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Abstract. We describe a morphological image analysis method to characterize
images in terms of geometry and topology. We present a method to compute the
morphological properties of the objects building up the image and apply the method
to triply periodic minimal surfaces and to images taken from polymer chemistry.

1 Introduction

Image analysis is encountered in many different fields of science and technol-
ogy. For example the interpretation of (electron microscope or computer sim-
ulation) images of materials such as polymer mixtures and ceramics is based
on a quantitative characterization of the shape, structure and connectivity
of the material constituents. In this paper we describe how to characterize
these images in terms of shape (geometry) and connectivity (topology) by
means of morphological image analysis (MIA). This involves the calculation
of the Minkowski functionals (MF’s) known from integral geometry [1,2]. In
integral geometry the calculation of the MF’s is relatively straightforward
and requires little computational effort. The MF’s have proven to be very
useful to describe the morphology of porous media and complex fluids, the
large-scale distribution of matter in the Universe, microemulsions, patterns
in reaction diffusion systems, and spinodal decomposition kinetics [3]. In this
paper we illustrate the application of MIA to three-dimensional (3D) images
of polymers and minimal surfaces.

2 Morphological image analysis

In order to analyze images on a computer we first have to digitize them [4].
The digitization process requires the mapping of the image on a grid and a
quantization of the gray level. We will consider 3D images partitioned into
cubes. Each cube is centered at a lattice point x and is called a voxel. In
general the range of gray levels is divided into bins and the gray level at any
lattice point is required to take on only one of these values. We reduce the
gray-scale images to black-and-white pictures by thresholding. If the given
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picture P(x) has gray-level range [a, b], and t is any number between a and b,
the result of thresholding P(x, t) at t is the two-valued picture P(x, t) defined
by[4] P(x, t) = 1 if P(x, t) ≥ t and P(x, t) = 0 if P(x, t) < t. We assign to
P(x, t) = 0 a white voxel (the background) and to P(x, t) = 1 a black voxel
(the object).

According to integral geometry, the morphological properties of the var-
ious objects building up the black-and-white picture can be completely de-
scribed in terms of MF’s [1]. In three dimensions the MF’s are proportional
to the volume V , the surface area A, the integral mean curvature H and the
Euler characteristic (EC) χ. The functional χ as defined in integral geom-
etry is the same as the EC defined in algebraic topology [1]: χ is given by
the number of connected components minus the number of tunnels plus the
number of cavities. The EC is negative for multiply connected structures.

In order to calculate the morphological properties of P(x, t) in an efficient
way we consider each voxel as the union of the disjoint collection of its interior,
faces, open edges and vertices. The values of V , A, H and χ for these single
open structures can easily be calculated [5]. By making use of the property
of additivity of the MF’s and the fact that there is no overlap between open
bodies on a lattice, we compute the MF’s for the whole pattern P(x, t) [5].

3 Triply periodic minimal surfaces

A minimal surface in R3 is defined as a surface for which the mean curvature
is zero at each of its points. We will consider the triply periodic minimal
surfaces (TPMS). During the last years TPMS and similar interfaces have
been extensively discussed in literature since structures related to TPMS
may form spontaneously in physico-chemical and in biological systems [6,7].
MIA allows to study the topology of TPMS without making use of labyrinth
graphs or surface tiling [8].

Periodic surfaces can be divided into equivalent regions bounded by a unit
cell of space. We give our data for the crystallographic cell [9], simply called
the unit cell from now on, and assume that the bicontinuous structure of total
volumeL3 is composed of several unit cells of typical length scale L0. Then the
EC χ of the whole system is given by χ = X(L/L0)

3 ≡ χN , where N denotes
the number of unit cells. The volume, area and integral mean curvature of the
whole system may be written as V = V L30N , S = SL

2
0N , B = BL0N . The

quantities V , S, B and χ characterize the structure within one elementary
unit cell. We compute the MF’s for the P (primitive) [10] the D (diamond) [10]
and the G (gyroid) [11] surfaces, which may be approximated by periodic
nodal surfaces [12–14]. In Fig. 1 we show the P, D and G surfaces, in their
unit cell. The geometrical properties for the thresholded oriented P, D and
G surfaces (t = 0.5) for one unit cell and L0 = 128 can be summarized as
follows

P : V = 0.5(0.5); A = 3.68(2.35); H = 0(0); χ = −2(−2)
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Fig. 1. Unit cube for the primitive P surface (a), the double diamond D surface
(b) and the gyroid G surface (c).

D : V = 0.5(0.5); A = 6.00(3.84); H = 0(0); χ = −8(−8)

G : V = 0.5(0.5); A = 4.85(2.09); H = 0(0); χ = −4(−4). (1)

The numbers in brackets are the values found in the literature [9,15,16].
The values for the geometrical properties, calculated using integral geome-
try based MIA, are in good agreement with the numbers quoted in litera-
ture [9,15,16]. The numbers for the area are about a factor of 1.6 larger than
the numbers quoted in literature. This systematic error is due to the thresh-
olding of the picture. This operation transforms the smooth surface to a more
stepwise surface which enlarges the covered area. A method to reduce this
error is described elsewhere [5].

Examples of TPMS may be found in block copolymers [17]. Block copoly-
mers are materials that are capable of forming mesoscale structures whose
morphology can be tailored by controlled synthesis. Identification and quan-
tification of the morphology of these mesoscale structures may be rather
difficult. In this section we consider an example for which conventional crys-
tallographic techniques, such as calculating the structure factor, do not work
and for which MIA proves to be very valuable.

We perform a MIA on computer-simulation data of an A/B binary poly-
mer blend containingA−B type block copolymer. Fig.2 shows the 3D domain
structures, obtained by the self-consistent field (SCF) dynamic density func-
tional method ((a) and (c)) and the Ginzburg-Landau (GL) method ((b) and
(d)), of an A10/B10 polymer blend containing 20% volume fraction of An-
B20−n block copolymer [18,19]. A quantitative comparison between the SCF
method and the GL method has shown the validity and efficiency of the GL
approach [18,19]. The data for the SCF method and the GL method are taken
at different moments in time. The segment interaction parameter (so-called
χ-interaction parameter) is set to 0.5. The simulation box is a cube of edge
length 32 with periodic bounadries.
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Fig. 2. Three-dimensional domain structures of an A10/B10 polymer blend con-
taining 20% volume fraction of AnB20−n block copolymer. (a): A4-B16, (f = 0.2),
SCF method; (b): A4-B16, (f = 0.2), GL method; (c): A10-B10, (f = 0.5), SCF
method; (d): A10-B10, (f = 0.5), GL method.

In Figs.2(a),(b) ((c),(d)) a block copolymer with block ratio f = 0.2
(f = 0.5) is added, the block ratio being defined as the ratio between the
length of block A to the total chain length of the block copolymer. In all cases
interconnected bicontinuous domain structures are observed [19]. In order to
study the morphology of the domain structures in more detail we compute
their MF’s. The results can be summarized as follows

(a) : N = 1; V = 0.47; A = 3.29; H = 0.56; χ = −1

(b) : N = 8; V = 0.47; A = 3.65; H = 0.55; χ = −1.88

(c) : N = 1; V = 0.50; A = 5.31; H = −0.69; χ = −5

(d) : N = 8; V = 0.50; A = 4.55; H = 0.047; χ = −3.75. (2)

The MF’s for thresholded oriented P and G surfaces (t = 0.5) for one unit
cell and L0 = 32 are

P : V = 0.50; A = 3.71; H = 0; χ = −2

G : V = 0.50; A = 4.90; H = 0; χ = −4 (3)

From (2) and (3) it follows that the surfaces in Figs.2(a),(b) resemble a P-
surface and the ones in Figs.2(c),(d) a G-surface. Since computer simulations
for these polymer systems can only be performed for relatively small system
sizes it is rather difficult to draw a similar conclusion from the structure
factor.

4 Summary

We have described a morphological image analysis (MIA) method to charac-
terize black-and-white images in terms of shape (geometry) and connectivity
(topology). Integral-geometry-based MIA allows a straightforward calcula-
tion of the morphological quantities and requires little computational effort.
The approach has been illustrated by computation of the morphological mea-
sures of triply periodic minimal surfaces as obtained from nodal surfaces and
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computer simulations of polymer systems. In the latter case MIA provides
information about the domain structures that is hard to obtain by other
methods.
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