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Graphene attracts enormous attention now, due to its
interest both for fundamental physics, such as opportu-
nities to simulate in condensed matter experiments sub-
tle quantum relativistic effects and for potential appli-
cations, as a planar, high-mobility material for “post-
silicon” electronics [1–5]. Graphene-based nanode-
vices are subjects of especial interest. Recently, size
quantization effects have been observed in graphene
nanoribbons [6] and quantum dots (QD) [7]. It was
demonstrated that for QD smaller than 100 nm the elec-
tron energy spectrum is essentially irregular demon-
strating a “chaotic” behavior. The latter can be dis-
cussed in terms of random matrix theory for a single-
particle problem [8–10]. However, in general, because
of interplay of size quantization and Coulomb blockade
correlation effects can be important for QD [11]; more-
over, in some limiting cases the “chaotic” energy spec-
trum can be described even purely classically, in terms
of 

 

only

 

 Coulomb energies [12]. Therefore, to under-
stand properly the experimental data [7] some theoreti-
cal efforts are necessary.

In this Letter we present the results of straightfor-
ward computer simulations of level statistics in
graphene QD, adopting the simplest one-electron pic-
ture, up to 16 000 sites (which is comparable to the
sizes of smallest QD investigated experimentally). It
turns out that already this approach does allow to repro-
duce, in a semiquantitative way, the observed energy
distribution.

As the model Hamiltonian, we take the simplest
nearest-neighbor tight-binding model on a hexagonal
lattice as introduced in [13], enclosed in some geomet-
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rical shape, such as a circle, triangle, etc. The Hamilto-
nian reads

(1)
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t

 

 is the nearest-neighbor hopping energy,
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i
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σ

 

) creates (annihilates) an electron with spin 

 

σ

 

 on

one of the sub-lattices of the hexagonal lattice and 
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j
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) creates (annihilates) an electron with spin 

 

σ

 

 on
the other sub-lattice of the hexagonal lattice. In the
expression for the hopping term, the indices 

 

i

 

 and 

 

j

 

 run
over all nearest neighbors only.

Following [14], we also consider the effects of a
staggered on-site potentials 

 

V

 

i

 

 and 

 

V

 

j

 

 that alternate as
we move along the boundary 

 

�

 

 of the lattice; as
shown in [14], the continuum limit with a very large

 

V

 

i

 

 and 

 

V

 

j

 

 corresponds to the “infinite mass” boundary
condition [8]. The physical origin of this potential can
be related to, for instance, the magnetic moments at
the zigzag edges [15, 16]. Of course, in a simulation
we can easily study the effect of 

 

V

 

i

 

 by considering the
cases 

 

V

 

i

 

 = 

 

V

 

j

 

 = 0 and 

 

V

 

i

 

 

 

≠

 

 0 and 

 

V

 

j

 

 

 

≠

 

 0. Optionally, to
study the effect of disorder, we use uniform pseudo-
random numbers to choose the hopping integrals from
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the interval [

 

t

 

 – 

 

δ

 

, 

 

t

 

 + 

 

δ

 

] and/or we add on-site poten-
tials 

 

v

 

i

 

 and 

 

v

 

j

 

 in the range [–

 

v

 

, 

 

v

 

].

The geometrical shape “cuts out” a piece of the hex-
agonal lattice such that armchair and zigzag parts of the
boundary appear (for a general discussion of boundary
conditions for the tight-binding model of graphene, see
[14]). Furthermore, we study the effect of disorder that
results from removing hexagons from the regular hex-
agonal layer.

The eigenvalues of Hamiltonian Eq. (1) are obtained
by exact numerical diagonalization. As we are inter-
ested in the part of the spectrum that, in the continuum
limit corresponds to the spectrum of the Dirac equation,
we limit the search for eigenvalues to the interval
[

 

−

 

0.4

 

t

 

, 0.4

 

t

 

]. In our numerical work, we adopt units
such that 

 

�

 

 = 1 and we set the hopping integral 

 

t

 

 = 1.
For reference, in Fig. 1, we show the experimental

results of the level spacing distribution for a graphene
dot of 40 nm diameter [7]. The dimensionless level
spacing 

 

S

 

 is defined as the energy difference 

 

∆

 

E

 

i

 

 = 

 

E

 

i

 

 –

 

E

 

i

 

 – 1

 

 between successive levels, divided by the average

 

〈∆

 

E

 

i

 

〉

 

 of the energy differences between successive lev-
els. The number 

 

P

 

(

 

S

 

) gives the number of energy differ-
ence for which 

 

S

 

 – ∆/2 < ∆Ei/〈∆Ei〉 ≤ S + ∆/2, where ∆
is the bin size of the histogram. The experimental data
for the distribution have been shifted by 0.02 V to
remove an ambiguity in the definition of S = 0.

For comparison, Fig. 2 shows the level distribution
for a hexagonal lattice with periodic boundary condi-
tions, a lattice that has not been cut-out using some geo-
metrical shape. It is clear that its spectrum does not
resemble the one observed experimentally.

Next, we consider the case of a circular dot. In the
continuum approximation with the infinite mass bound-
ary conditions [8] this case is special, with separable
variables and a regular energy spectrum. In reality,
although we use a circle to cut out from the infinite lat-
tice, the boundary of this lattice is irregular: There are
short and long pieces of the armchair and zigzag bound-
aries. This kind of irregularities destroy the circular
symmetry of the geometrical shape completely.

In Figs. 3 and 4, we depict the results for P(S) and
the density of states DOS(E) for the case of the perfect
hexagonal lattice, bounded by a circle. Although there
is a clear background linear dependence of the DOS(E)
on E, it is also clear that there are fluctuations due to
size quantization. In the DOS, the peak around zero
energy is due to the existence of the zigzag edge states,
as expected for a generic boundary [14]. Comparing
Fig. 3 with the experimental result Fig. 1, we conclude
that there is little resemblance.

In contrast, by introducing various forms of disorder
to the same system, we find semi-quantitative agree-
ment, as shown in Figs. 5 and 6. Our numerical experi-
ments (not all results shown) suggest that the presence
of an alternating boundary potential can change the
qualitative features of P(S) significantly. Including var-

Fig. 1. (Color online) Level-spacing distribution P(S) as
obtained from experiment [7] for the case of 40 nm QD (the
raw experimental data are by courtesy of K. Novoselov and
A. Geim).

Fig. 2. (Color online) Level-spacing distribution P(S) for a
hexagonal lattice with periodic boundary conditions, using
170 different values for both kx and ky.

Fig. 3. (Color online) Level-spacing distribution P(S) for a
hexagonal lattice bounded by a circle. The number of hexa-
gons inside the circle is 8202.
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ious forms of disorder (δ ≠ 0, v ≠ 0 and remove some
hexagons), the level distribution P(S) (see Fig. 6) looks
similar to the experimental result (see Fig. 1). Of
course, we cannot expect quantitative agreement: The
number of items in the experimental data is about 60
while in the numerical simulations there are about 600
eigenvalues that contribute to P(S). This may explain
why the simulation results for P(S) show a more
extended tail than the experimental result for P(S).

Finally, to study the effect of the shape of the bound-
ary on the level spacing distribution, we have calculates
P(S) for various lemon-shaped billiards (results not
shown) defined by y = ±(1 – |x |d) for x ∈ [–1, 1] [17]. As
a function of the shape parameters d > 0, these billiards
look like a square (d = 1, ∞) or two parabola (d = 2) or

have some intermediate lemon-like shape. It has been
shown that, as a function of d, the these billiard, classi-
cal as well as quantum mechanically, exhibit regular
and chaotic behavior [17]. If Figs. 7 and 8, we present
some typical results for a quarter lemon with d = 3.1.
Our motivation for presenting the results of a quarter
lemon instead of the complete lemon is to show a case
in which there are long stretches of armchair and zigzag
boundaries (the edges along the x and y axis) and an
irregular boundary (the curved edge). Although on pur-
pose, we did not include the alternating potential at the
boundary sites, the disorder resulting from the irregular
shape together with the fluctuating on-site potential v
seem to be sufficient to observe a P(S) that is similar to
the distribution observed experimentally. Comparing
Figs. 7 and 8 one can see that the level statistics is not

Fig. 4. (Color online) Density of states DOS(E) as a func-
tion of the energy E for a hexagonal lattice confined to a cir-
cle. The number of hexagons inside the circle is 8202.

Fig. 5. (Color online) Same as Fig. 3 except that the stag-
gered potential at the boundary edges V = 100, the hopping
integrals fluctuate by maximum 20% (δ = 0.2) and the on-
site potentials fluctuate in the range [–0.2, 0.2]. The number
of hexagons inside the circle is 8484.

Fig. 6. (Color online) Same as Fig. 3 except that the poten-
tial at the boundary edges V = 10, about 20% of the hexa-
gons have been removed, the hopping integrals fluctuate by
maximum 20% (δ = 0.2) and the on-site potentials fluctuate
in the range [–0.2, 0.2]. The number of hexagons inside the
circle is 6540.

Fig. 7. (Color online) Level-spacing distribution P(S) as a
function of the level spacing S for a hexagonal lattice
bounded by a quarter of a lemon-shaped billiard for V = δ =
v = 0. Parameter of the lemon: d = 3.1 (d = 1 is half of a tri-
angle, d = 2 is a half of parabola). The number of hexagons
inside the billiard is 7861.
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too sensitive to the bulk disorder. There is only random-
ness due to boundaries themselves in one case (Fig. 7)
and a random potential v is introduced, additionally, in
the other one (Fig. 8), but the results look very similar.

To conclude, it seems that disorder due to random-
ness of the edges is, in principle, enough to reproduce
the experimentally observed level distribution which
makes the term “chaotic Dirac billiard” quite reason-
able. One may need the local on-site disorder and some
disorder in the hopping integrals to get semi-qualitative
agreement with experiment but, on the other hand, the
simulated systems do not have the same shape and are
not as large as the experimental ones so a complete
quantitative agreement is, anyway, hard to expect.

It is worth mentioning that the continuum approxi-
mation may be a bit dangerous when discussing the
level statistics in graphene QDs. In our simulations, we
do not see any essential differences between “regular”
(circular) and “irregular” (lemon-shaped) billiards.
Even for tens of thousand sites the edge is essentially
irregular with staggered armchair and zigzag pieces.
Therefore, even for circular quantum dot we may have
a “chaotic” energy level distribution.

We are thankful to Andre Geim and Kostya
Novoselov for helpful discussions and for providing us
with the original experimental data used in Fig. 1 and to
Boris Shklovskii for illuminating discussions. The
work was supported by the Stichting voor Fundament-
eel Onderzoek der Materie (FOM) (the Netherlands).
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Fig. 8. (Color online) Same as Fig. 7 except that vis chosen
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