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ABSTRACT

We present stochastic diagonalization results for the ground-state energy and the

largest eigenvalue of the two-fermion density matrix of the BCS reduced Hamil-

tonian, the Hubbard model, and the Hubbard model with correlated hopping.

The system-size dependence of this eigenvalue is used to study the existence

of Off-Diagonal Long-Range Order in these models. We show that the model

with correlated hopping and repulsive on-site interaction can exhibit Off-Diagonal

Long-Range Order. Analytical results for some special limiting cases indicate that

Off-Diagonal Long-Range Order not always implies superconductivity.

1. Introduction

In boson systems Bose-Einstein condensation is characterized by the existence
of Off-Diagonal Long-Range Order (ODLRO) in the reduced one-particle density

matrix.1,2 Yang has shown that the concept of ODLRO can also be used to charac-
terize the superconducting state of fermion systems.3 Recently it has been shown
that, under certain simplifying assumptions, ODLRO implies the existence of the

Meissner effect and magnetic flux quantization.4−6

As pointed out by Yang, ODLRO in the reduced n-particle density matrix
implies ODLRO in the reduced m-particle density matrices for all m > n.3 For
a fermion system the reduced density matrix of lowest order which may exhibit

ODLRO is the two-body density matrix.3 Therefore, in this paper we will confine
ourselves to the study of the largest eigenvalue of the two-body density matrix.
For conciseness we will use the term ODLRO, always refering to ODLRO in the
two-body density matrix.

The aim of this paper is to study ODLRO in three fermion lattice models:
the BCS reduced Hamiltonian, the Hubbard model and the Hubbard model with
correlated hopping. Following Yang we will compute all entries of the two-particle
density matrix3
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ρr,s ≡ ρ(i, j, σ; k, l, σ′) = 〈c+i,σc
+
j,−σcl,−σ′ck,σ′〉 , (1)

where r = (i, j, σ) and s = (k, l, σ′) and c+i,σ and ci,σ are the creation and anni-

hilation operators, respectively, for a fermion with spin σ =↑, ↓ at the generalized
site index i. For simplicity we will restrict ourselves to singlet pairing, as is evident
from the spin labels in (1). There is ODLRO in a fermion system if the largest
eigenvalue λ0 of the 2L2 × 2L2 matrix ρr,s grows linearly with the size of the sys-

tem (assuming the density of particles is kept constant).3 Accordingly a plot of λ0

versus the system size will reveal whether or not the system exhibits ODLRO.
The outline of the paper is as follows. In section 2, we discuss the numerical

techniques we use to compute the ground-state properties of the fermion lattice
models and we address the difficulties that are encountered when one tries to calcu-
late the reduced two-particle density matrix. On the one hand the computational
effort required to compute the relevant physical quantities grows exponentially with

the system size. On the other hand it is mandatory to have data for a number of
systems of significantly different size in order for the plot of λ0 versus the system
size to be of any use at all. With these considerations in mind we decided to search
for ODLRO in one-dimensional systems only.

Although in a one-dimensional model there can be no ODLRO at non-zero
temperature in the strict sense,7 at T = 0 there can be ODLRO even in a one-
dimensional system. As the numerical method we employ is designed to compute
the ground-state properties we may expect to find in our data clear signals for

ODLRO whenever it is there. Due to the quantum fluctuations there can at most
be “quasi” ODLRO in 1D systems with short-range interactions: The pairing cor-
relation functions exhibit a slow (power-law) decrease for large distances, resulting

in a sublinear dependence of λ0 on L.
The eigenvector of the two-body density matrix, corresponding to λ0, contains

all the information about the type of pairing, including more exotic forms of pairing
such as η pairing.8−10 For instance, in the case of pure s-wave pairing, the elements

of the eigenvector are non-zero and the same for all r = (i, i, σ) and zero for all
r = (i, j, σ), i 6= j. In general, knowing this eigenvector, it is a simple matter to
identify the kind of pairing that gives the dominant contribution to the ODLRO.

A presentation of the results for the three different models is given in section

3, 4 and 5 respectively. Each of these sections contains some analytical results for
particular limiting cases as well as the numerical results.

2. Computational Techniques

The physical properties of a quantum system at zero temperature can be com-
puted from the solution of the eigenvalue problem
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H|Φ〉 = E|Φ〉 , (2)

where E denotes the smallest eigenvalue of the “matrix” H and |Φ〉 is the corre-
sponding eigenvector. The dimension of the matrix H will be denoted by M .

A critical factor for the selection of a method to compute E and |Φ〉 is the
amount of memory M needed to store |Φ〉. For concreteness let us consider a
lattice model of L sites, filled with L/2 electrons with spin up and L/2 electrons
with spin down. Simple counting shows that

M =

(
L

L/2

)2

, (3a)

which for large L (L ≥ 16 will do) can be approximated using Stirling’s formula to

give

M ≈
22L+2

2πL
, (3b)

demonstrating that M increases exponentially with 2L. For instance, if L = 16,
M ≈ 108 and for L = 64, M ≈ 1035. Assuming that we need 8 bytes/floating point
number the estimated amount of memory we need to store a single eigenvector is

given by

M≈
22L−25

2πL
Gb . (4)

From (4) it follows that M ≈ 1Gb if L = 16, M ≈ 109Gb if L = 32, and M ≈
1028Gb if L = 64.

Clearly any method that requires storage of the full matrix (i.e. M×M Gb
will be of very limited use (as far as the range of system sizes that can be studied is

concerned) to solve models for interacting fermions. Although our method of esti-
mating the required amount of memory is somewhat crude (it does not incorporate
reductions due to the use of symmetry) it gives a feeling for the kind of systems
that is amenable by conventional, sparse matrix eigenvalue solvers (e.g. Lanczos,

Davidson, etc.): L = 16 is within reach,11−16 L = 32 is not.
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2.1 Stochastic Diagonalization

If the dimension of the Hilbert space is so large that it is no longer feasible to
store even a single vector, we make the basic assumption that of the whole, large set
of basis vectors spanning the Hilbert space, only a relatively small portion is impor-
tant when it comes to computing physical properties. This fundamental assumption

is at the heart of all Quantum Monte Carlo methods currently in use.17,18

The stochastic diagonalization algorithm (SD) implements this idea in the fol-
lowing manner.19,20 Instead of using the sparseness of the matrix, it is assumed
that the solution itself is “sparse” in the sense that only a small fraction of the

elements of the eigenvector, corresponding to the smallest eigenvalue, is important.
We know that the ground state can be written as a linear combination of all the
basis states {|φj〉 ; j = 0, . . . ,M − 1}

|Φ〉 =

M−1∑
j=0

aj |φj〉 . (5)

In principle we can rearrange the terms in this sum so that the ones with the largest
amplitude are in front:

|Φ〉 =

M−1∑
j=0

aPj |φPj〉 . (6)

Here P denotes the permutation of the set {0, . . . ,M − 1} such that |aPj | ≥
|aP(j+1)|. Assuming that we obtain a good approximation if we restrict the sum to

the first MI terms we have

|Φ〉 ≈ |Φ̃〉 =
MI∑
j=0

aPj |φPj〉 . (7)

According to the Poincaré theorem21,22 we have

E ≤ Ẽ =
〈Φ̃|H|Φ̃〉

〈Φ̃|Φ̃〉
, (8)

demonstrating that stochastic diagonalization belongs to the class of variational
techniques. By virtue of the basic assumption we expect that MI �M . In practice

MI will depend on the actual choice of the basis vectors (i.e. the representation
used) and on the model itself.

Up to know, we have assumed that we know the permutation P that does the
job described above, but in fact we don’t know P nor do we know the coefficients

aPj . The SD method uses a stochastic process to construct P and the coefficients
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aPj simultaneously. Thereby it does not suffer from the so-called minus-sign prob-
lem that is usually encountered in Quantum Monte Carlo (QMC) work.18,20,23 A

further advantage of the SD method is that it can deal with more complicated lat-
tice models (see below) than those amenable to QMC techniques. Albeit at much
greater expense, the SD method yields exact results whenever other methods (such
as Lanczos) will, because then we can store the whole vector and put MI = M from

the start. A rigorous proof of the correctness of the SD algorithm, an extensive dis-
cussion on the origin of the minus-sign problem, and details on the implementation
of the SD algorithm can be found elsewhere.20

As usual the symmetries of the model system can be used to reduce the actual

size of the Hilbert space, resulting in a more efficient computational method. In all
our numerical work we adopt periodic boundary conditions. Our SD codes work
either with the real-space or Fourier space representation and can take advantage
of the spatial and spin symmetries of the model.

Most of the data presented in this paper have been obtained from runs that use
all obvious tricks to reduce the size of the Hilbert space. For many of the systems
studied, the calculations were carried out using both representations, providing a

highly non-trivial consistency check. Occasionally some runs have been repeated
without the use of symmetries. For small systems, the results of the SD calculations
have been compared against those obtained from exact diagonalization and, as
expected on theoretical grounds, no differences were found.

2.2 Computation of physical properties

Assuming the ground state has been found, either in exact form by e.g. the

Lanczos method or in the variational sense through the SD algorithm, a calculation
of the expectation values of physical quantities may become a non-trivial compu-
tational problem if the matrix representing the observable is not diagonal in the
basis that was used to represent the Hamiltonian. Indeed, if A denotes the physical

observable, the expectation value of A is given by

〈A〉 = 〈Φ|A|Φ〉 =
M−1∑
i,j=0

aiaj〈φi|A|φj〉 , (9)

showing that in general it will takeO(M2) operations to carry out this computation.
For large M , it may take longer to calculate certain expectation values than it
takes to solve for the ground state itself and in fact, for some of the examples to be
discussed below, this is indeed the case.

The calculation of the ground-state energy itself does not require extra work
because (the approximation to) it is known at each stage of the SD process.20

However the evaluation of the two-particle density matrix (1) is time consuming.
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The number of operations in the algorithm that we use to compute all entries
of this matrix scales with LM2

I . For most of the systems that we have studied

MI = O(105), indicating that the CPU time required to set up the two-particle
density matrix can be substantial.

As an independent check on the results obtained from the two-particle density
matrix we also compute the on-site (s-wave) pairing correlation function

P0 ≡
1

L

∑
i,j

〈c+i,↑c
+
i,↓cj,↓cj,↑〉 . (10)

As the contributions to P0 appear on the diagonal of the two-particle density matrix
(1) we must have

P0 ≤ λ0 , (11)

an inequality that is never violated by our numerical data. From (11) it is clear

that there is ODLRO if P0 ∝ L for large L, i.e. ODLRO of the on-site type.
Another simple check on the numerical results is provided by the rigorous up-

perbound to λ0, given by Yang3, which for the case at hand can be written as

λ0 ≤ L
n(2− n)

2
+ n ; nL even . (12)

where

n = L−1
∑
i,σ

〈ni,σ〉 , (13)

denotes the density of particles. All our numerical results are also in concert with
(12).

Other criteria which may be used to decide whether or not a given model exhibits
superconductivity is the occurrence of flux quantization3,24 or a non-zero value of

the superfluid density ρs.25

To explore flux quantization we thread a magnetic flux φ through the center of
the ring. As a consequence the hopping term in the model Hamiltonian acquires a
constant phase exp(±2πiφ/Lφ0) where φ0 = hc/e is the flux quantum.26 Byers and

Yang argue that, in the thermodynamic limit, the functional form of the free energy
F (φ) = −β−1 lnTr e−βH as a function of φ allows one to distinguish between a
normal metal and a superconductor.3,24 In the case of a superconductor F (φ) is an
even periodic function of φ with period φ0/k where k stands for the sum of charges

of the particles in the basic group.3 The resulting flux dependence requires that a
superconductor exhibits ODLRO.3 On the other hand, the curve F (φ) is flat in the
case of a normal metal.

In Fig.1 we plot the energy difference ∆E(φ) ≡ E(φ) − E(φ = 0) (at zero-
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Fig.1. ∆E(φ) for free fermions at zero temperature. Bullets: 12-site
ring; circles: 14-site ring; triangles: 36-site ring; squares: 128-site ring.
The lines are guides to the eye.

temperature F (φ) = E(φ), E(φ) being the ground-state energy for a given φ) for

free fermions on a ring of 12 (bullets), 14 (circles), 36 (triangles) and 128 (squares)
sites. For small systems ∆E(φ) clearly exhibits periodic behavior as a function of
φ. This implies the presence of persistent currents (J ∝ ∂E/∂φ), a well-known
phenomenon in mesoscopic normal-metal rings.27−30 Also clear from Fig.1 is that

the signal for flux quantization strongly depends on system-size: Only for a ring
of 128 sites ∆E(φ) is flat (up to four digits at least). Because of these finite-
size effects and the fact that it is difficult to solve numerically interacting fermion
systems on large lattices, we decided not to use flux quantization as a criterion to

decide whether or not the system exhibits ODLRO.
The superfluid density ρs can be calculated from the dependence of the free en-

ergy on φ using ρs ∝ L−1(∂2F (φ/L)/∂(φ/L)2)φ/L=0.31−34 A feeling for the system-

size dependence of ρs can be obtained by considering a free electron system. Evi-
dently in that case one expects to find ρs = 0, independent of the dimension and
the temperature. For a one-dimensional free electron system35

∂2F

∂(φ/L)2

∣∣∣∣
φ/L=0

= 2t
∑
k

nk cos k − 2βt
∑
k

nk(1− nk) sin2 k , (14)

with

nk =
1

eβ(−2t cosk−µ) + 1
, (15)
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where t denotes the hopping integral, β the inverse temperature, and µ the chemical
potential.

L β = 10 β = 100 β = 1000

16 −0.626 −11.872 −124.37

18 0.386 0.640 0.639
32 −0.087 −5.615 −61.865
34 0.066 0.638 0.638
36 −0.052 −4.921 −54.921

64 −0.001 −2.489 −30.614
66 0.001 0.635 0.637
72 0.000 −2.141 −27.142

1024 0.000 0.000 −1.312

1026 0.000 0.000 0.603
10000 0.000 0.000 0.000

Table 1. Superfluid density ρs for the half-filled one-dimensional free
electron system as a function of system size L and inverse temperature
β.

Numerical results for the r.h.s. of (14) for various system sizes and inverse
temperatures for t = 1 and n = 1 are given in Table 1. For all temperatures ρs ≤ 0
for L = 4m and ρs ≥ 0 for L = 4m+2 where m is an integer number. This change of
sign of ρs with L is similar to the behavior found in the Drude weight.36,37 At very

low temperatures very large system sizes are needed to obtain ρs = 0, as required
for the free electron system.38 The system size required to yield a vanishing ρs
grows with the inverse temperature, a feature which makes it difficult to use as a

criterion for superconductivity a non-zero value for ρs.

3. BCS reduced Hamiltonian

From pedagogical viewpoint it is important to have at least one example for
which it is known that the system supports ODLRO. Such an example is provided
by the Hamiltonian

HBCS = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c+i,σcj,σ + c+j,σci,σ

)
−
|U |

L

∑
i,j

c+i,↑c
+
i,↓cj,↓cj,↑ . (16)

where c+i,σ and ci,σ are the creation and annihilation operators, respectively, for

a fermion with spin σ =↑, ↓ at the site (or orbital) i and the sum over 〈i, j〉 is
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over distinct pairs of nearest neighbor lattice sites on a chain of length L. t is the
hopping parameter and U is the on-site pairing interaction. A variational, BCS-

like treatment of (16) yields the exact solution,39 hence the name “BCS reduced
Hamiltonian”. As ODLRO is a characteristic feature of the BCS wave function,3

any numerical method that solves (16) should be able to reproduce this feature.
In the Fourier representation (16) reads

HBCS =
∑
k

∑
σ=↑,↓

εk c
+
k,σck,σ −

|U |

L

∑
k,p

c+k,↑c
+
−k,↓c−p,↓cp,↑ , (17)

where εk = −2t cos k.

3.1 BCS approximation

The BCS treatment consists of invoking the variational principle to minimize
the upperbound to the grand potential Ω = −β−1 lnTr exp(−β(H − µN)), where
N =

∑
i,σ c

+
i,σci,σ =

∑
i,σ ni,σ the number of particles. The inequality for Ω reads

Ω ≤ Ωtrial + 〈H − µN −Htrial〉trial , (18)

where 〈X〉trial is the thermal expectation value of the observable X with respect to
the ensemble defined by Htrial and Ωtrial = −β−1 lnTr exp(−βHtrial) for a trial
Hamiltonian of the form

Htrial =
∑
k

∑
σ=↑,↓

Ek c
+
k,σck,σ + ∆

∑
k

(
c+k,↑c

+
−k,↓ + c−k,↓ck,↑

)
. (19)

For model (16) and at zero temperature (β = ∞), the resulting equations for Ek
and ∆ read

Ek =εk − µ̃+
|U |

2L

Ek√
E2
k + ∆2

, (20a)

and

1 =
|U |

2L

∑
k

1√
E2
k + ∆2

, (20b)

where the chemical potential µ and some irrelevant constants have been absorbed
in µ̃. The latter is determined by the requirement that the averaged density of
particles is equal to the specified particle density, i.e.

n = 1−
1

L

∑
k

Ek√
E2
k + ∆2

. (21)
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In the thermodynamic limit L → ∞, the last term in (20a) vanishes and (20b)
reduces to the standard BCS gap equation,40 as expected on the basis of the rigorous

treatment of model (16).39

The on-site pairing correlation function P0 is given by

PBCS0 =
1

4L

∑
k

(
1−

Ek√
E2
k + ∆2

)2

+
∆2

4L

(∑
k

1√
E2
k + ∆2

)2

. (22)

With the use of equations (20b) and (21), we find

PBCS0 =
n

2
−

∆2

4L

∑
k

1

E2
k + ∆2

+
L∆2

U2
, (23)

explicitly showing that the ground state of HBCS exhibits ODLRO of the on-site
(s-wave) type.

Fig.2. Ground-state energy per site E/L, on-site pairing correlation
function P0 and largest eigenvalue λ0 of the reduced two-particle density
matrix as a function of system size L for the BCS reduced Hamiltonian
for t = 1, U = −4 and n = 1. Squares: E/L; bullets: P0; triangles: λ0.
The lines are guides to the eye.
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3.2 Numerical results

Numerical results for the ground-state energy per site E/L, the on-site pairing
correlation function P0 and the largest eigenvalue λ0 of the two-particle density
matrix as a function of system size for half-filled rings are shown in Fig.2. For
small system sizes E/L increases with L. For L ≥ 14 the L-dependence of the

ground-state energy is no longer visible on the scale used in Fig.2. For 6 ≤ L < 22
the largest eigenvalue λ0 of the two-particle density matrix grows linearly with L,
as expected since the system described by Hamiltonian (16) exhibits ODLRO.39 For
larger system sizes λ0 decreases, indicating that the number of important states MI

that can be taken into account is too small for these system sizes. The number of
important states MI collected by the SD algorithm, working in the Fourier space
representation, varies from MI ≈ 6 for L = 4 to MI ≈ 100000 for L ≥ 22. The
dimension of the Hilbert space varies from M = 36 for L = 4 to M ≈ 1014 for

L = 26. The behavior of P0 and λ0 as a function of system size is identical, as
expected in this case. Hence, the ODLRO exhibited by the system is mainly of the
on-site (s-wave) pairing type.

Studying the ground-state energy and physical properties as a function of the
number of important states shows that convergence of the ground-state energy
does not guarantee convergence of other physical poperties. For example, in Table
2 we show the ground-state energy per site and λ0 as a function of the number of

important states MI collected by the SD algorithm for an 18-site ring. In this case
the dimension of the Hilbert space M ≈ 2.3 109. We find a 2-digit accuracy in the
energy for MI ≥ 15000, while for λ0 we need at least 30000 states to get a 2-digit
accuracy.

MI E/L λ0

8119 −1.587 2.731
15137 −1.597 3.001
19618 −1.600 3.081

23056 −1.601 3.127
26027 −1.602 3.150
28504 −1.602 3.167

45657 −1.603 3.176
48519 −1.603 3.184

Table 2. Ground-state energy per site E/L and largest eigenvalue λ0

of the reduced two-particle density matrix as a function of the number
of important states MI for the BCS reduced Hamiltonian for L = 18,
t = 1, U = −4 and n = 1.
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4. The Hubbard model

The Hubbard model is described by the Hamiltonian41

HHub = −t
∑
〈i,j〉

∑
σ=↑,↓

(
c+i,σcj,σ + c+j,σci,σ

)
+ U

∑
i

c+i,↑c
+
i,↓ci,↓ci,↑ . (24)

where U is the on-site Coulomb interaction. In the Fourier representation (24)

reads

HHub =
∑
k

∑
σ=↑,↓

εk c
+
k,σck,σ +

U

L

∑
k,p,q

c+k+q,↑c
+
p−q,↓cp,↓ck,↑ . (25)

The Hubbard model is the generic model for the description of electron corre-

lations in narrow energy-band systems and, because of its apparent simplicity, is
often the model of choice for numerical work on correlated electron systems. Un-
fortunately, this simplicity is somewhat misleading in this respect too: Simulating
a Hubbard model is not a simple matter.18

Fig.3. Pairing correlation function C ′(j) as a function of distance j
between the electrons in a pair for the Hubbard model in the BCS
approximation for t = 1 and n = 1.5. Squares: U = −0.2; triangles:
U = −4. For clarity, the large on-site contribution at j = 0 is left out.
The lines are guides to the eye.
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4.1 BCS treatment

The BCS treatment of HHub is almost identical to that of HBCS . We only give
it here for the sake of completeness. At T = 0 the equations for the quasi-particle
energy and the gap read

Ek =εk − µ̃ , (26a)

and

1 =−
U

2L

∑
k

1√
E2
k + ∆2

, (26b)

showing that in the thermodynamic limit and within the BCS treatment, the
ground-state properties of HBCS and HHub are identical, provided U < 0 (i.e.

in the case of the attractive Hubbard model). In particular, at zero temperature

〈HHub〉trial

L
=
〈HBCS〉trial

L
+
Un2

4
. (27)

Since HBCS exhibits ODLRO of the on-site type also HHub shows ODLRO of the
on-site type for U < 0, T = 0 and L→∞.

An indication of the finite-size effects can be given by studying the size of an

electron pair. Therefore we show in Fig.3 the pairing correlation function

C ′(j) =
1

L2

∑
i,l

〈c+i,↑c
+
i+j,↓cl+j,↓cl,↑〉 , (28)

for attractive (U = −0.2 and U = −4) three-quarter filled Hubbard rings of 256
sites in the BCS approximation. For U = −0.2 an electron pair extends over several

lattice sites while for U = −4 the size of an electron pair is much smaller. This
indicates that, because of the large system sizes needed, numerically it may be very
difficult to detect ODLRO in the Hubbard model for small negative U .

To compare the results of the BCS treatment with the numerical results obtained

by SD, we solve (21) and (26b) numerically for finite L. In the BCS treatment
the number of particles is allowed to fluctuate whereas in the SD calculations the
number of particles is fixed. Therefore some (finite-size) differences between the
SD and BCS-treatment data may be expected, due to the different ensembles used.

Some representative results for U = −4 are shown in Table 3. From Table 3 it is
clear that the SD algorithm yields a better upperbound to the ground-state energy
of the Hubbard model than the BCS treatment does.

It is of interest to consider the limit t → 0 and a half-filled system n = 1.

Solving (21) and (26b) at zero temperature for t → 0, U < 0, and n = 1 yields
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L 〈HHub〉trial/L 〈HHub〉/L

6 −2.472 −2.611
10 −2.469 −2.583

14 −2.469 −2.557
18 −2.469 −2.534
22 −2.469 −2.499

Table 3. Comparison between the ground-state energy of the Hubbard
model for U = −4, t = 1 and n = 1 as obtained from the BCS treatment
and SD.

µ̃ = 0, 2∆ = |U |, and

E =
〈HHub〉trial

L
= −
|U |

2
; P0 =

L+ 1

4
, (29)

showing that in this limit, the BCS treatment reproduces the exact ground-state
energy of the attractive Hubbard model in the atomic limit and, as expected from

the BCS treatment, also ODLRO.

4.2 Atomic limit

We now consider the extreme case where we put t = 0 from the start and take
U < 0. Then, for any filling with

∑
i〈ni,↑〉 =

∑
i〈ni,↓〉, the ground state is

(
L
N/2

)
-

fold degenerate. Any linear combination of states, each one describing N/2 pairs of
spin-up and spin-down particles, qualifies as a ground state and has a ground-state

energy −|U |n/2. Can some of these linear combinations exhibit ODLRO?
This question can be answered by adding to the Hamiltonian a term that does

not conserve the number of particles. In analogy with the BCS treatment we write

Hatom = −|U |
∑
i

c+i,↑c
+
i,↓ci,↓ci,↑ + ∆

∑
i

(
c+i,↑c

+
i,↓ + ci,↓ci,↑

)
. (30)

For simplicity we now restrict ourselves to the half-filled band case. Then the energy
and the on-site pairing correlation function are given by

Eatom =−
|U |

2
+
|U |e−β|U |/2 − 2∆ sinhβ∆

2e−β|U |/2 + coshβ∆
, (31a)

and
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P atom0 =
(L − 1)

4

(
sinhβ∆

e−β|U |/2 + coshβ∆

)2

+
1

2

coshβ∆(
e−β|U |/2 + coshβ∆

) , (31b)

respectively. From (31) we find that

lim
∆→0

lim
β→∞

Eatom = −
|U |

2
= lim
β→∞

lim
∆→0

Eatom = −
|U |

2
, (32a)

whereas

lim
∆→0

lim
β→∞

P atom0 =
L+ 1

4
6= lim
β→∞

lim
∆→0

P atom0 =
1

2
, (32b)

showing that, depending on the order in which the two limits are taken, in the

atomic limit the attractive Hubbard model will exhibit ODLRO, in concert with
the result of the BCS treatment (see (29)). In the absence of hopping, there can
be no flow of particles and hence no superconductivity. We find that in this highly
degenerate case, ODLRO does not imply superconductivity.

Fig.4. Ground-state energy per site E/L, on-site pairing correlation
function P0 and largest eigenvalue λ0 of the reduced two-particle density
matrix as a function of system size L for the Hubbard model for t = 1,
U = −4 and n = 1. Squares: E/L; bullets: P0; triangles: λ0. The lines
are guides to the eye.
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4.3 Numerical results

Numerical results for the ground-state energy per site E/L, the on-site pairing
correlation function P0 and the largest eigenvalue λ0 of the two-particle density
matrix as a function of system size for the half-filled attractive Hubbard model are
shown in Fig.4. The ground-state energy does not strongly depend on system size

for the system sizes studied here. For 6 ≤ L < 18 the largest eigenvalue λ0 of
the two-particle density matrix grows with L. This points to ODLRO. For larger
system sizes λ0 decreases, indicating that, in analogy with the results on the BCS
reduced Hamiltonian, the number of important states MI that can be taken into

account may be too small for these system sizes. The number of important states
MI collected by the SD algorithm, working in the Fourier space representation,
varies from MI ≈ 68 for L = 6 to MI ≈ 197000 for L ≥ 18. The dimension of the
Hilbert space varies from M = 400 for L = 6 to M ≈ 2.8 1011. for L = 22. The

behavior of P0 as a function of system size is identical to the behavior of λ0 as a
function of system size but P0 6= λ0. Hence, the ODLRO exhibited by the system
is mainly of the on-site (s-wave) pairing type.

In Table 4 we show E/L and λ0 as a function of the number of important states
MI for a ring with 18 sites. Comparing Table 2 and Table 4 shows that for the
attractive Hubbard model we need much more important states to get convergence
in the energy and λ0 than for the BCS reduced Hamiltonian. Hence, for L ≥ 18

the number of states is too small to decide whether or not there is ODLRO.

MI E/L λ0

37417 −2.520 1.691

56731 −2.523 1.686
91603 −2.527 1.663

196186 −2.534 1.624

Table 4. Ground-state energy per site E/L and largest eigenvalue λ0 of
the reduced two-particle density matrix as a function of the number of
important states MI for the Hubbard Hamiltonian for L = 18, t = 1,
U = −4 and n = 1.

An indication for the presence of ODLRO can also be found by looking at the
distance-dependence of pairing correlation functions for systems of different size.
The on-site pairing correlation function

C(j) =
1

L

∑
i

〈c+i,↑c
+
i,↓ci+j,↓ci+j,↑〉 , (33)
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Fig.5. On-site pairing correlation function C(j) as a function of distance
j for the Hubbard model for t = 1, U = −4 and n = 1. Squares: 14-site
ring; triangles: 18-site ring. The lines are guides to the eye.

for attractive (U = −4) Hubbard rings of 14 and 18 sites is shown in Fig.5. In

Quantum Monte Carlo work the saturation of C(j) with increasing distance is
often taken as evidence of the presence of ODLRO in the system.

The SD results shown above all indicate ODLRO. That this is not an artifact of
the method can be ruled out by repeating the calculation for the repulsive Hubbard

model. Numerical results for the ground-state energy per site E/L, the on-site
pairing correlation function P0 and the largest eigenvalue λ0 of the two-particle
density matrix as a function of system size for the half-filled repulsive Hubbard
model are shown in Fig. 6. The number of important states MI collected by the

SD algorithm, working in the Fourier space representation, is MI ≈ 198000 for
L = 14 (for which M ≈ 1.2 106). For L ≤ 14 the ground-state energy increases
slightly with the size of the system. The largest eigenvalue λ0 of the two-particle

density matrix and the on-site pairing correlation function decrease with the system
size, for the system sizes studied here. Hence, at half-filling the repulsive Hubbard
model (U = 4) does not show ODLRO, as is well known.

To give an indication for the finite-size effects we show in Fig.7 λ0 as a function

of system size for the three-quarter filled Hubbard model for U = −4, U = −0.2,
U = 0.2 and U = 4. For U > 0, λ0 does not increase with the system size.
Hence, also the 1D three-quarter filled Hubbard model does not show ODLRO, as
expected. For large negative U (U = −4 for example) λ0 grows with L. This points

to ODLRO. For U = −0.2 there is no noticeable increase of λ0 with L. As seen in
section 4.1, the BCS approximation to the Hubbard model shows that for U = −0.2
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Fig.6. Ground-state energy per site E/L, on-site pairing correlation
function P0 and largest eigenvalue λ0 of the reduced two-particle density
matrix as a function of system size L for the Hubbard model for t = 1,
U = 4 and n = 1. Squares: E/L; bullets: P0; triangles: λ0. The lines
are guides to the eye.

Fig.7. Largest eigenvalue λ0 of the reduced two-particle density matrix
as a function of system size L for the Hubbard model for t = 1 and
n = 1.5. Squares: U = −4; bullets: U = −0.2; circles: U = 0.2;
triangles: U = 4. The lines are guides to the eye.

the size of an electron pair is much larger than the length of the rings we can study
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with the SD method, while for U = −4 the size of an electron pair is approximately
one lattice site. Hence, due to these finite-size effects for small negative U , our

numerical results cannot show the characteristic signal of ODLRO.

5. Hubbard model with correlated hopping

The tight binding Hamiltonian (for a single band) as derived by Hubbard in-
cludes different interaction terms.41 Keeping only the nearest-neighbor interactions
there are several contributions: U = (ii|1/r|ii), V = (ij|1/r|ij), ∆t = (ii|1/r|ij)
and X = (ii|1/r|jj). The Hubbard integrals U (on-site) and V (inter-site) are

the energies of the interactions between electrons at the same site and neighboring
sites, respectively. The correlated hopping interaction ∆t describes the interaction
between electrons localized on a given site and on the bond directed to a neighbor-
ing site and is therefore also called the bond-charge site-charge interaction. The

integral X is the energy of the interaction between electrons on the same bond. We
will consider the case V = X = 0. Then the Hamiltonian reads41

H = HHub + ∆t
∑
<i,j>

∑
σ

(
ni,−σ + nj,−σ

) (
c+i,σcj,σ + c+j,σci,σ

)
. (34)

Fourier transformation of each of the contributions to (34) yields

H =
∑
k

∑
σ=↑,↓

εk c
+
k,σck,σ

+
1

L

∑
k,p,q

[
U − t−1∆t(εk + εk+q)

]
c+k+q,↑c

+
p−q,↓cp,↓ck,↑ . (35)

This model was first studied by Caron and Pratt using a self-consistent cluster

treatment.42 Recently, the exact ground state of the model at half-filling (including
V ) for ∆t = t has been found for any dimension and a wide range of parameters.43,44

In one dimension the model can also be solved exactly away from half-filling for

the special case ∆t = t.44−46 In more than one dimension the qualitative form
of the ground-state phase diagram for ∆t = t is basically the same as that of
the ground-state phase diagram in one dimension although the exact location of
all phase boundaries cannot be determined.46 Exact diagonalization for chains up

to 12 sites47 and weak-coupling continuum-limit calculations,48 provide additional
information on (part of) the ground-state phase diagram.

It has been suggested that the correlated hopping interaction is essential for the
occurrence of superconductivity.49,50 The Hubbard model with correlated hopping

is an effective one-band model for the CuO2-planes of cuprate superconductors51−53

and has been studied by a cluster effective-medium approach,54 generalized mean-
field techniques,55−57 and BCS calculations.58−60 It has also been shown that
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model (34) has η-pairs in the ground state and that the η-pairing states have
ODLRO.45,46,61 Recently it has been demonstrated that the ODLRO of the η-paired

states is not a sufficient condition for the existence of superconductivity.62

Adding spin-flip hopping processes, it is possible to obtain the static and dy-
namic properties of the model and hence a complete picture of the full (n,∆t/t, U/t)
phase diagram.63−70 For ∆t = t the qualitative form of the ground-state phase

diagram is similar to the ground-state phase diagram of model (34) and the dimen-
sionality of the lattice does not play an important role. From the phase diagram it
follows that for ∆t = t as well as model (34) as model (34) with spin-flip hopping
processes exhibit a continuous Mott metal-insulator transition at n = 1, U = 4d|t|
where d is the lattice dimensionality. For 0 < ∆t < t model (34) with spin-flip
hopping processes has a discontinuous metal-insulator transition at half-filling.

5.1 BCS treatment

As a trial Hamiltonian we adopt

Htrial =
∑
k

∑
σ

Ek c
+
k,σck,σ +

∑
k

(
∆k c

+
k,↑c

+
−k,↓ + ∆k c−k,↓ck,↑

)
, (36)

where, in contrast to the cases discussed above, the gap ∆k depends on the wave

vector k. Without loss of generality we have assumed that ∆k is real and for the
sake of brevity, we only give results for the one-dimensional case.

Minimizing the upperbound to the grand potential gives

Ek =− 2(t− n∆t) cos k − µ̃−
2∆t

L

∑
p

Epfp cos p , (37a)

and

∆k =−
U + 4∆t cos k

2L

∑
p

∆pfp −
2∆t

L

∑
p

∆pfp cos p , (37b)

where, for zero temperature, fk = (E2
k + ∆2

k)−1/2. From (37b) it follows the k-

dependence of the gap can be written as ∆k = a+ b cos k and we obtain

b =−
2aF0∆t

1 + 2F1∆t
, (38a)

and

1 =−
UF0

2
− 4F1∆t− (2∆t)2(F 2

1 − F0F2) , (38b)
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where Fn ≡ L−1
∑
k cosn kfk.

Within the BCS treatment, the ground-state energy is given by

E =2 (t− n∆t)
∑
k

Ekfk cos k +
U

4
n2L

+
U

4L

(∑
k

∆kfk

)2

+
2∆t

L

(∑
k

∆kfk cos k

)(∑
k

∆kfk

)
, (39)

and the on-site pairing correlation function reads

P0 =
1

4L

∑
k

(1−Ekfk)2 +
1

4L

(∑
k

∆kfk

)2

. (40)

There are now two ways to proceed. Non-trivial numerical work is necessary
to solve the set of non-linear equations (21) and (38). The other alternative is to
consider a special case for which the equations can be solved analytically and this

is what we will do here.
We consider the case ∆t = t, n = 1, and T = 0. From (37a) we see that then

Ek does not depend on k and from the equation (21) relating n and µ̃ it follows
that Ek = 0. Assuming a non-trivial solution ∆k 6= 0, fk = (a+ b cos k)−1 we find,

after some straightfoward algebra,

a = −
U

2
; b = −2∆t ; for |U | > 4|t| . (41)

The corresponding ground-state energy is UL/2, which is the exact ground-state
energy for U < −4t and n = 1.44−46 The on-site pairing correlation function is given
by

P0 = (L + 1)/4 ; |U | > 4|t| , (42)

so that there is also ODLRO in this case. Although at first sight, there may be a

flow of particles because t 6= 0, closer inspection reveals that the current operator
acting on the ground state (with ODLRO) is identically zero, hence also this state
is not superconducting. This is due to our choise ∆t = t which implies the strict
conservation of local pairs of particles. As for the Hubbard model in the atomic

limit, the BCS treatment of model (34) yields the exact ground-state energy44−46

for ∆t = t, n = 1 and U < −4t. Note that for U > 4|t| the ground-state energy
is also given by UL/2 and that there is also ODLRO in this case. However, the

ground-state energy given by the BCS treatment of model (34) is larger than the
exact ground-state energy which is zero in this parameter regime.44−46
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Fig.8. Ground-state energy per site E/L, on-site pairing correlation
function P0 and largest eigenvalue λ0 of the reduced two-particle density
matrix as a function of system size L for the Hubbard model with
correlated hopping for t = 1, ∆t = 0.4, U = 0 and n = 1.5. Squares:
10E/L; bullets: P0; triangles: λ0. The lines are guides to the eye.

5.2 Numerical results

Our SD results for the Hubbard model with correlated hopping for ∆t = t and
n = 1 for rings of various lengths (results not shown) indicate that for U > Uc
the ground-state energy is zero and that no on-site electron pairs are formed. For
U < −Uc all electrons are paired, the pairs are static and the ground-state energy

is equal to the number of pairs times U . For L = 6, Uc = 3.5; for L = 10, Uc = 3.9
and for rings with fourteen or more sites Uc = 4. All these results are in perfect
agreement with the analytical results obtained in the thermodynamic limit.43−46

We have already seen that ODLRO may show up if the system prefers to form

pairs and if the ground-state is highly degenerate, as in the ∆t = t case. It is of inter-
est to explore the possibility of ODLRO in less “symmetrical” or non-perturbative
cases. For n > 1 the correlated hopping interaction may be attractive and may
favor the formation of (extended) pairs, as can be seen from a simple Hartree-Fock

argument. For U = 0 the weak-coupling (0 < U � t, 0 < ∆t� t) continuum-limit
theory48 yields singlet superconducting correlations if

4∆t

πt
cotg

nπ

2
< 0 . (43)

Guided by (43) we take ∆t = 0.4, t = 1 and n = 3/2.
Numerical results for the ground-state energy per site E/L, the on -site pairing
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Fig.9. Ground-state energy per site E/L, on-site pairing correlation
function P0 and largest eigenvalue λ0 of the reduced two-particle density
matrix as a function of system size L for the Hubbard model with
correlated hopping for t = 1, ∆t = 0.4, U = −1 and n = 1.5. Squares:
E/L; bullets: P0; triangles: λ0. The lines are guides to the eye.

correlation function P0 and the largest eigenvalue λ0 of the two-particle density
matrix as a function of system size for the three quarter filled Hubbard model with

correlated hopping are shown in Figs. 8-11. The number of important states MI

collected by the SD algorithm, working in the Fourier space representation, varies
from MI = 4 for L = 4 to MI ≈ 192000 for L = 36. In the latter case the dimension
of the Hilbert space M ≈ 8.2 1019, so that MI �M indeed.

For U = 0 and 12 ≤ L < 36 the ground-state energy changes little with L, as seen
from Fig.8. The largest eigenvalue λ0 of the two-particle density matrix increases
with L, indicating that the system exhibits ODLRO, in concert with theory.48 The
on-site pairing correlation function P0 also increases with L but is much smaller

than λ0. From the eigenvector of the two-body density matrix, corresponding to
λ0, it follows that the ODLRO is mainly of the extended s-wave type.

For U = −1 and 4 ≤ L < 28 the ground-state energy is almost constant, as seen
from Fig.9. The largest eigenvalue λ0 of the two-particle density matrix increases

with L, indicating that the system exhibits ODLRO. Also in this case the on-site
pairing correlation function P0 increases with L but is much smaller than λ0. Hence,
the ODLRO is not of the pure on-site (s-wave) type. From the eigenvector of the

two-body density matrix, corresponding to λ0, it follows that the ODLRO is mainly
of the extended s-wave type.

As seen from Figs. 10 and 11, for U = 0.5 andU = 1 the behavior of E/L, P0 and
λ0 as a function of L is qualitatively the same as for U = 0 and U = −1, respectively.
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Fig.10. Ground-state energy per site E/L, on-site pairing correlation
function P0 and largest eigenvalue λ0 of the reduced two-particle density
matrix as a function of system size L for the Hubbard model with
correlated hopping for t = 1, ∆t = 0.4, U = 0.5 and n = 1.5. Squares:
10E/L; bullets: P0; triangles: λ0. The lines are guides to the eye.

Also in these cases we find strong evidence for ODLRO of the extended s-wave type,
and this in a parameter regime where there is no special symmetry in the model and

for which the continuum theory48 does not apply. To the best of our knowledge
this is the first demonstration, not based on a BCS treatment, that correlated
hopping terms can lead to ODLRO in a system of electrons with a repulsive on-
site interaction. Since for small U we find ODLRO in the Hubbard model with

correlated hopping whereas for the standard model we do not find ODLRO, it
seems that the correlated hopping interaction not only favors the formation of pairs
but also reduces the size of the electron pairs.
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Fig.11. Ground-state energy per site E/L, on-site pairing correlation
function P0 and largest eigenvalue λ0 of the reduced two-particle density
matrix as a function of system size L for the Hubbard model with
correlated hopping for t = 1, ∆t = 0.4, U = 1 and n = 1.5. Squares:
E/L; bullets: P0; triangles: λ0. The lines are guides to the eye.

6. Conclusions

The stochastic diagonalization technique has been employed to examine the
conditions under which models for interacting electrons on a lattice exhibit Off-
Diagonal Long-Range Order. Analytical results for some limiting cases show that a
system can support Off-Diagonal Long-Range Order without being a superconduc-

tor. On the basis of our results we conjecture that the (repulsive) Hubbard model,
supplemented with correlated hopping terms, exhibits Off-Diagonal Long-Range
Order for a wide range of model parameters.
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