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We discuss recent progress in the development of simulation algorithms that do not rely on any concept

of quantum theory but are nevertheless capable of reproducing the averages computed from quantum

theory through an event-by-event simulation. The simulation approach is illustrated by applications to

Einstein–Podolsky–Rosen–Bohm experiments with photons.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Computer simulation is widely regarded as complementary to
theory and experiment [1]. The standard approach is to start from
one or more basic equations of physics and to employ a numerical
algorithm to solve these equations. This approach has been highly
successful for a wide variety of problems in science and
engineering. However, there are a number of physics problems,
very fundamental ones, for which this approach fails, simply
because there are no basic equations to start from.

Indeed, as is well known from the early days in the
development of quantum theory, quantum theory has nothing to
say about individual events [2–4]. Reconciling the mathematical
formalism that does not describe individual events with the
experimental fact that each observation yields a definite outcome
is referred to as the quantum measurement paradox and is
the most fundamental problem in the foundation of quantum
theory [3].

In view of the quantum measurement paradox, it is unlikely
that we can find algorithms that simulate the experimental
observation of individual events within the framework of
quantum theory. Of course, we could simply use pseudo-random
numbers to generate events according to the probability distribu-
tion that is obtained by solving the time-independent Schrödinger
equation. However, the challenge is to find algorithms that
simulate, event-by-event, the experimental observations of, for
instance, interference without first solving the Schrödinger
equation.

This paper is not about a new interpretation or an extension
of quantum theory. The proof that there exist simulation
algorithms that reproduce the results of quantum theory has

no direct implications on the foundations of quantum theory:
these algorithms describe the process of generating events on a
level of detail about which quantum theory has nothing to say
[3,4]. The average properties of the data may be in perfect
agreement with quantum theory but the algorithms that
generate such data are outside of the scope of what quantum
theory can describe.

In a number of recent papers [5–17], we have demonstrated
that locally connected networks of processing units can simulate
event-by-event, the single-photon beam splitter and Mach–
Zehnder interferometer experiments, universal quantum compu-
tation, real Einstein–Podolsky–Rosen–Bohm (EPRB) experiments,
Wheeler’s delayed choice experiment and the double-slit experi-
ment with photons. Our work suggests that we may have
discovered a procedure to simulate quantum phenomena using
event-based, particle-only processes that satisfy Einstein’s criter-
ion of local causality, without first solving a wave equation. In this
paper, we limit the discussion to event-by-event simulations of
real EPRB experiments.

2. EPRB experiments

In Fig. 1, we show a schematic diagram of an EPRB experiment
with photons (see also Fig. 2 in Ref. [18]). The source emits pairs of
photons. Each photon of a pair propagates to an observation
station in which it is manipulated and detected. The two stations
are separated spatially and temporally [18]. This arrangement
prevents the observation at station 1 (2) to have a causal effect on
the data registered at station 2 (1) [18]. As the photon arrives at
station i ¼ 1;2, it passes through an electro-optic modulator that
rotates the polarization of the photon by an angle depending on
the voltage applied to the modulator. These voltages are
controlled by two independent binary random number
generators. As the photon leaves the polarizer, it generates a
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signal in one of the two detectors. The station’s clock assigns a
time-tag to each generated signal. Effectively, this procedure
discretizes time in intervals of a width that is determined by the
time-tag resolution t [18]. In the experiment, the firing of a
detector is regarded as an event.

As we wish to demonstrate that it is possible to reproduce the
results of quantum theory (which implicitly assumes idealized
conditions) for the EPRB gedanken experiment by an event-based
simulation algorithm, it would be logically inconsistent to
‘‘recover’’ the results of the former by simulating nonideal
experiments. Therefore, we consider ideal experiments only,
meaning that we assume that detectors operate with 100%
efficiency, clocks remain synchronized forever, the ‘‘fair sampling’’
assumption is satisfied [19], and so on. We assume that the two
stations are separated spatially and temporally such that the
manipulation and observation at station 1 (2) cannot have a
causal effect on the data registered at station 2 (1). Furthermore,
to realize the EPRB gedanken experiment on the computer, we
assume that the orientation of each electro-optic modulator can
be changed at will, at any time. Although these conditions are very
difficult to satisfy in real experiments, they are trivially realized in
computer experiments.

In the experiment, the firing of a detector is regarded as an
event. At the nth event, the data recorded on a hard disk at station
i ¼ 1;2 consists of xn;i ¼71, specifying which of the two detectors
fired, the time tag tn;i indicating the time at which a detector fired
and the two-dimensional unit vector an;i that represents the
rotation of the polarization by the electro-optic modulator. Hence,
the set of data collected at station i ¼ 1;2 during a run of N events
may be written as

Ui ¼ fxn;i ¼71; tn;i; an;ijn ¼ 1; . . . ;Ng: ð1Þ

In the (computer) experiment, the data fU1;U2g may be analyzed
long after the data have been collected [18]. Coincidences are
identified by comparing the time differences ftn;1 � tm;2jn;m ¼

1; . . . ;Ng with a time window W [18]. Introducing the symbol
P
0

to indicate that the sum has to be taken over all events that satisfy
ai ¼ an;i for i ¼ 1;2, for each pair of directions a1 and a2 of the
electro-optic modulators, the number of coincidences Cxy �

Cxyða1; a2Þ between detectors Dx;1 ðx ¼71Þ at station 1 and

detectors Dy;2 ðy ¼71Þ at station 2 is given by

Cxy ¼
XN

n;m¼1

dx;xn;1
dy;xm;2

YðW � jtn;1 � tm;2jÞ; ð2Þ

where YðtÞ is the Heaviside step function. We emphasize that we
count all events that, according to the same criterion as the one
employed in experiment, correspond to the detection of pairs. The
average single-particle counts and the two-particle average are
defined by

E1ða1; a2Þ ¼

P
x;y¼71xCxyP
x;y¼71Cxy

;E2ða1; a2Þ ¼

P
x;y¼71yCxyP
x;y¼71Cxy

ð3Þ

and

Eða1; a2Þ ¼

P
x;y¼71xyCxyP

x;y¼71Cxy

¼
C ++ þ C -- � Cþ� � C�þ
C ++ þ C -- þ Cþ� þ C�þ

; ð4Þ

respectively. In Eqs. (3) and (4), the denominator is the sum of all
coincidences.

For later use, it is expedient to introduce the function

Sða;b; c;dÞ ¼ Eða; cÞ � Eða;dÞ þ Eðb; cÞ þ Eðb;dÞ ð5Þ

and its maximum

Smax � max
a;b;c;d

Sða;b; c;dÞ: ð6Þ

2.1. Analysis of real experimental data

We illustrate the procedure of data analysis and the impor-
tance of the choice of the time window W by analyzing a data set
(the archives Alice.zip and Bob.zip) of an EPRB experiment with
photons that is publicly available [20].

In the real experiment, the number of events detected at
station 1 is unlikely to be the same as the number of events
detected at station 2. In fact, the data sets of Ref. [20] show that
station 1 (Alice.zip) recorded 388 455 events while station 2
(Bob.zip) recorded 302 271 events. Furthermore, in the real EPRB

Fig. 1. (Color online) Schematic diagram of an EPRB experiment with photons.
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experiment, there may be an unknown shift D (assumed to be
constant during the experiment) between the times tn;1 gathered
at station 1 and the times tm;2 recorded at station 2. Therefore,
there is some extra ambiguity in matching the data of station 1 to
the data of station 2.

A simple data processing procedure that resolves this ambi-
guity consists of two steps [22]. First, we make a histogram of the
time differences tn;1 � tm;2 with a small but reasonable resolution
(we used 0.5 ns). Then, we fix the value of the time-shift D by
searching for the time difference for which the histogram reaches
its maximum, that is we maximize the number of coincidences by
a suitable choice of D. For the case at hand, we find D ¼ 4 ns.
Finally, we compute the coincidences, the two-particle average,
and Smax using the expressions given earlier. The average times
between two detection events is 2.5 and 3.3 ms for Alice and Bob,
respectively. The number of coincidences (with double counts
removed) is 13 975 and 2899 for ðD ¼ 4 ns;W ¼ 2 nsÞ and
ðD ¼ 0;W ¼ 3 nsÞ, respectively.

In Fig. 2 we present the results for Smax as a function of the time
window W. First, it is clear that Smax decreases significantly as W

increases but it is also clear that as W-0, Smax is not very
sensitive to the choice of W [22]. Second, the procedure of
maximizing the coincidence count by varying D reduces the
maximum value of Smax from a value 2.89 that considerably
exceeds the maximum for the quantum system (2

ffiffiffi
2
p

, see Section
3) to a value 2.73 that violates the Bell inequality (Smaxr2, see
Ref. [21]) and is less than the maximum for the quantum system.

Finally, we use the experimental data to show that the time
delays depend on the orientation of the polarizer. To this end, we
select all coincidences between Dþ;1 and Dþ;2 (see Fig. 1) and make
a histogram of the coincidence counts as a function of the time-
tag difference, for fixed orientation y1 ¼ 0 and the two orienta-
tions y2 ¼ p=8;3p=8 (other combinations give similar results). The
results of this analysis are shown in Fig. 3. The maximum of the
distribution shifts by approximately 1 ns as the polarizer at station
2 is rotated by p=4, a demonstration that the time-tag data is
sensitive to the orientation of the polarizer at station 2. A similar
distribution of time-delays (of about the same width) was also
observed in a much older experimental realization of the EPRB
experiment [23]. The time delays that result from differences in

the orientations of the polarizers is much larger than the average
time between detection events, which for the data that we
analyzed is about 30 000 ns. In other words, the loss in correlation
that we observe as a function of increasing W (see Fig. 2) cannot
be explained by assuming that we calculate correlations using
photons that belong to different pairs.

Strictly speaking, we cannot derive the time delay from
classical electrodynamics: the concept of a photon has no place
in Maxwell’s theory. A more detailed understanding of the time
delay mechanism requires dedicated, single-photon retardation
measurements for these specific optical elements.

2.2. Role of the coincidence window W

The crucial point is that in any real EPR-type experiment, it is
necessary to have an operational procedure to decide if the two
detection events correspond to the observation of one two-
particle system or to the observation of two single-particle
systems. In standard ‘‘hidden variable’’ treatments of the EPR
gedanken experiment [21], the operational definition of ‘‘observa-
tion of a single two-particle system’’ is missing. In EPRB-type
experiments, this decision is taken on the basis of coincidence in
time [23,25,18].

Our analysis of the experimental data shows beyond doubt
that a model which aims to describe real EPRB experiments
should include the time window W and that the interesting
regime is W-0, not W-1, as is assumed in all textbook
treatments of the EPRB experiment. Indeed, in quantum me-
chanics textbooks it is standard to assume that an EPRB
experiment measures the correlation [21]

Cð1Þxy ¼
X

0
N

n¼1

dx;xn;1
dy;xn;2

; ð7Þ

which we obtain from Eq. (2) by taking the limit W-1. Although
this limit defines a valid theoretical model, there is no reason why
this model should have any bearing on the real experiments, in
particular because experiments pay considerable attention to the
choice of W . In experiments a lot of effort is made to reduce (not
increase) W [18,22].
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Fig. 2. Smax as a function of the time window W, computed from the data sets

contained in the archives Alice.zip and Bob.zip that can be downloaded from Ref.

[20]. Bullets (red): data obtained by using the relative time shift D ¼ 4 ns that

maximizes the number of coincidences. Crosses (blue): raw data ðD ¼ 0Þ. Dashed

line at 2
ffiffiffi
2
p

: Smax if the system is described by quantum theory (see Section 3).

Dashed line at 2: Smax if the system is described by the class of models introduced

by Bell [21]. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 3. Normalized coincidence counts as a function of time tag difference

tn;1 � tm;2, computed from the data sets contained in the archives Alice.zip and

Bob.zip [20], using the relative time shift D ¼ 4 ns that maximizes the number of

coincidences. Bullets (red): y1 ¼ 0 and y2 ¼ p=8; crosses (blue): y1 ¼ 0 and

y2 ¼ 3p=8. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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3. Quantum theory

According to the axioms of quantum theory [4], repeated
measurements on the two-spin system described by the density
matrix r yield statistical estimates for the single-spin expectation
values

~E1ðaÞ ¼ /s1 � aS; ~E2ðbÞ ¼ /s2 � bS ð8Þ

and the two-spin expectation value

~Eða;bÞ ¼ /s1 � as2 � bS; ð9Þ

where si ¼ ðsx
i ;s

y
i ;s

z
i Þ are the Pauli spin-1=2 matrices describing

the spin of particle i ¼ 1;2 [4], and a and b are unit vectors. We
have introduced the tilde to distinguish the quantum theoretical
results from the results obtained from the data sets fU1;U2g.

The quantum theoretical description of the EPRB experiment
assumes that the system is represented by the singlet state jCS ¼
ðjHS1jVS2 � jVS1jHS2Þ=

ffiffiffi
2
p

of two spin-1=2 particles, where H

and V denote the horizontal and vertical polarization and the
subscripts refer to photon 1 and 2, respectively. For the singlet
state r ¼ jCS/Cj, ~E1ðaÞ ¼ ~E2ðbÞ ¼ 0 and

~Eða;bÞ ¼ �cos2ða� bÞ: ð10Þ

4. Simulation model

A concrete simulation model of the EPRB experiment sketched
in Fig. 1 requires a specification of the information carried by the
particles, of the algorithm that simulates the source and the
observation stations, and of the procedure to analyze the data. In
the following, we describe a slightly modified version of the
algorithm proposed in Ref. [9], tailored to the case of photon
polarization.

Source and particles: The source emits particles that carry a
vector Sn;i ¼ ðcosðxn þ ði� 1Þp=2Þ; sinðxn þ ði� 1Þp=2Þ, represent-
ing the polarization of the photons that travel to station i ¼ 1
and station i ¼ 2, respectively. Note that Sn;1 � Sn;2 ¼ 0, indicating
that the two particles have orthogonal polarizations. The
‘‘polarization state’’ of a particle is completely characterized by
xn, which is distributed uniformly over the whole interval ½0;2p½.
For the purpose of mimicking the apparent unpredictability of the
experimental data, we use uniform random numbers. However,
from the description of the algorithm, it will be clear that the use
of random numbers is not essential. Simple counters that sample
the intervals ½0;2p½ in a systematic, but uniform, manner might be
employed as well.

Observation station: The electro-optic modulator in station i

rotates Sn;i by an angle gn;i, that is an;i ¼ ðcosgn;i; singn;iÞ. The
number M of different rotation angles is chosen prior to the data
collection (in the experiment of Weihs et al. [18] M ¼ 2). We use
2M random numbers to fill the arrays ða1; . . . ;aMÞ and ðb1; . . . ;bMÞ.
During the measurement process we use two uniform random
numbers 1rm;m0rM to select the rotation angles gn;1 ¼ am

and gn;2 ¼ bm0 . The electro-optic modulator then rotates Sn;i ¼

ðcosðxn þ ði� 1Þp=2Þ; sinðxn þ ði� 1Þp=2Þ by gn;i, yielding Sn;i ¼

ðcosðxn � gn;i þ ði� 1Þp=2Þ; sinðxn � gn;i þ ði� 1Þp=2Þ.
The polarizer at station i projects the rotated vector onto

its x-axis: Sn;i � x̂ i ¼ cosðxn � gn;i þ ði� 1Þp=2Þ, where x̂ i

denotes the unit vector along the x-axis of the polarizer. For the
polarizing beam splitter, we consider a simple model: if
cos2ðxn � gn;i þ ði� 1Þp=2Þ41=2 the particle causes Dþ1;i to fire,
otherwise D�1;i fires. Thus, the detection of the particles generates
the data xn;i ¼ signðcos2ðxn � gn;i þ ði� 1Þp=2ÞÞ.

Time-tag model: To assign a time-tag to each event, we assume
that as a particle passes through the detection system, it may
experience a time delay. In our model, the time delay tn;i for a
particle is assumed to be distributed uniformly over the interval
½t0; t0 þ T�, an assumption that is not in conflict with available data
[22]. In practice, we use uniform random numbers to generate tn;i.
As in the case of the angles xn, the random choice of tn;i is merely
convenient, not essential. From Eq. (2), it follows that only
differences of time delays matter. Hence, we may put t0 ¼ 0. The
time-tag for the event n is then tn;i 2 ½0; T�.

There are not many options to make a reasonable choice for T.
Assuming that the particle ‘‘knows’’ its own direction and that of
the polarizer only, we can construct one number that depends
on the relative angle: Sn;i � x̂ i. Thus, T ¼ Tðxn � gn;iÞ depends on
xn � gn;i only. Furthermore, consistency with classical electrody-
namics requires that functions that depend on the polarization
have period p [24]. Thus, we must have Tðxn � gn;iþ

ði� 1Þp=2Þ ¼ FððSn;i � x̂ iÞ
2
Þ. We already used cos2ðxn � gn;i þ ði�

1Þp=2Þ to determine whether the particle generates a þ1 or �1
signal. By trial and error, we found that Tðxn � y1Þ ¼ T0Fðjsin2ðxn �

y1ÞjÞ ¼ T0jsin2ðxn � y1Þj
d yields useful results [9–13]. Here, T0 ¼

maxyTðyÞ is the maximum time delay and defines the unit of time,
used in the simulation and d is a free parameter of the model. In
our numerical work, we set T0 ¼ 1.

Data analysis: For fixed N and M, the algorithm generates the
data sets Ui just as experiment does [18]. In order to count the
coincidences, we choose a time-tag resolution 0otoT0 and a
coincidence window trW. We set the correlation counts
Cxyðam;bm0 Þ to zero for all x; y ¼71 and m;m0 ¼ 1; . . . ;M. We
compute the discretized time tags kn;i ¼ dtn;i=te for all events in
both data sets. Here dxe denotes the smallest integer that is larger
or equal to x, that is dxe � 1oxrdxe. According to the procedure
adopted in the experiment [18], an entangled photon pair is
observed if and only if jkn;1 � kn;2jok ¼ dW=te. Thus, if
jkn;1 � kn;2jok, we increment the count Cxn;1 ;xn;2

ðam;bm0 Þ.

5. Simulation results

The simulation proceeds in the same way as the experiment,
that is we first collect the data sets fU1;U2g, and then compute the
coincidences Eq. (2) and the correlation Eq. (4). The simulation
results for the coincidences Cxyða;bÞ depend on the time-tag
resolution t, the time window W and the number of events N, just
as in real experiments [18].

Fig. 4 shows simulation data for Eða;bÞ as obtained for d ¼ 2,
N ¼ 106, and W ¼ t ¼ 0:00025T0. In the simulation, for each
event, the random numbers 1rAn;irM select one pair out of
fðai;bjÞji; j ¼ 1;Mg, where the angles ai and bj are fixed before the
data is recorded. The data shown have been obtained by allowing
for M ¼ 20 different angles per station. Hence, 40 random
numbers from the interval [0,360[ were used to fill the arrays
ða1; . . . ;aMÞ and ðb1; . . . ;bMÞ. For each of the N events, two
different random number generators were used to select the
angles am and bm0 . The statistical correlation between m and m0

was measured to be less than 10�6.
From Fig. 4, it is clear that the simulation data for Eða;bÞ are in

excellent agreement with quantum theory. Within the statistical
noise, the simulation data (not shown) for the single-spin
expectation values also reproduce the results of quantum theory.

Additional simulation results (not shown) demonstrate that
the kind of models described earlier are capable of reproducing all
the results of quantum theory for a system of two S ¼ 1=2
particles [9–13]. Furthermore, to first order in W and in the
limit that the number of events goes to infinity, one can
prove rigorously that these simulation models give the same

H. De Raedt et al. / Physica E 42 (2010) 298–302 301
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expressions for the single- and two-particle averages as those
obtained from quantum theory [9–13].

6. Discussion

Starting from the factual observation that experimental
realizations of the EPRB experiment produce the data fU1;U2g

(see Eq. (1)) and that coincidence in time is a key ingredient for
the data analysis, we have described a computer simulation model
that satisfies Einstein’s criterion of local causality and, exactly
reproduces the correlation ~Eða1; a2Þ ¼ �a1 � a2 that is character-
istic for a quantum system in the singlet state.

We have shown that whether or not these simulation models
produce quantum correlations depends on the data analysis
procedure that is performed (long) after the data have been
collected: in order to observe the correlations of the singlet state,
the resolution t of the devices that generate the time-tags and the
time window W should be made as small as possible. Disregard-
ing the time-tag data (d ¼ 0 or W4T0) yields results that disagree
with quantum theory but agree with the models considered by
Bell [21]. Our analysis of real experimental data and our
simulation results show that increasing the time window changes
the nature of the two-particle correlations [9–13].

According to the folklore about Bell’s theorem, a procedure
such as the one that we described should not exist. Bell’s theorem
states that any local, hidden variable model will produce results
that are in conflict with the quantum theory of a system of two
S ¼ 1=2 particles [21]. However, it is often overlooked that this
statement can be proven for a (very) restricted class of
probabilistic models only. In fact, Bell’s theorem does not
necessarily apply to the systems that we are interested in as both
simulation algorithms and actual data do not need to satisfy the
(hidden) conditions under which Bell’s theorem hold [26–29].

Furthermore, the apparent conflict between the fact that there
exist event-based simulation models that satisfy Einstein’s
criterion of local causality and reproduce all the results of the
quantum theory of a system of two S ¼ 1=2 particles and the
folklore about Bell’s theorem, stating that such models are not
supposed to exist, dissolves immediately if one recognizes that
Bell’s extension of Einstein’s concept of locality to the domain
of probabilistic theories relies on the hidden, fundamental

assumption that the absence of a causal influence implies logical
independence [30,31].

The simulation model that is described in this paper is an
example of a purely ontological model that reproduces quantum
phenomena without first solving the quantum problem. The
salient features of our simulation models [5–11,14] are that they

(i) generate, event-by-event, the same type of data as recorded
in experiment,

(ii) analyze data according to the procedure used in experiment,
(iii) satisfy Einstein’s criterion of local causality,
(iv) do not rely on any concept of quantum theory or probability

theory,
(v) reproduce the averages that we compute from quantum

theory.
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Fig. 4. Comparison between computer simulation data (red bullets) and quantum

theory (black solid line) for the two-particle correlation Eða;bÞ. (For interpretation

of the references to color in this figure legend, the reader is referred to the web

version of this article.)

H. De Raedt et al. / Physica E 42 (2010) 298–302302


