It routes messengers
one by one through a network of units that process messages. The
messengers may be regarded as ‘‘particles’’. These messengers
carry a message which contains information about for example
the relative time the particle traveled, its polarization, its color, its
velocity, and so on. In other words, the message represents a so-
called variable property of the particle that can be manipulated
and measured given particular experimental settings. The com-
ponents of the experimental setup such as the BS, the wave plates,
the Wollaston prism and so on are so-called processing units that
interpret and manipulate the messages carried by the particles.
These processing units are put in a network that represents the
complete experimental setup. Since at any given time there is only
one messenger being routed through the whole network, there is
no direct communication between the messengers. The only form
of communication is through the processing units when the
messengers are routed through the network. The model satisfies
the intuitive notion of local causality.

In general, processing units consist of an input stage, a
transformation stage, an output stage and have an internal vector
representing their internal state. The input (output) stage may
have several channels at (through) which messengers arrive
(leave). Some processing units are simpler in the sense that the
input stage is not necessary for the proper functioning of the
device. As a messenger arrives at an input channel of a processing
unit, the input stage updates its internal vector, and sends the
message, represented by a vector, together with its internal vector
to the transformation stage that implements the operation of the
particular device. Then, a new message is sent to the output stage,
using a pseudo-random number to select the output channel
through which the messenger will leave the unit. We use pseudo-
random numbers to mimic the apparent unpredictability of the
experimental data only. The use of pseudo-random numbers is
merely convenient, not essential.

In the experimental realization of Wheeler’s delayed-choice
experiment by Jacques et al. [4] linearly polarized single photons
are sent through a PBS that together with a second, movable,
variable output PBS with adjustable reflectivity R forms an
interferometer (see Fig. 1). The basic idea now is that we have to
construct a model for the messengers representing the photons and
for the processing units representing the optical components in the
experimental setup. We require that the processing units for
identical optical components should be reusable within the same
and within different experiments. The network of processing units
is a one-to-one image of the experimental setup [4] and is shown in
Fig. 1. In what follows we describe some elements of our model in
more detail. Additional information can be found in Ref. [12].

2.1. Messengers

In a pictorial description of the experiment the photons can be
regarded as particles playing the role of messengers. Each
messenger carries a (variable) message which contains informa-
tion about its phase and polarization. The phase combines
information about the frequency of the light source and the time
that particles need to travel a given path. However, no explicit
information about distances and frequencies is required since we
can always work with relative phases.

The information carried by the messenger can be represented
by a six-dimensional unit vector yk;n ¼ ðcoscH

k;n; sincH
k;n; coscV

k;n;

sincV
k;n; cosxk;n; sinxk;nÞ. The superscript H ðVÞ refers to the

horizontal (vertical) component of the polarization and cH
k;n,

cV
k;n, and xk;n represent the phases and polarization of the photon,

respectively. It is evident that the representation used here maps
one-to-one to the plane-wave description of a classical electro-
magnetic field [6], except that we assign these properties to each
individual photon, not to a wave. The subscript nZ0 numbers the
consecutive messages and k ¼ 0;1 labels the channel of the PBS at
which the message arrives (see below).

Since in this paper we will demonstrate explicitly that in our
model photons always have full WPI even if interference is
observed, we give the messengers one extra label, the path label
having the value 0 or 1. The information contained in this label is
not accessible in the experiment [4]. We only use it to track the
photons in the network. The path label is set in the input BS and
remains unchanged until detection. Therefore we do not consider
this label in the description of the processing units but take it into
account when we detect the photons.

2.2. Polarizing beam splitter

From classical electrodynamics we know that if an electric field
is applied to a dielectric material the material becomes polarized
[6]. The polarization Pðk; tÞ is given by

Pðk; tÞ ¼
Z t

0
wðk;uÞEðk; t � uÞdu; ð1Þ

where Eðk; tÞ denotes the electric field vector, k is the wave vector,
and w is the linear response function [6]. From Eq. (1) it is evident
that the dielectric material shows some kind of memory effect
because the response (the polarization) of the material to the
applied electric field is a function of both present and past values
of the electric field. We use this kind of memory effect in our
algorithm to model the PBS.

The processor that performs the event-by-event simulation of
a PBS is depicted in Fig. 2. It consists of an input stage, a simple
deterministic learning machine (DLM) [13–16], a transformation
stage (T), an output stage (O) and has two input and two output
channels labelled with k ¼ 0;1. We now define the operation of
each stage explicitly.

� Input stage: The DLM receives a message on either input
channel 0 or 1, never on both channels simultaneously. The

Fig. 2. Diagram of a DLM-based processing unit that performs an event-based

simulation of a polarizing beam splitter (PBS). The solid lines represent the input

and output channels of the PBS. The presence of a message is indicated by an arrow

on the corresponding channel line. The dashed lines indicate the data flow within

the PBS.
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arrival of a message on channel 0 (1) is named a 0 (1) event. The
input events are represented by the vector vn ¼ ð1;0Þ or vn ¼

ð0;1Þ if the nth event occurred on channel 0 or 1, respectively.
The DLM has six internal registers YH

k;n ¼ ðC
H
k;n; S

H
k;nÞ,

YV
k;n ¼ ðC

V
k;n; S

V
k;nÞ, YP

k;n ¼ ðC
P
k;n; S

P
k;nÞ and one internal vector

xn ¼ ðx0;n; x1;nÞ, where x0;n þ x1;n ¼ 1 and xk;nZ0 for k ¼ 0;1
and all n. These seven two-dimensional vectors are labelled by
the message number n because their contents are updated
every time the DLM receives a message. Note that the DLM
stores information about the last message only. The informa-
tion carried by earlier messages is overwritten by updating the
internal registers.
Upon receiving the ðnþ 1Þth input event, the DLM performs the
following steps: It stores the first two elements of message
yk;nþ1 in its internal register YH

k;nþ1 ¼ ðC
H
k;nþ1; S

H
k;nþ1Þ, the middle

two elements of yk;nþ1 in YV
k;nþ1 ¼ ðC

V
k;nþ1; S

V
k;nþ1Þ, and the last

two elements of yk;nþ1 in YP
k;nþ1 ¼ ðC

P
k;nþ1; S

P
k;nþ1Þ. Then, it

updates its internal vector according to the rule [13]

xi;nþ1 ¼ axi;n þ ð1� aÞdi;k; ð2Þ

where 0oao1 is a parameter that controls the learning process
[13]. Note that by construction x0;nþ1 þ x1;nþ1 ¼ 1, x0;nþ1Z0 and
x1;nþ1Z0. From the solution of Eq. (2),

xn ¼ anx0 þ ð1� aÞ
Xn�1

j¼1

an�2�jvj; ð3Þ

the correspondence to the expression for the polarization in
classical electrodynamics equation (1) can be seen. The vector v
plays the role of the electric field vector E and the internal
vector x plays the role of the polarization P. Hence, one could
say that the internal vector x is the response of the PBS to the
incoming messages (photons) represented by the vectors v.
Therefore the PBS ‘‘learns’’ so to speak from the information
carried by the photons. The characteristics of the learning
process depend on the parameter a (corresponding to the
response function). Eq. (2) is the simplest learning rule we
could think of. If experimental measurements for a single PBS
would require another maybe more complicated rule to
simulate the experimental outcome then we could modify the
learning rule but given the information we have right now Eq.
(2) suffices.
� Transformation stage: The second stage (T) of the DLM-based

processor takes as input the data stored in the six internal
registers YH

k;nþ1 ¼ ðC
H
k;nþ1; S

H
k;nþ1Þ, YV

k;nþ1 ¼ ðC
V
k;nþ1; S

V
k;nþ1Þ, YP

k;nþ1 ¼

ðCP
k;nþ1; S

P
k;nþ1Þ and in the internal vector xnþ1 ¼ ðx0;nþ1; x1;nþ1Þ

and combines the data into an eight-dimensional vector (see
Fig. 2). Rewriting this vector as

ðCH
0;nþ1 þ iSH

0;nþ1ÞC
P
0;nþ1x1=2

0;nþ1

iðCV
1;nþ1 þ iSV

1;nþ1ÞS
P
1;nþ1x1=2

1;nþ1

ðCH
1;nþ1 þ iSH

1;nþ1ÞC
P
1;nþ1x1=2

1;nþ1

iðCV
0;nþ1 þ iSV

0;nþ1ÞS
P
0;nþ1x1=2

0;nþ1

0
BBBBBB@

1
CCCCCCA
�

aH
0

iaV
1

aH
1

iaV
0

0
BBBBB@

1
CCCCCA
; ð4Þ

shows that the operation performed by the transformation
stage T corresponds to the matrix–vector multiplication in the
quantum theoretical description of a PBS, namely

bH
0

bV
0

bH
1

bV
1

0
BBBB@

1
CCCCA ¼

1 0 0 0

0 0 0 i

0 0 1 0

0 i 0 0

0
BBB@

1
CCCA

aH
0

aV
0

aH
1

aV
1

0
BBBB@

1
CCCCA; ð5Þ

where ðaH
0 ; a

V
0 ; a

H
1 ; a

V
1 Þ and ðbH

0 ; b
V
0 ; b

H
1 ;b

V
1 Þ denote the input and

output amplitudes of the photons with polarization H and V in

the 0 and 1 channels of a PBS, respectively. Note that in our
simulation model there is no need to introduce the concept of a
vacuum field, a requirement in the quantum optical description
of a PBS.
� Output stage: The final stage (O) sends the message

w ¼ ðw0;w1;w2;w3;w4;w5Þ
T , where

w0 ¼ CH
0;nþ1CP

0;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
x0;nþ1

p
=uw4;

w1 ¼ SH
0;nþ1CP

0;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
x0;nþ1

p
=uw4;

w2 ¼ �SV
1;nþ1SP

1;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
x1;nþ1

p
=uw5;

w3 ¼ CV
1;nþ1SP

1;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
x1;nþ1

p
=uw5;

w4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

0 þw2
1

q
=u;

w5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

2 þw2
3

q
=u;

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

0 þw2
1 þw2

2 þw2
3

q
; ð6Þ

through output channel 0 if u24r where 0oro1 is a
uniform pseudo-random number. Otherwise, if urr, the
output stage sends through output channel 1 the message
z ¼ ðz0; z1; z2; z3; z4; z5Þ

T , where

z0 ¼ CH
1;nþ1CP

1;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
x1;nþ1

p
=vz4;

z1 ¼ SH
1;nþ1CP

1;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
x1;nþ1

p
=vz4;

z2 ¼ �SV
0;nþ1SP

0;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
x0;nþ1

p
=vz5;

z3 ¼ CV
0;nþ1SP

0;nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
x0;nþ1

p
=vz5;

z4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

0 þ z2
1

q
=v;

z5 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

2 þ z2
3

q
=v;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

0 þ z2
1 þ z2

2 þ z2
3

q
: ð7Þ

Any other algorithm that selects the output channel in a
systematic manner might be employed as well. This will change
the order in which messages are being processed but the
content of the messages will be left intact and the resulting
averages do not change significantly.

2.3. Remaining optical components

The Wollaston prism is a PBS with one input channel and two
output channels and is simulated as the PBS described earlier.

In contrast to the PBS, the HWP and the EOM are passive
devices. As can be seen from the wave mechanical description, a
HWP does not only change the polarization of the photon but also
its phase [6].

When a voltage is applied to the EOM, Ra0 (see Eq. (2) in
Ref. [4]) and the EOM acts as a wave plate that rotates the
polarization of the incoming photons by an angle depending on R.
In the simulation a pseudo-random number is used to decide to
apply a voltage to the EOM or not. Also here we use a pseudo-
random number to mimic the experimental procedure to control
the EOM [4,5]. Any other (systematic) sequence to control the
EOM can be used as well.

2.4. Detection and data analysis procedure

Detector D0ðD1Þ registers the output events at channel 0 (1).
During a run of N events, the algorithm generates the data set

GðRÞ ¼ fxn; yn;Anjn ¼ 1; . . . ;N;F ¼ F1 �F0g; ð8Þ

K. Michielsen et al. / Physica E 42 (2010) 348–353 351
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where xn ¼ 0;1 indicates which detector fired (D0 or D1), yn ¼ 0;1
indicates through which arm of the MZI the messenger (photon)
came that generated the detection event (note that yn is only
measured in the simulation, not in the experiment), and An ¼ 0;1
is a pseudo-random number that is chosen after the nth
messenger has passed the first PBS, determining whether or not
a voltage is applied to the EOM (hence whether the MZI
configuration is open or closed). Note that in one run of N events
a choice is made between no voltage or a particular voltage
corresponding to a certain reflectivity R of the output BS
(see Eq. (2) in Ref. [4]). The angle F denotes the phase shift
between the two interferometer arms. This phase shift is varied by

applying a plane rotation on the phase of the particles entering
channel 0 of the second PBS. This corresponds to tilting the second
PBS in the laboratory experiment [4]. For each F and MZI
configuration the number of 0 (1) output events N0 ðN1Þ is
calculated.

3. Simulation results

The algorithm described above directly translates into a simple
computer program that simulates the messenger routing
in a network that contains all the optical components of the
laboratory experiment [4]. Before the simulation starts we set
x0 ¼ ðx0;0; x1;0Þ ¼ ðr;1� rÞ, where r is a uniform pseudo-random
number. In a similar way we use pseudo-random numbers to
initialize YH

0;0, YV
0;0, YP

0;0, YH
1;0, YV

1;0 and YP
1;0. In this simulation, we

send messengers to one input channel of the input PBS only (see
Fig. 1). The HWP in BSinput changes the phases and also
interchanges the roles of channels 0 and 1. Disregarding a few
exceptional events, the PBS in BSinput generates messages in one of
the channels only. For a fixed set of input parameters, each
simulation takes a few seconds on a present-day PC. In all
simulations, a ¼ 0:99 [13].

We first demonstrate that our model yields full WPI of the
photons. Fig. 3 shows the number of detection events at D0 as a
function of F for R ¼ 0:5. The events generated by photons
following paths 0 and 1 of the MZI are counted separately. It is
clear that the number of photons that followed paths 0 and 1 is
equal and that the total intensity in output channel 0 obeys Malus
law. Hence, although the photons have full WPI for all F they
can build an interference pattern by arriving one by one at a
detector.

Next, we calculate for R ¼ 0;0:05;0:43 [4] and for each
phase shift F and configuration (open or closed) of the MZI
the number of events registered by the two detectors behind

Fig. 3. (Color online) Event-by-event simulation results of the interference

visibility V for R ¼ 0:5. Markers give the results for the normalized intensity

N0=N as a function of the phase shift F, N0 denoting the number of events

registered at detector D0. Circles (triangles) represent the detection events

generated by photons that followed path 0 (1) and squares represent the total

number of detection events. For each value of F, the number of input events

N ¼ 10 000. The total number of detection events per data point (squares) is

approximately the same as in experiment. The solid line represents the results of

quantum theory.

Fig. 4. (Color online) Event-by-event simulation results of the interference visibility V for different values of R ((a)–(c)) and of V2, D2 and V2 þ D2 as a function of the EOM

voltage (d). (a)–(c) Circles give the results for the normalized intensities N0=N and N1=N as a function of the phase shift F, N0 ðN1Þ denoting the number of events registered

at detector D0 ðD1Þ, for (a) R ¼ 0:43 ðV � 0:98Þ, (b) R ¼ 0:05 ðV � 0:45Þ and (c) R ¼ 0 ðV ¼ 0Þ. For each value of F, the number of input events N ¼ 10 000. The number of

detection events per data point is approximately the same as in experiment. Dashed lines represent the results of quantum theory (Malus law). (d) Circles give the

simulation results. Lines represent the theoretical expectations obtained from Eqs. (2), (3) and (7) in [4] with b ¼ 243 and Vp ¼ 217 V.
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the output BS, just like in the experiment. Fig. 4(a)–(c)
depicts the interference visibility V. The simulation data
quantitatively agree with the averages calculated from
quantum theory and qualitatively agree with experiment
(see Fig. 3 in Ref. [4]). Calculation of D as described in
Ref. [4] gives the results for D2 and V2 shown in Fig. 4(d).
Comparison with Fig. 4 in Ref. [4] shows excellent qualitative
agreement.

4. Conclusion

In this paper, we have presented a simulation model
that is solely based on experimental facts that satisfies
Einstein’s criterion of local causality, that does not rely on any
concept of quantum theory or of probability theory, and that
provides a description of the experimental observations in
Ref. [4] on the level of individual events. In a pictorial description
of our simulation model, we may speak about ‘‘photons’’
generating the detection events. In the simulation we can
always track the photons, even in the closed configuration of
the MZI. The photons always have full WPI, never directly
communicate with each other, arrive one by one at a detector
but nevertheless build up an interference pattern at the
detector in the case of the closed configuration of the MZI. Hence,
although for 0oRr0:5 we find that 0rDo1 and D2 þ V2r1
with values for D and V in qualitative agreement with the
experimental results, we always have access to full WPI, even in
the case D ¼ 0, V ¼ 1. Our model thus provides a counter example
for the fact that full WPI would correspond to D ¼ 1. A further
consequence is that the relation V2 þ D2r1 cannot be regarded as
quantifying the notion of complementarity: Our model allows a
particle-only description for both the open and closed configura-
tion of the MZI.
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