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We review an event-based simulation approach which reproduces the statistical distributions of

wave theory not by requiring the knowledge of the solution of the wave equation of the whole

system but by generating detection events one-by-one according to an unknown distribution.

We illustrate its applicability to various single photon and single neutron interferometry
experiments and to two Bell-test experiments, a single-photon Einstein–Podolsky–Rosen ex-

periment employing post-selection for photon pair identi¯cation and a single-neutron Bell test

interferometry experiment with nearly 100% detection e±ciency.
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1. Introduction

The statistical properties of a vast number of laboratory experiments with individual

entities such as electrons, atoms, molecules, photons, etc. can be extremely well

described by quantum theory. The mathematical framework of quantum theory

allows for a straightforward calculation of numbers which can be compared with

experimental data as long as these numbers refer to statistical averages of measured

quantities, such as for example an interference pattern, the speci¯c heat and mag-

netic susceptibility.

*Lecture given at the \Advanced School on Quantum Foundations and Open Quantum Systems" held in

João Pessoa, Brazil, from 16–28 July 2012.
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However, as soon as an experiment records individual clicks of a detector which

contribute to the statistical average of a quantity then a fundamental problem

appears. Quantum theory provides a recipe to compute the frequencies for observing

events but it does not account for the observation of the individual events them-

selves, a manifestation of the quantum measurement problem.1,2 Examples of such

experiments are single-particle interference experiments in which the interference

pattern is built up by successive discrete detection events and Bell-test experiments

in which two-particle correlations are computed as averages of pairs of individual

detection events recorded at two di®erent detectors and seen to take values which

correspond to those of the singlet state in the quantum theoretical description.

An intriguing question to be answered is why individual entities which do not

interact with each other can exhibit the collective behavior that gives rise to the

observed interference pattern and why two particles, which only interacted in the

past, after individual local manipulation and detection can show correlations cor-

responding to those of the singlet state. Since quantum theory postulates that it is

fundamentally impossible to go beyond the description in terms of probability dis-

tributions, an answer in terms of a cause-and-e®ect description of the observed

phenomena cannot be given within the framework of quantum theory.

We provide an answer by constructing an event-based simulation model that

reproduces the statistical distributions of quantum (and Maxwell's) theory without

solving a wave equation but by modeling physical phenomena as a chronological

sequence of events whereby events can be actions of an experimenter, particle

emissions by a source, signal generations by a detector, interactions of a particle with

a material and so on.3–5 The underlying assumption of the event-based simulation

approach is that current scienti¯c knowledge derives from the discrete events which

are observed in laboratory experiments and from relations between those events.

Hence, the event-based simulation approach concerns what we can say about these

experiments but not what \really" happens in Nature. This underlying assumption

strongly di®ers from the premise that the observed discrete events are signatures of

an underlying objective reality which is mathematical in nature.

The general idea of the event-based simulation method is that simple rules de¯ne

discrete-event processes which may lead to the behavior that is observed in experi-

ments. The basic strategy in designing these rules is to carefully examine the ex-

perimental procedure and to devise rules such that they produce the same kind of

data as those recorded in experiment, while avoiding the trap of simulating thought

experiments that are di±cult to realize in the laboratory. Evidently, mainly because

of insu±cient knowledge, the rules are not unique. Hence, the simplest rules can be

used until a new experiment indicates otherwise. On the one hand one may consider

the method being entirely classical since it only uses concepts of the macroscopic

world, but on the other hand one could consider the method being nonclassical

because some of the rules are not those of classical Newtonian dynamics.

Obviously, using trial and error to ¯nd discrete-event rules that reproduce ex-

perimental results is unlikely to be successful. Instead, we started our search for
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useful rules by asking ourselves the question \by what kind of discrete-event rule

should a beam splitter (BS) operate in order to mimic the build-up, event-by-event,

of the interference pattern observed in the single-photon Mach–Zehnder experiments

performed by Grangier et al.6?" The simplest rule (discussed below) that performs

this task seems to be rather generic in the sense that it can be used to construct

discrete-event processes that reproduce the results of many interference experiments.

Of course, for some experiments, the simple rule is \too simple" and more sophisti-

cated, backwards compatible variants are required. However, the guiding principle

for designing the latter is the same as for the simple rule.

The event-based approach has successfully been used for discrete-event simula-

tions of the single BS and Mach–Zehnder interferometer (MZI) experiments of

Grangier et al.6 (see Refs. 3, 7 and 8), Wheeler's delayed choice experiment of Jac-

ques et al.9 (see Refs. 3, 10 and 11), the quantum eraser experiment of Schwindt

et al.12 (see Refs. 3, 13 and 14), two-beam single-photon interference experiments and

the single-photon interference experiment with a Fresnel biprism of Jacques et al.15

(see Refs. 3, 4 and 16), quantum cryptography protocols (see Ref. 17), the Hanbury

Brown–Twiss experiment of Agafonov et al.18 (see Refs. 3, 19 and 20), universal

quantum computation (see Refs. 21 and 22), Einstein–Podolsky–Rosen–Bohm

(EPRB)-type of experiments of Aspect et al.23,24 and Weihs et al.25 (see Refs. 3, 4,

26–31), the propagation of electromagnetic plane waves through homogeneous thin

¯lms and strati¯ed media (see Refs. 3 and 32) and neutron interferometry experi-

ments (see Refs. 4 and 5).

In this paper, we review the applicability of the event-based simulation method to

various single-photon and single-neutron interferometry experiments and to Bell-test

experiments. The paper is organized as follows. Section 2 is devoted to the single-

particle two-slit experiment, one of the most fundamental experiments in quantum

physics. We ¯rst discuss Feynman's thought experiment, demonstrating single-

electron interference, and brie°y review its laboratory realizations. We then describe

the two-beam experiment with single-photons, a variant of Young's double slit ex-

periment. It is seen that for these single-particle interference experiments, quantum

theory gives a recipe to compute the observed interference pattern after many de-

tection events are registered, but quantum theory does not account for the one-by-

one build-up process of the pattern in terms of the individual detection events.

Hence, as formulated in Sec. 3, the challenge is to come up with a set of rules which

allow to produce detection events with frequencies which agree with a given distri-

bution (in this particular case a two-slit interference pattern) without these rules

referring, in any way, to the distribution itself. The event-based simulation method

solves this challenging problem by modeling various physical phenomena as a

chronological sequence of di®erent events, such as actions of the experimenter,

particles emitted by a source, signals generated by a detector and so on. In Sec. 4, we

explain the basis of the event-based simulation method by specifying rules

which allow to reproduce the results of the quantum theoretical description of

the idealized Stern–Gerlach experiment and of a single-photon experiment with a
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linearly birefringent crystal demonstrating Malus' law, without making any use of

quantum theoretical concepts. In this section, we also discuss the e±ciency of two

types of single-particle detectors used in the event-based simulation method. In

Sec. 5, we show that a similar set of rules can be used to simulate single-particle

interference. We demonstrate this on the basis of the single-photon two-beam ex-

periment thereby also exactly simulating Feynman's thought experiment, the MZI

experiment, Wheeler's delayed choice experiment and a single-neutron interferom-

etry experiment with a Mach–Zehnder type of interferometer. We explain why the

event-based simulation method can produce interference without solving a wave

problem. Section 6 is devoted to the event-based simulation of EPRB-type of

experiments with correlated photon pairs and with neutrons with correlated spatial

and spin degrees of freedom. Since both experiments are Bell-test experiments testing

whether or not a Bell-Clauser–Horne–Shimony–Holt (CHSH) inequality can be vi-

olated, we also elaborate on the conclusions that can be drawn from such a violation.

For both experiments we explain why the event-based model, a classical causal

model, can produce the results of quantum theory. A discussion is given in Sec. 7.

2. Two-Slit and Two-Beam Experiments

One of the most fundamental experiments in quantum physics is the single-particle

double-slit experiment. Feynman stated that the phenomenon of electron di®raction by

a double-slit structure is \impossible, absolutely impossible, to explain in any classical

way, and has in it the heart of quantum mechanics. In reality it contains the only

mystery."33While Young's original double-slit experiment helped to establish the wave

theory of light,34 variants of the experiment over the years with electrons (see below),

single photons (see below), neutrons,35,36 atoms37,38 and molecules39–41 helped the de-

velopment of ideas on concepts such as wave-particle duality in quantum theory.2

Two prevailing variants of the double-slit experiments can be recognized, one

consists of a source S and a screen with two apertures and another one consists of a

source S and a biprism. The ¯rst one is a real two-slit experiment in which the two

slits can be regarded as two virtual sources S1 and S2, the latter one is a two-beam

experiment which can also be replaced by a system with two virtual sources S1 and

S2.
42 In contrast to the two-slit experiment in which di®raction or scattering and

interference phenomena play a role, the phenomenon of di®raction or scattering is

absent in the two-beam experiment, except for the di®raction or scattering at the

sources themselves.

A brief note on the di®erence in usage of the words di®raction, scattering and

interference is here in place. Feynman mentioned in his lecture notes that \no-one

has ever been able to de¯ne the di®erence between interference and di®raction sat-

isfactorily. It is just a question of usage, and there is no speci¯c, important physical

di®erence between them."43 In classical optics, di®raction is the e®ect of a wave

bending as it passes through an opening or goes around an object. The amount of

bending depends on the relative dimensions of the object or opening compared to the
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wavelength of the wave. Interference is the superposition of two or more waves

resulting in a new wave pattern. Therefore a double-slit, as well as a single-slit

structure illuminated by (classical) light yields an interference (or di®raction) pat-

tern due to di®raction and interference. In principle, di®raction and interference are

phenomena observed only with waves. However, an interference pattern identical in

form to that of classical optics can be observed by collecting many detector spots or

clicks which are the result of electrons, photons, neutrons, atoms or molecules

traveling one-by-one through a double-slit structure. In these experiments, the so-

called interference pattern is the statistical distribution of the detection events (spots

at or clicks of the detector). Hence in these particle-like experiments, only the cor-

relations between detection events reveal interference. Misleadingly this interference

pattern is often called a di®raction pattern in analogy with classical optics where

both the phenomena of di®raction and interference are responsible for the resulting

pattern. In the particle-like experiment it would be better to replace the word dif-

fraction by scattering because scattering refers to the spreading of a beam of particles

(or a beam of rays) over a range of directions as a result of collisions with other

particles or objects. In what follows we use the term interference pattern for the

statistical distribution of detection events.

2.1. Two-slit experiment with electrons

In 1964, Feynman described a thought experiment consisting of an electron

gun emitting individual electrons in the direction of a thin metal plate with two slits

in it behind which is placed a movable detector.33 Feynman made the following

observations:

. Sharp identical \clicks" which are distributed erratically, are heard from the

detector.

. The probability P1ðxÞ or P2ðxÞ of arrival, through one slit with the other slit

closed, at position x is a symmetric curve with its maximum located at the center

position of the open slit.

. The probability P12ðxÞ of arrival through both slits looks like the intensity of

water waves which propagated through two holes thereby forming a so-

called \interference pattern" and looks completely di®erent from the curve

P1ðxÞ þ P2ðxÞ, a curve that would be obtained by repeating the experiment with

bullets.

which lead him to the conclusions:

. Electrons arrive at the detector in identical \lumps", like particles.

. The probability of arrival of these lumps is distributed like the distribution of

intensity of a wave propagating through both holes.

. It is in this sense that an electron behaves\sometimes like a particle and sometimes

like a wave".
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Note that Feynman made his reasoning with probabilities P1ðxÞ, P2ðxÞ, P12ðxÞ,
which he said to be proportional to the average rate of clicks N1ðxÞ, N2ðxÞ, N12ðxÞ.
However, one cannot simply add P1ðxÞ and P2ðxÞ and compare the result with P12ðxÞ
because these are probabilities for di®erent conditions (di®erent \contexts"), namely

only slit 1 open, only slit 2 open and both slits 1 and 2 open, respectively.2 Hence,

no conclusions can be drawn from making the comparison between P12ðxÞ and

P1ðxÞ þ P2ðxÞ.
Although Feynman wrote \you should not try to set up this experiment" because

\the apparatus would have to be made on an impossibly small scale to show the

e®ects we are interested in", advances in (nano)technology made possible various

laboratory implementations of his fundamental thought experiment. The ¯rst elec-

tron interference pattern obtained with an electron-biprism, the analog of a Fresnel

biprism in optics, was reported in 1955.44,45 In 1961, J€onsson performed the ¯rst

electron interference experiment with multiple (up to ¯ve) slits in the micrometer

range.46 However, these were not single-electron interference experiments since there

was not just one electron in the apparatus at any one time. The ¯rst real single-

electron interference experiments that were conducted were electron-biprism

experiments (for a review see Refs. 47 and 48) in which single electrons either pass to

the left or to the right of a conducting wire (there are no real slits in this type of

experiments).49–51 In these experiments, the interference pattern is built up from

many independent detection events. Electron–electron interaction plays no role in

the interference process since the electrons pass the wire one-by-one. More recently,

single-electron interference experiments have been demonstrated with one, two,

three and four slits fabricated by focused ion beam milling.52–54 However, in these

experiments only the ¯nal recorded electron intensity is shown. In a follow-up single-

electron two-slit experiment a fast-readout pixel detector was used which allows the

measurement of the distribution of the electron arrival times and the observation of

the build-up of the interference pattern by individual detection events.55 Hence, this

experiment comes very close to Feynman's thought experiment except that the two

electron distributions for one slit open and the other one closed are not measured.

Note that one of these distributions was measured in Ref. 52 by a nonreversible

process of closing one slit and without using the fast-readout pixel detector. Very

recently, it has been reported that a full realization of Feynman's thought experi-

ment has been performed.56 In this experiment a movable mask is placed behind the

double-slit structure to open/close the slits. Unfortunately, the mask is positioned

behind the slits and not in front of them, so that all electrons always encounter a

double-slit structure and are ¯ltered afterwards by the mask. Hence, one could say

that anno 2014 Feynman's thought experiment has yet to be performed.

2.2. Two-beam experiment with photons

Another interesting variant of Young's double slit experiment involves a very dim

light source so that on average only one photon is emitted by the source at any time.
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Inspired by Thomson's idea that light consists of indivisible units that are more

widely separated when the intensity of light is reduced,57 in 1909, Taylor conducted

an experiment with a light source varying in strength and illuminating a needle

thereby demonstrating that the di®raction pattern observed with a feeble light

source (exposure time of three months) was as sharp as the one obtained with an

intense source and a shorter exposure time.58 In 1985, a double-slit experiment was

performed with a low-pressure mercury lamp and neutral density ¯lters to realize a

very low-light level.59 It was shown that at the start of the measurement bright dots

appeared at random positions on the detection screen and that after a couple of

minutes an interference pattern appeared. Demonstration versions of double-slit

experiments illuminated by strongly attenuated lasers are reported in Refs. 60 and 61

and in Fig. 1 of Ref. 62. However, attenuated laser sources are imperfect single-

photon sources. Light from these sources attenuated to the single-photon level never

antibunches, which means that the anticorrelation parameter � � 1. For a real

single-photon source 0 < � < 1. In 2005, a variation of Young's experiment was

performed with a Fresnel biprism and a single-photon source based on the pulsed,

optically excited photoluminescence of a single N-V color center in a diamond

nanocrystal.15 In this two-beam experiment there is always only one photon between

the source and the detection plane. It was observed that the interference pattern

gradually builds up starting from a couple of dots spread over the screen for small

exposure times. A time-resolved two-beam experiment has been reported in Refs. 63

and 64. Recently, a temporally and spatially resolved two-beam experiment has been

performed with entangled photons, providing insight in the dynamics of the build-up

process of the interference pattern.65

2.3. The experimental observations and their quantum

theoretical description

The common observation in these single-particle interference experiments, where

\single particle" can be read as electron, photon, neutron, atom or molecule, is that

individual detection events gradually build up an interference pattern and that the

¯nal interference pattern can be described by wave theory. In trying to give a pic-

torial (cause-and-e®ect) view of what is going on in these experiments, it is commonly

assumed that there is a one-to-one correspondence between an emission event, \the

departure of a single particle from the source" and a detection event, \the arrival of

the single particle at the detector". This assumption might be wrong. The only

conclusion that can be drawn from the experiments is that there is some relation

between the emission and detection events.

In view of the quantum measurement problem,1,2,66 a cause-and-e®ect descrip-

tion of the observed phenomena is unlikely to be found in the framework of quantum

theory. Quantum theory provides a recipe to compute the frequencies for observing

events and thus to compute the ¯nal interference pattern which is observed after the

experiment is ¯nished. However, it does not account for the observation of the
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individual detection events building up the interference pattern. In fact quantum

theory postulates that it is fundamentally impossible to go beyond the description in

terms of probability distributions. Of course, one could simply use pseudo-random

numbers to generate events according to the probability distribution that is

obtained by solving the time-dependent Schr€odinger equation. However, that is not

the problem one has to solve as it assumes that the probability distribution of the

quantummechanical problem is known, which is exactly the knowledge that one has

to generate without making reference to quantum theory. If we would like to pro-

duce, event-by-event, the interference pattern from Maxwell's theory and do not

want to generate events according to the known intensity function we would face a

similar problem.

3. Theoretical Challenge and Paradigm Shift

In general, the challenge is the following. Given a probability distribution of ob-

serving events, construct an algorithm which runs on a digital computer and pro-

duces events with frequencies which agree with the given distribution without

referring the algorithm, in any way, to the probability distribution itself. Tradi-

tionally, the behavior of systems is described in terms of mathematics, making use of

di®erential or integral equations, probability theory and so on. Although that this

traditional modeling approach has been proven to be very successful it does not seem

capable of tackling this challenge. This challenge requires something as disruptive as

a paradigm shift. In scienti¯c ¯elds di®erent from (quantum) optics or quantum

mechanics in general, a paradigm shift has been realized in terms of a discrete-event

approach to describe the often very complex collective behavior of systems with a set

of very simple rules. Examples of this approach are the lattice Boltzmann model to

describe the °ow of (complex) °uids and the cellular automata of Wolfram.67

We have developed a discrete-event simulation method to solve the above men-

tioned challenging problem by modeling physical phenomena as a chronological se-

quence of events whereby events can be actions of the experimenter, particles emitted

by a source, signals generated by a detector, particles impinging on material and so

on. The basic idea of the simulation method is to try to invent an algorithm which

uses the same kind of events (data) as in experiment and reproduces the statistical

results of quantum or wave theory without making use of this theory. An overview of

the method and its applications can be found in Refs. 3–5. The method provides an

\explanation" and \understanding" of what is going on in terms of elementary

events, logic and arithmetic. Note that a cause-and-e®ect simulation on a digital

computer is a \controlled experiment" on a macroscopic device which is logically

equivalent to a mechanical device. Hence, an event-by-event simulation that

reproduces results of quantum theory shows that there exists a macroscopic, me-

chanical model that mimics the underlying physical phenomena. This is completely

in agreement with Bohr's answer \There is no quantum world. There is only an

abstract quantum mechanical description. It is wrong to think that the task of
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physics is to ¯nd out how nature is. Physics concerns what we can say about nature."

to the question whether the algorithm of quantum mechanics could be considered as

somehow mirroring an underlying quantum world.68 Although widely circulated,

these sentences are reported by Petersen68 and there is doubt that Bohr actually used

this wording.69

4. Event-by-Event Simulation Method

4.1. Stern–Gerlach experiment

We explain the basics of the event-by-event simulation method using the obser-

vations made in the Stern–Gerlach experiment.70 The experiment shows that

a beam of silver atoms directed through an inhomogeneous magnetic ¯eld splits

into two components. The conclusion drawn by Gerlach and Stern is that, inde-

pendent of any theory, it can be stated, as a pure result of the experiment, and

as far as the exactitude of their experiments allows them to say so, that silver

atoms in a magnetic ¯eld have only two discrete values of the component of the

magnetic moment in the direction of the ¯eld strength; both have the same ab-

solute value with each half of the atoms having a positive and a negative sign,

respectively.71

In quantum theory, the stationary state of the two-state system, which is the

representation of the statistical experiment, is described by the density matrix

� ¼ ð1þ S � �Þ=2, where � ¼ ð�x; �y; �zÞ denotes the Pauli vector and S denotes the

average direction of magnetic moments. The average measured magnetic moment in

the direction a is given by S � a ¼ Tr�� � a.
The fundamental question is how to go from the averages to the events observed

in the experiment. Application of Born's rule gives the probability to observe an

atom in the beam (anti-)parallel to the direction a

P ðw jS � aÞ ¼ 1þ wS � a
2

; ð1Þ

where w ¼ þ1 (w ¼ �1) refers to the beam parallel (anti-parallel) to a.

Given the probability in Eq. (1) the question is how to generate a sequence

of \true" random numbers w1;w2; . . . ;wN , each taking values �1, such thatPN
n¼1 wn=N � S � a. Probability theory postulates that such a procedure exists but

is silent about how the procedure should look like. In practice one could use

a probabilistic processor, a device which responds to and processes input in a

probabilistic way, employing pseudo-random number generators to generate a

uniformly distributed pseudo-random number 0 < rn < 1 to produce wn ¼ þ1 if

rn < ð1þ S � aÞ=2 and wn ¼ �1 otherwise. Repeating this procedure N times givesPN
n¼1 wn=N � S � a. However, the form of Pðw jS � aÞ ¼ ð1þ wS � aÞ=2 with w ¼

�1 is postulated and the procedure is deterministic thereby only giving the illusion

of randomness to everyone who does not know the details of the algorithm and

the initial state of the pseudo-random generator. Hence, we accomplished nothing
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and the question is whether we can do better than by using this probabilistic

processor.

Let us consider a deterministic processor, a deterministic learning machine

(DLM),8,72 that receives input in the form of identical numbers

0 � un � u ¼ ð1þ S � aÞ=2 � 1; ð2Þ

for n ¼ 1; . . . ;N . The processor has an internal state represented by a variable 0 �
vn � 1 which adapts to the received input u in a manner such that the di®erence with

the input is minimal, namely

vn ¼ �vn�1 þ ð1� �Þ�n; ð3Þ

where �n ¼ �ðj�vn�1 þ ð1� �Þ � uj � j�vn�1 � ujÞ with �ð�Þ denoting the unit step

function taking only the value 0 or 1 and 0 � � < 1 is a learning parameter con-

trolling both the speed and accuracy with which the processor learns the input value

u. The initial value v0 of the internal state is chosen at random. The output numbers

generated by the processor are

wn ¼ 2�n � 1 ¼ �1: ð4Þ

In general the behavior of the deterministic processor de¯ned by Eq. (3) is di±cult to

analyze without a computer. However, the operation of the processor can be easily

translated in simple computer code

u1 ¼ gamma � y
u2 ¼ u1þ 1� gamma

if ðabsðv� u1Þ < absðv� u2ÞÞ then
w ¼ �1

u ¼ u1

else

w ¼ þ1

u ¼ u2

end if ð5Þ

Also without computer, this code allows getting a quick notion on how the internal

state of the processor adapts to the input. Taking as an example u ¼ 5=8, � ¼ 0:5

and vn ¼ 4=8 gives vnþ1 ¼ 6=8, vnþ2 ¼ 7=8, vnþ3 ¼ 7=16; . . . From this step-by-step

analysis it can be seen how vn comes closer to u, goes further away from it to come

closer again in a next step and how vn keeps oscillating around u in the stationary

regime. A detailed mathematical analysis of the dynamics of the processor de¯ned

by the rule Eq. (3) is given in Ref. 73. For � ! 1� we ¯nd that
PN

n¼1 wn=N �
2u� 1 ¼ S � a.

In conclusion, we designed an event-by-event process which can reproduce the

results of the quantum theoretical description of the idealized Stern–Gerlach
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experiment without making use of any quantum theoretical concepts. The strategy

employed by the processor is to minimize the distance between two numbers thereby

\learning" the input number. Hence, at least one of the results of quantum theory

seems to emerge from an event-based process, a dramatic change in the paradigm of

the quantum science community.

4.2. Malus' law

The important question is whether this event-based approach can also be applied to

other experiments which up to now are exclusively described in terms of wave or

quantum theory. To scrutinize this question, we consider a basic optics experiment

with a linearly birefringent crystal, such as calcite acting as a polarizer. A beam

of linearly polarized monochromatic light impinging on a calcite crystal along a

direction not parallel to the optical axis of the crystal is split into two beams trav-

elling in di®erent directions and having orthogonal polarizations. The two beams

are referred to as the ordinary and extraordinary beam, respectively.42 The intensity

of the beams is given by Malus' law, which has experimentally been established

in 1810,

Io ¼ I sin2ð � �Þ; Ie ¼ I cos2ð � �Þ; ð6Þ

where I, Io and Ie are the intensities of the incident, ordinary and extraordinary

beam, respectively,  is the polarization of the incident light and � speci¯es the

orientation of the crystal.42 Observations in single-photon experiments show that

Malus' law is also obeyed at the single-photon level.

In the quantum theoretical description of these single-photon experiments in

which the photons are detected one-by-one in either the ordinary beam (represented

by a detection event w ¼ 0) or in the extraordinary beam (represented by a detec-

tion event w ¼ 1) it is postulated that the polarizer sends a photon to the extraor-

dinary direction with probability cos2ð � �Þ and to the ordinary direction with

probability sin2ð � �Þ. Hence, quantum theory postulates that limN!1
PN

n¼1 wn=

N ! cos2ð � �Þ.
Following a procedure similar to that of the Stern–Gerlach experiment it is ob-

vious that we can construct a simple probabilistic processor employing pseudo-

random numbers to generate a uniform random number 0 < rn < 1 and send out a

wn ¼ 0 (wn ¼ 1) event if cos2ð � �Þ � rn (cos2ð � �Þ > rn) so that after repeating

this procedure N times we indeed have limN!1
PN

n¼1 wn=N ! cos2ð � �Þ. How-

ever, again, by doing this we accomplished nothing because Malus' law has been

postulated from the start in the form P ðw j � �Þ ¼ wcos2ð � �Þ þ ð1� wÞsin2
ð � �Þ with w ¼ 0; 1. Moreover, this probabilistic processor has a relatively poor

performance73 and therefore in what follows we design and analyze a much more

e±cient DLM that generates events according to Malus' law.

The DLM mimicking the operation of a polarizer has one input channel, two

output channels and one internal vector with two real entries. The DLM receives as
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input, a sequence of angles  n for n ¼ 1; . . . ;N and knows about the orientation of

the polarizer through the angle �. Using rotational invariance, we represent these

input messages by unit vectors

un ¼ ðu0;n;u1;nÞ ¼ ðcosð n � �Þ; sinð n � �ÞÞ: ð7Þ

Instead of the random number generator that is part of the probabilistic processor,

the DLM has an internal degree of freedom represented by the unit vector

vn ¼ ðv0;n; v1;nÞ. The direction of the initial internal vector v0 is chosen at random.

As the DLM receives input data, it updates its internal state. The update rules are

de¯ned by

v0;n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ðv2

0;n�1 � 1Þ
q

; v1;n ¼ �v1;n�1; ð8Þ

corresponding to the output event wn ¼ 0 and

v0;n ¼ �v0;n�1; v1;n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ðv2

1;n�1 � 1Þ
q

; ð9Þ

corresponding to the output event wn ¼ 1. The parameter 0 < � < 1 controls the

learning process of the DLM. The �-sign takes care of the fact that the DLM has to

decide between two quadrants. The DLM selects one of the four possible outcomes

for vn ¼ ðv0;n; v1;nÞ by minimizing the cost function de¯ned by

C ¼ �vn � un ¼ �ðv0;nu0;n þ v1;nu1;nÞ: ð10Þ

Obviously, the cost C is small (close to �1), if the vectors un and vn are close to each

other. In conclusion, the DLM generates output events wn ¼ 0; 1 by minimizing the

distance between the input vector and its internal vector by means of a simple,

deterministic decision process.

In general, the behavior of the DLM de¯ned by the rules Eqs. (8)–(10) is di±cult

to analyze without using a computer. However, for a ¯xed input vector un ¼ ðu0;u1Þ
for n ¼ 1; . . . ;N , the DLM will minimize the cost Eq. (10) by rotating its internal

vector vn toward un but vn will not converge to the input vector un and will keep

oscillating about un. This is the stationary state of the machine. An example of a

simulation is given in Fig. 1. Once the DLM has reached the stationary state the

number of wn ¼ 0 output events divided by the total number of output events is

cos2ð n � �Þ and thus in agreement with Malus' law if we interpret the wn ¼ 0

output events as corresponding to the extraordinary beam. Note that the details of

the approach to the stationary state depend on the initial value of the internal vector

v0, but the properties of the stationary state do not. A detailed stationary-state

analysis is given in Ref. 72.

4.3. Single particle detection

In the event-based simulation of the Stern–Gerlach experiment and of the experi-

ment demonstrating Malus' law the two-valued output events wn (n ¼ 1; . . . ;N) can
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be processed by two detectors placed behind the DLM modeling the Stern–Gerlach

magnet and the calcite crystal, respectively. It can be easily seen that in these two

experiments the only operation the detectors have to perform is to simply count

every incoming output event wn. However, real single-particle detectors are often

more complex devices with diverse properties. In our event-based simulation ap-

proach we model the main characteristics of these devices by rules as simple as

possible to obtain similar results as those observed in a laboratory experiment. So far,

we have designed two types of detectors, simple particle counters and adaptive

threshold devices.3 The adaptive threshold detector can be employed in the simu-

lation of all single-photon experiments we have considered so far3 but is absolutely

essential in the simulation of, for example, the two-beam single photon experiment

(see Sec. 5.1).

The e±ciency, de¯ned as the ratio of detected to emitted particles, of our model

detectors is measured in an experiment with one single-particle point source placed

far away from the detector. If the detector is a simple particle counter then the

e±ciency is 100%, if it is an adaptive threshold detector then the e±ciency is nearly

100%. Since no absorption e®ects, dead times, dark counts, timing jitter or other

e®ects causing particle miscounts are simulated, these model detectors are highly

idealized versions of real single-photon detectors.

Evidently, the e±ciency of a detector plays an important role in the overall

detection e±ciency in an experiment, but it is not the only determining factor. Also

the experimental con¯guration, as well in the laboratory experiment as in the event-

based simulation approach, in which the detector is used to play an important role.

Although the adaptive threshold detectors are ideal and have a detection e±ciency of
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Fig. 1. The angle  n � � representing the internal vector vn of the DLM de¯ned by Eqs. (8) and (10) as a
function of the number of events n. The input events are vectors un ¼ ðcos 30	; sin 30	Þ. The direction of

the initial internal vector v0 is chosen at random. In this simulation � ¼ 0:99: For n > 60 the ratio of the

number of 0 events to 1 events is 1/3, which is ðsin 30	= cos 30	Þ2. Data for 1 � n < 20 lie on the decaying

line but have been omitted to show the oscillating behavior more clearly. Lines are guides to the eye.
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nearly 100%, the overall detection e±ciency can be much less than 100% depending

on the experimental con¯guration. For example, using adaptive threshold detectors

in a Mach–Zehnder interferometry experiment leads to an overall detection e±ciency

of nearly 100% (see Sec. 5.2.1), while using the same detectors in a single-photon two-

beam experiment (see Sec. 5.1.1) leads to an overall detection e±ciency of about

15%.3,16 For the simple particle counters the con¯guration has no in°uence on the

overall detection e±ciency. Apart from the con¯guration, also the data processing

procedure which is applied after the data has been collected may have an in°uence on

the ¯nal detection e±ciency. An example is the postselection procedure with a time-

coincidence window which is employed to group photons, detected in two di®erent

stations, into pairs.25 Even if in the event-based simulation approach simple particle

counters with a 100% detection e±ciency are used and thus all emitted photons are

accounted for during the data collection process, the ¯nal detection e±ciency is less

than 100% because some detection events are omitted in the post-selection data

procedure using a time-coincidence window.

In conclusion, even if ideal detectors with a detection e±ciency of 100% would be

commercially available, then the overall detection e±ciency in a single-particle ex-

periment could still be much less than 100% depending on (i) the experimental

con¯guration in which the detectors are employed and (ii) the data analysis proce-

dure that is used after all data has been collected.

5. Single Particle Interference

The particle-like behavior of photons has been shown in an experiment composed of a

single 50/50 BS, of which only one input port is used, and a source emitting single

photons and pairs of photons.6 The wave mechanical character of the collection of

photons has been demonstrated in single-particle interference experiments such as

the single-photon two-beam experiment15 (see Sec. 5.1), an experiment which shows,

with minimal equipment, interference in its purest form (without di®raction), and

the single-photon MZI experiment6 (see Sec. 5.2).

The three experiments have in common that, if one analyzes the data after col-

lectingN detection events, long after the experiment has ¯nished, the averages of the

detection events agree with the results obtained from wave theory, that is with the

classical theory of electrodynamics (Maxwell theory). In the ¯rst experiment one

obtains a constant intensity of 0.5 at both detectors placed at the output ports of the

BS, in the other two experiments one obtains an interference pattern. However, since

the source is not emitting waves but so-called single photons6,15 the question arises

how to interpret the output which seems to show particle or wave character

depending on the circumstances of the experiment. This question is not limited to

photons. Already in 1924, de Broglie introduced the idea that also matter can exhibit

wave-like properties.74

To resolve the apparent behavioral contradiction, quantum theory introduces the

concept of particle-wave duality.1 As a result, these single-particle experiments are
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often considered to be quantum experiments. However, the pictorial description

using concepts from quantum theory, when applied to individual detection events

(not to the averages) leads to conclusions that defy common sense: The photon

(electron, neutron, atom, molecules, etc.) seems to change its representation from a

particle to a wave while traveling from the source to the detector in the single-photon

interference experiments.

In 1978, Wheeler proposed a gedanken experiment,75 a variation on Young's

double slit experiment, in which the decision to observe wave or particle behavior is

postponed until the photon has passed the slits. An experimental realization of

Wheeler's delayed choice experiment with single-photons traveling in an open or

closed con¯guration of an MZI has been reported in Refs. 9 and 76. The outcome,

that is the average result of many detection events, is in agreement with wave theory

(Maxwell or quantum theory). However, the pictorial description using concepts of

quantum theory to explain the experimental facts9 is even more strange than in the

above mentioned experiments: The decision to observe particle or wave behavior

in°uences the behavior of the photon in the past and changes the representation of

the photon from a particle to a wave.

A more sensical description of the observation of individual detection events

and of an interference pattern after many single detection events have been col-

lected in single-particle interference experiments, can be given in terms of the

event-based simulation approach. This ¯nding is not in contradiction with

Feynman's statement that electron (single particle) di®raction by a double-slit

structure is \impossible, absolutely impossible, to explain in any classical way, and

has in it the heart of quantum mechanics".33 Reading \any classical way" as \any

classical Hamiltonian mechanics way", Feynman's statement is di±cult to dispute.

However, taking a broader view by allowing for dynamical systems that are out-

side the realm of classical Hamiltonian dynamics, it becomes possible to model the

gradual appearance of interference patterns through the event-by-event simula-

tion method.

5.1. Two-beam experiment

We consider the experiment sketched in Fig. 2. Single particles coming from two

coherent beams gradually build up an interference pattern when the particles arrive

one-by-one at a detector screen. This two-beam experiment can be viewed as a

simpli¯cation of Young's double-slit experiment in which the slits are regarded as

the virtual sources S1 and S2 (see Ref. 42) and can be used to perform Feynman's

thought experiment in which both slits are open or one is open and the other

one closed. In the event-based model of this experiment particles are created one at

a time at one of the sources and are detected by one of the detectors forming

the screen. We assume that all these detectors are identical and cannot commu-

nicate among each other. We also do not allow for direct communication between

the particles. This implies that this event-by-event model is locally causal by
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construction. Then, if it is indeed true that individual particles build up the in-

terference pattern one-by-one, just looking at Fig. 2 leads to the logically unes-

capable conclusion that the interference pattern can only be due to the internal

operation of the detector.77 Detectors which simply count the incoming particles

are not su±cient to explain the appearance of an interference pattern and apart

from the detectors there is nothing else that can cause the interference pattern to

appear. Making use of the statistical property of quantum theory one could assume

that if a detector is replaced by another one as soon as it has detected one particle,

one obtains similar interference patterns if the detection events of all these di®erent

detectors are combined or if only one detector detects all the particles. However,

since there is no experimental evidence con¯rming this assumption and since our

event-based approach is based on laboratory experimental setups and observations

we do not consider this being a realistic option. Thus, logic dictates that a minimal

event-based model for the two-beam experiment requires an algorithm for the

detector that does a little more than just counting particles.

5.1.1. Event-based model

In what follows we specify the event-by-event model for the single-photon two-beam

experiment (see Fig. 2) in su±cient detail such that the reader who is interested can

reproduce the simulation results (a Mathematica implementation of a slightly more
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S2 β(0, / 2)d

(0, / 2)d
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Fig. 2. Schematic diagram of a two-beam experiment with single-particle sources S1 and S2 of width a,

separated by a center-to-center distance d. In a ¯rst experiment, which can be seen as a variant of Young's

double slit experiment, N single particles leave the sources S1 and S2 one-by-one, at positions y drawn

randomly from a uniform distribution over the interval ½�d=2� a=2;�d=2þ a=2
 [ ½þd=2� a=2;þd=2þ
a=2
 and travel in the direction given by the angle �, a uniform pseudo-random number between ��=2 and
�=2. In a second experiment, a movable mask is placed behind the sources which can block either S1 or S2.

The sources S1 and S2 alternately emit M particles one-by-one, until a total of N particles has been

emitted (M � N=2 and kM ¼ N with k an integer number). In both experiments, particles are emitted
one-by-one either from S1 or from S2 and at any time there is only one particle traveling from source to

detector. The particles are recorded by detectors D positioned on a semi-circle with radius X and center

ð0; 0Þ. The angular position of a detector is denoted by �.
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sophisticated algorithm16 can be downloaded from the Wolfram Demonstration

Project web site78).

— Source and particles: In the ¯rst experiment described in Fig. 2, N photons leave

the sources one-by-one, at positions y drawn randomly from a uniform distribu-

tion over the interval ½�d=2� a=2;�d=2þ a=2
 [ ½þd=2� a=2;þd=2þ a=2
. In
the second experiment the sources alternately emit M photons one-by-one until a

total of N photons has been emitted. Here, M � N=2 and kM ¼ N, where k

denotes an integer number. The photons are regarded as messengers, traveling in

the direction speci¯ed by the angle �, being a uniform pseudo-random number

between ��=2 and �=2. Each messenger carries a message

uðtÞ ¼ ðcosð2�ftÞ; sinð2�ftÞÞ; ð11Þ

represented by a harmonic oscillator which vibrates with frequency f (repre-

senting the \color" of the light). The internal oscillator operates as a clock to

encode the time of °ight t, which is set to zero when a messenger is created,

thereby modeling the coherence of the two single-particle beams.

This pictorial model of a \photon" was used by Feynman to explain quantum

electrodynamics.79 The event-based approach goes one step further in that it

speci¯es in detail, in terms of a mechanical procedure, how the \amplitudes"

which appear in the quantum formalism get added together. In Feynman's path

integral formulation of light propagation, which is essentially quantum mechan-

ical, the amplitude was obtained by summing over all possible paths.79

The time of °ight of the particles depends on the source-detector distance. Here,

we discuss as an example, the experimental setup with a semi-circular detection

screen (see Fig. 2) but in principle any other geometry for the detection screen can

be considered. The messenger leaving the source at ð0; yÞ under an angle � will hit

the detector screen of radius X at a position determined by the angle � given by

sin � ¼ ðy cos2� þ sin �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � y2cos2�

p
Þ=X, where jy=Xj < 1. The time of °ight is

then given by t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 2yX sin �þ y2

p
=c, where c is the velocity of the mes-

senger. The messages uðtÞ together with the explicit expression for the time of

°ight are the only input to the event-based algorithm.

—Detector: Here, we describe the model for one of the many identical detectors

building up the detection screen. Microscopically, the detection of a particle

involves very intricate dynamical processes.66 In its simplest form, a light detector

consists of a material that can be ionized by light. This signal is then ampli¯ed,

usually electronically, or in the case of a photographic plate by chemical processes.

In Maxwell's theory, the interaction between the incident electric ¯eld E and the

material takes the form P �E, where P is the polarization vector of the material.42

Assuming a linear response, Pð!Þ ¼ 	ð!ÞEð!Þ for a monochromatic wave with

frequency !, it is clear that in the time domain, this relation expresses the fact that

the material retains some memory about the incident ¯eld, 	ð!Þ representing the

memory kernel that is characteristic for the material used.
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In line with the idea that an event-based approach should use the simplest rules

possible, we reason as follows. In the event-based model, the nth message un ¼
ðcos 2�ftn; sin 2�ftnÞ is taken to represent the elementary unit of electric ¯eld

EðtÞ. Likewise, the electric polarization PðtÞ of the material is represented by the

vector vn ¼ ðv0;n; v1;nÞ. Upon receipt of the nth message this vector is updated

according to the rule

vn ¼ �vn�1 þ ð1� �Þun; ð12Þ

where 0 < � < 1 and n > 0. Obviously, if � > 0, a message processor that operates

according to the update rule Eq. (12) has memory, as required by Maxwell's

theory. It is not di±cult to prove that as � ! 1�, the internal vector vn converges

to the average of the time-series fu1;u2; . . .g.3,16 By reducing �, the number of

messages needed to adapt decreases but also the accuracy of the DLM decreases.

In the limit that � ¼ 0, the DLM learns nothing, it simply echoes the last message

that it received.7,8 The parameter � controls the precision with which the DLM

de¯ned by Eq. (12) learns the average of the sequence of messages u1;u2; . . . and

also controls the pace at which new messages a®ect the internal state v of the

machine.7 Moreover, in the continuum limit (meaning many events per unit of

time), the rule given in Eq. (12) translates into the constitutive equation of the

Debye model of a dielectric,16,80 a model used in many applications of Maxwell's

theory.81

After updating the vector vn, the DLM uses the information stored in vn to decide

whether or not to generate a click. As a highly simpli¯ed model for the bistable

character of the real photodetector or photographic plate, we let the machine

generate a binary output signal wn according to

wn ¼ �ðv2
k � rnÞ; ð13Þ

where �ð�Þ is the unit step function and 0 � rn < 1 is a uniform pseudo-random

number. Note that the use of pseudo-random numbers is convenient but not

essential.3 Since in experiment it cannot be known whether a photon has gone

undetected, we discard the information about the wn ¼ 0 detection events and

de¯ne the total detector count as N 0 ¼
Pn0

j¼1 wj, where n0 is the number of mes-

sages received. N 0 is the number of clicks (one's) generated by the processor.

The e±ciency of the detector model is determined by simulating an experiment

that measures the detector e±ciency, which for a single-photon detector is de¯ned

as the overall probability of registering a count if a photon arrives at the detec-

tor.82 In such an experiment a point source emitting single particles is placed far

away from a single detector. As all particles that reach the detector have the same

time of °ight (to a good approximation), all the particles that arrive at the de-

tector will carry the same message which is encoding the time of °ight. As a result

vn (see Eq. (12)) rapidly converges to the vector corresponding to this message, so

that the detector clicks every time a photon arrives. Thus, the detection e±ciency,

as de¯ned for real detectors,82 for our detector model is very close to 100%. Hence,
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the model is a highly simpli¯ed and idealized version of a single-photon detector.

However, although the detection e±ciency of the detector itself may be very close

to 100%, the overall detection e±ciency, which is the ratio of detected to emitted

photons in the simulation of an experiment, can be much less than one. This ratio

depends on the experimental setup.

— Simulation procedure: Each of the detectors of the circular screen has a prede¯ned

spatial window within which it accepts messages. As a messenger hits a detector,

this detector updates its internal state v, (the internal states of all other detectors

do not change) using the message un and then generates the event wn. In the case

wn ¼ 1 (wn ¼ 0), the total count of the particular detector that was hit by the nth

messenger is (not) incremented by one and the messenger itself is destroyed. Only

after the messenger has been destroyed, the source is allowed to send a new

messenger. This rule ensures that the whole simulation complies with Einstein's

criterion of local causality. This process of creating and destroying messengers is

repeated many times, building up the interference pattern event-by-event. Note

that the number of emitted photons N is larger than the sum of the number of

clicks generated by all the detectors forming the detection screen although no

photons are lost during their travel from source to detector.

5.1.2. Simulation results

In Fig. 3(a), we present simulation results for the ¯rst experiment for a representative

case for which the analytical solution from wave theory is known. Namely, in the

Fraunhofer regime (d � X), the analytical expression for the light intensity at the

detector on a circular screen with radius X is given by42

Ið�Þ ¼ A sin2
qa sin �

2

� �
cos2

qd sin �

2

� �
qa sin �

2

� �
2

�
; ð14Þ

where A is a constant, q ¼ 2�f=c denotes the wavenumber with f and c being the

frequency and velocity of the light, respectively, and � denotes the angular position of

the detector D on the circular screen, see Fig. 2. Note that Eq. (14) is only used for

comparison with the simulation data and is by no means input to the model. From

Fig. 3(a) it is clear that the event-based model reproduces the results of wave theory

and this without taking recourse of the solution of a wave equation.

As the detection e±ciency of the event-based detector model is very close to

100%, the interference patterns generated by the event-based model cannot be at-

tributed to ine±cient detectors. It is therefore of interest to take a look at the ratio of

detected to emitted photons, the overall detection e±ciency, and compare the de-

tection counts, observed in the event-by-event simulation of the two-beam inter-

ference experiment, with those observed in a real experiment with single photons.15

In the simulation that yields the results of Fig. 3(a), each of the 181 detectors making

up the detection area is hit on average by 55� 103 photons and the total number of

clicks generated by the detectors is 0:16� 107. Hence, the ratio of the total number of
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detected to emitted photons is of the order of 0.16, two orders of magnitude larger

than the ratio 0:5� 10�3 observed in single-photon interference experiments.15

In Fig. 3(b), we show simulation results for the experiment in which ¯rst only

source S1 emits N ¼ 5� 106 photons (downward triangles) while S2 is blocked by

the mask. Then in a new experiment (all detectors are reset) S2 emits N ¼ 5� 106

photons while S1 is blocked (upward triangles). The sum of the two resulting de-

tection curves is given by the curve with open squares. It is clear that this curve is

completely di®erent from the curve depicted in Fig. 3(a), as is also described in
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Fig. 3. Detector counts (markers) as a function of � as obtained from the event-based simulation of the

two-beam interference experiments described in Fig. 2. Simulation parameters: N ¼ 107 so that on av-
erage, each of the 181 detectors, positioned on the semi-circular screen with an angular spacing of 1	 in the

interval ½�90	; 90	
, receives about 55� 103 particles, � ¼ 0:999, a ¼ c=f, d ¼ 5c=f, X ¼ 75c=f, where c

denotes the velocity and f the frequency of the particles (c=f ¼ 670nm in our simulations). (a): First
experiment in which sources S1 and S2 in random order emit in total N particles one-by-one. This

experiment resembles Young's (and Feynman's) two-slit experiment. (b): First experiment in which only

source S1 or S2 emits N ¼ 5� 106 particles one-by-one (downward and upward triangles, respectively).

The open squares are the sum of the detector counts of the two experiments with one source emitting and
the other one blocked. This experiment resembles Feynman's two-slit experiment with ¯rst slit S2 blocked

and then slit S1 blocked. The closed circles are the result of the second experiment in which ¯rst S1 and

then S2 emit a group of M ¼ 5� 106 particles one-by-one. (c): Second experiment with M ¼ 106. (d):

Second experiment with M ¼ 25� 105. The solid line in (a), (c) and (d) is a least-square ¯t of the
simulation data of (a) to the prediction of wave theory, Eq. (14), with only one ¯tting parameter.
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Feynman's thought experiment (see Sec. 2.1). Also in Fig. 3(b), we present the

simulation results for the experiment in which ¯rst the source S1 emits a group of

M ¼ 5� 106 particles one-by-one and then the source S2 emits M ¼ 5� 106 parti-

cles one-by-one (no resetting of the detectors). The resulting detection curve is drawn

with closed circles. For small values of � there is a di®erence between the curves with

open squares and closed circles. This di®erence is due to the memory e®ect which is

present in the detector model. Obviously this di®erence depends on � and the de-

tector model that is used. For more complicated detector models than the one given

by Eq. (12) this small di®erence disappears (results not shown).

Figures 3(c) and 3(d) depict simulation results of the experiment in which sources

S1 and S2 alternately emit M particles one-by-one with M ¼ 106 and M ¼ 25� 105,

respectively. It is seen that except for very large values of M (M & 106), the inter-

ference pattern is the same as the one shown in Fig. 3(a). Nevertheless, for these large

values of M interference can still be observed. This is a result of the memory e®ects

built in the detector model. However, for any value of M , a simple quantum theo-

retical calculation would predict no interference pattern but an intensity pattern

which is the sum of two single slit patterns, as the particles pass through one or the

other slit, and never through both. Hence, for this type of experiment the predictions

of quantum theory and of the event-based model di®er.

Although we are not aware of any experiment that precisely tests the above

described scenario, one experimental study in which only one slit was available to

each photon83 produced intriguing results. In that study, an opaque barrier, all the

way from the laser source to the obstacle between the two slits, was used to make

sure that photons had one or the other slit available to them. The interference

pattern observed was nevertheless essentially unchanged despite the presence of the

barrier. We are, however, not aware of any follow-up work on that study.

5.1.3. Why is interference produced without solving a wave problem?

As mentioned earlier, using simple particle counters as detectors would not result in

an interference pattern. Essential to produce an interference pattern is to account for

the information about the di®erences in the times of °ight (or phase di®erences) of

the particles which encode the distance the particles travelled from one of the two

sources to one of the detectors constituting the circular detection screen. Simple

particle counters do nothing with the information which is encoded in the messages

carried by the particles and produce a click for each incoming particle. Since, in the

single-photon two-beam experiment the detectors are the only apparatuses available

that can process these phase di®erences (there are no other apparatuses present

except for the source) we necessarily need to employ an algorithm for the detector

that exploits this information in order to produce the clicks that gradually build up

the interference pattern. A collection of about 200 independent adaptive threshold

detectors de¯ned by Eqs. (12) and (13) and each with a detection e±ciency of nearly

100% is capable of doing this. As pointed out earlier, the reason why, in this
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particular experiment, this is possible is that not every particle that impinges on the

detector yields a click.

5.2. MZI experiment

5.2.1. Event-based model

The DLM network that simulates a single-photon MZI experiment (see Fig. 4(a))

consists of a source, two identical BSs two phase shifters and two detectors. The

network of processing units is a one-to-one image of the experimental setup.6 Note that

the two mirrors in the MZI simply bend the paths of the photons by �=2 without

introducing a phase change or loss of particles and therefore they do not need to be

considered in the event-based simulation network. In what follows we specify the

processing units in su±cient detail such that the readerwho is interested can reproduce

the simulation results. We require that the processing units for identical optical

components should be reusable within the same and within di®erent experiments.

Demonstration programs, including source codes, are available for download.84;a

— Source and particles: In a pictorial description of the experiment depicted in

Fig. 4(a) the photons, leaving the source S one-by-one, can be regarded as par-

ticles playing the role of messengers. Each messenger carries a message

uk;n ¼ ðcosð2�ftk;nÞ; sinð2�ftk;nÞÞ; ð15Þ

where f denotes the frequency of the light source and tk;n the time that particles

need to travel a given path. The subscript n > 0 numbers the consecutive mes-

sengers and k labels the channel of the BS at which the messenger arrives (see

below). Note that in this experiment no explicit information about distances and

frequencies is required since we can always work with relative phases.

When a messenger is created its internal clock time is set to zero (tk;n ¼ 0) and

since the source is connected to the k ¼ 0 input channel of the ¯rst BS the mes-

senger gets the label k ¼ 0 (see Fig. 4(a)).

—BS: A BS is an optical component that partially transmits and partially re°ects an

incident light beam. Dielectric plate BSs are often used as 50/50 BSs. From

classical electrodynamics we know that if an electric ¯eld is applied to a dielectric

material the material becomes polarized.42 Assuming a linear response, the po-

larization vector of the material is given by Pð!Þ ¼ 	ð!ÞEð!Þ for a monochro-

matic wave with frequency !. In the time domain, this relation expresses the fact

that the material retains some memory about the incident ¯eld, 	ð!Þ representing
the memory kernel that is characteristic for the material used. We use this kind of

memory e®ect in our algorithm to model the BS.

A BS has two input and two output channels labeled by 0 and 1 (see Fig 4(a)).

Note that in case of the MZI experiment, for beam splitter BS1 only entrance port

aSample Fortran and Java programs and interactive programs that perform event-based simulations of a

beam splitter, one Mach–Zehnder interferometer, and two chained Mach–Zehnder interferometers can be

found at http://www.compphys.net/.
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k ¼ 0 is used. In the event-based model, the BS has two internal registers Rk;n ¼
ðR0;k;n;R1;k;nÞ (one for each input channel) and an internal vector vn ¼ ðv0;n; v1;nÞ
with the additional constraints that vi;n � 0 for i ¼ 0; 1 and that v0;n þ v1;n ¼ 1.

As we only have two input channels, the latter constraint can be used to recover

v1;n from the value of v0;n. We prefer to work with internal vectors that have as

many elements as there are input channels. These three two-dimensional vectors

vn, R0;n and R1;n are labeled by the message number n because their content is

updated every time the BS receives a message. Before the simulation starts we set

v0 ¼ ðv0;0; v1;0Þ ¼ ðr; 1� rÞ, where r is a uniform pseudo-random number. In a

similar way, we use pseudo-random numbers to set R0;0 and R1;0.

When the nth messenger carrying the message uk;n arrives at entrance port k ¼ 0

or k ¼ 1 of the BS, the BS ¯rst stores the message in the corresponding register

Rk;n and updates its internal vector according to the rule

vn ¼ �vn�1 þ ð1� �Þqn; ð16Þ
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Fig. 4. (a) Schematic diagram of a MZI with a single-photon source S. The MZI consists of two BSs, BS1

and BS2, two phase shifters �0 and �1 and two mirrors.N0 (N2) andN1 (N3) count the number of events in

the output channel 0 of BS1 (BS2) and in the output channel 1 of BS1 (BS2), respectively. Dividing Ni for

i ¼ 0; . . . ; 3 by the total countN yields the relative frequency of ¯nding a photon in the corresponding arm
of the interferometer. Since photon detectors operate by absorbing photons, in a real laboratory experi-

ment only N2 and N3 can be measured by detectorsD0 andD1, respectively. (b) Simulation results for the

normalized detector counts (markers) as a function of � ¼ �0 � �1. Input channel 0 receives ðcos 0; sin 0Þ
with probability one. One uniform random number in the range ½0; 360
 is used to choose the angle  0.
Input channel 1 receives no events. The parameter � ¼ 0:98. Each data point represents 10 000 events

(N ¼ N0 þN1 ¼ N2 þN3 ¼ 10 000). Initially the rotation angle �0 ¼ 0 and after each set of 10 000 events,

�0 is increased by 10	. Open squares: N0=N; solid squares: N2=N for �1 ¼ 0; open circles: N2=N for
�1 ¼ 30	; solid circles: N2=N for �1 ¼ 240	; asterisks: N3=N for �1 ¼ 0; solid triangles: N3=N for

�1 ¼ 300	. Lines represent the results of quantum theory.b

bWe make a distinction between quantum theory and quantum physics. We use the term quantum theory

when we refer to the mathematical formalism, i.e. the postulates of quantum mechanics (with or without
the wave function collapse postulate)2 and the rules (algorithms) to compute the wave function. The term

quantum physics is used for microscopic, experimentally observable phenomena that do not ¯nd an

explanation within the mathematical framework of classical mechanics.

Event-based simulation of quantum physics experiments

1430003-23



where 0 < � < 1 is a parameter that controls the learning process and qn ¼ ð1; 0Þ
(qn ¼ ð0; 1Þ) if the nth event occurred on channel k ¼ 0 (k ¼ 1). By construction

vi;n � 0 for i ¼ 0; 1 and v0;n þ v1;n ¼ 1. Hence the update rule Eq. (16) preserves

the constraints on the internal vector. Obviously, these constraints are necessary

if we want to interpret the vk;n as (an estimate of) the frequency for the occurrence

of an event of type k. Note that the BS stores information about the last message

only. The information carried by earlier messages is overwritten by updating the

internal registers. From Eq. (16), one could say that the internal vector v (cor-

responding to the material polarization P) is the response of the BS to the in-

coming messages (photons) represented by the vectors q (corresponding to the

elementary unit of electric ¯eld E). Therefore, the BS \learns" so to speak from

the information carried by the photons. The characteristics of the learning process

depend on the parameter � (corresponding to the response function 	).

Next, in case of a 50/50 BS, the BS uses the six numbers stored in R0;n, R1;n

and vn to calculate four numbers g0;n ¼ ðR0;0;n
ffiffiffiffiffiffiffiffi
v0;n

p �R1;1;n
ffiffiffiffiffiffiffiffi
v1;n

p Þ=
ffiffiffi
2

p
, g1;n ¼

ðR0;1;n
ffiffiffiffiffiffiffiffi
v1;n

p þR1;0;n
ffiffiffiffiffiffiffiffi
v0;n

p Þ=
ffiffiffi
2

p
, g2;n ¼ ðR0;1;n

ffiffiffiffiffiffiffiffi
v1;n

p �R1;0;n
ffiffiffiffiffiffiffiffi
v0;n

p Þ=
ffiffiffi
2

p
and g3;n ¼

ðR0;0;n
ffiffiffiffiffiffiffiffi
v0;n

p þR1;1;n
ffiffiffiffiffiffiffiffi
v1;n

p Þ=
ffiffiffi
2

p
. These four real-valued numbers can be considered

to represent the real and imaginary part of two complex numbers g0;n þ ig1;n and

g2;n þ ig3;n which are obtained by the following matrix-vector multiplication

g0;n þ ig1;n

g2;n þ ig3;n

 !
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffi
v0;n

p ðR0;0;n þ iR1;0;nÞ þ i
ffiffiffiffiffiffiffiffi
v1;n

p ðR0;1;n þ iR1;1;nÞ

i
ffiffiffiffiffiffiffiffi
v0;n

p ðR0;0;n þ iR1;0;nÞ þ
ffiffiffiffiffiffiffiffi
v1;n

p ðR0;1;n þ iR1;1;nÞ

 !

¼ 1ffiffiffi
2

p
1 i

i 1

 ! ffiffiffiffiffiffiffiffi
v0;n

p
0

0
ffiffiffiffiffiffiffiffi
v1;n

p

 !
R0;0;n þ iR1;0;n

R0;1;n þ iR1;1;n

 !
: ð17Þ

Identifying a0 with
ffiffiffiffiffiffiffiffi
v0;n

p ðR0;0;n þ iR1;0;nÞ and a1 with
ffiffiffiffiffiffiffiffi
v1;n

p ðR0;1;n þ iR1;1;nÞ it is
clear that the computation of the four numbers gi;n for i ¼ 0; . . . ; 3 plays the role

of the matrix-vector multiplication in the quantum theoretical description of a BS

b0
b1

� �
¼ 1ffiffiffi

2
p a0 þ ia1

a1 þ ia0

� �
¼ 1ffiffiffi

2
p 1 i

i 1

� �
a0
a1

� �
; ð18Þ

where ða0; a1Þ and ðb0; b1Þ denote the input and output amplitudes, respectively.

Note however that the DLM for the BS computes the four numbers gi;n for i ¼
0; . . . ; 3 for each incoming event thereby always updating vn and R0;n or R1;n.

Hence, a0 and a1, and thus also b0 and b1, are constructed event-by-event and only

under certain conditions (� ! 1�, su±ciently large number of input events N,

stationary sequence of input events) they correspond to their quantum theoretical

counterparts a0 ¼
ffiffiffiffiffi
p0

p
ei 0 , a1 ¼

ffiffiffiffiffi
p1

p
ei 1 with p1 ¼ 1� p0 (0 � p0; p1 � 1) and

b0 ¼ a0 þ ia1, b1 ¼ a1 þ ia0 (see Eq. (18)).

In a ¯nal step the BS uses gi;n for i ¼ 0; . . . ; 3 to create an output event.

Therefore it generates a uniform random number rn between zero and one. If
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g2
0;n þ g2

1;n > rn, the BS sends a message

w0;n ¼ ðg0;n; g1;nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
0;n þ g2

1;n

q
; ð19Þ

through output channel 0. Otherwise it sends a message

w1;n ¼ ðg2;n; g3;nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
2;n þ g2

3;n

q
; ð20Þ

through output channel 1.

—Phase shifters: These devices perform a plane rotation on the vectors (messages)

carried by the particles. As a result the phase of the particles is changed by �0 or

�1 depending on the route followed.

—Detector: Detector D0 (D1) registers the output events at channel 0 (1). The

detectors are ideal particle counters, meaning that they produce a click for each

incoming particle. Hence, we assume that the detectors have 100% detection

e±ciency. Note that also adaptive threshold detectors can be used (see Sec. 5.1.1)

equally well.3

— Simulation procedure: When a messenger is created we wait until its message has

been processed by one of the detectors before creating the next messenger. This

ensures that there can be no direct communication between the messengers and

that our simulation model (trivially) satis¯es Einsteins criterion of local causality.

We assume that no messengers are lost. Since the detectors are ideal particle

counters the number of clicks generated by the detectors is equal to the number of

messengers created by the source. For ¯xed � ¼ �0 � �1, a simulation run of N

events generates the data set �ð�Þ ¼ fwnjn ¼ 1; . . . ;Ng. Here wn ¼ 0; 1 indicates

which detector ¯red (D0 or D1). Given the data set �ð�Þ, we can easily compute

the number of 0 (1) output events N2 (N3).

5.2.2. Simulation results

In Fig. 4(b), we present a few simulation results for the MZI and compare them to the

quantum theoretical result. According to quantum theory, the amplitudes ðb0; b1Þ in
the output modes 0 and 1 of the MZI are given by85

b0
b1

� �
¼ 1

2

1 i

i 1

� �
ei�0 0

0 ei�1

� �
1 i

i 1

� �
a0
a1

� �
; ð21Þ

where a0 and a1 denote the input amplitudes. For the particular choice a0 ¼ 1 and

a1 ¼ 0, in which case there are no particles entering BS1 via channel 1, it follows from

Eq. (21) that

jb0j2 ¼ sin2
�0 � �1

2

� �
; jb1j2 ¼ cos2

�0 � �1
2

� �
: ð22Þ

For the results presented in Fig. 4(b) we assume that input channel 0 receives

ðcos 0; sin 0Þ with probability one and that input channel 1 receives no events. This
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corresponds to ða0; a1Þ ¼ ðcos 0 þ i sin 0; 0Þ. We use a uniform random number to

determine  0. Note that this random number is used to generate all input events.

The data points are the simulation results for the normalized intensity Ni=N for

i ¼ 0; 2; 3 as a function of � ¼ �0 � �1. Note that in an experimental setting it is

impossible to simultaneously measure (N0=N , N1=N) and (N2=N, N3=N) because

photon detectors operate by absorbing photons. In the event-based simulation there

is no such problem. From Fig. 4(b) it is clear that the event-based processing by the

DLM network reproduces the probability distribution of quantum theory, see

Eq. (22) with jb0j2 (jb1j2) corresponding to N2=N (N3=N).

5.2.3. Why is interference produced without solving a wave problem?

We consider BS2 of the MZI depicted in Fig. 4(a), the BS at which, in a wave picture,

the two beams join to produce interference. The DLM simulating a BS requires two

pieces of information to send out particles such that their distribution matches the

wave-mechanical description of the BS. First, it needs an estimate of the ratio of

particle currents in the input channels 0 and 1 (paths 0 and 1 of the MZI), respec-

tively. Second, it needs to have information about the time of °ight (phase di®erence)

along the two di®erent paths of the MZI. The ¯rst piece of information is provided for

by the internal vector v ¼ ðv0; v1Þ. Through the update rule Eq. (16), for a stationary

sequence of input events, v0 and v1 converge to the average of the number of events

on input channels 0 and 1, respectively. Thus, the ratio of the particles (corre-

sponding to the intensities of the waves) in the two input beams are encoded in the

vector v. Note that this information is accurate only if the sequence of input events is

stationary. After one particle arrived at port 0 and another one arrived at port 1, the

second piece of information is available in the registers R0 and R1. This information

plays the role of the phase of the waves in the two input beams. Hence, all the

information (intensity and phase) is available to compute the probability for sending

out particles. This is done by calculating the numbers gi for i ¼ 0; . . . ; 3 which, in the

stationary state, are identical to the wave amplitudes obtained from the wave theory

of a BS.42

5.3. Wheeler's delayed choice experiment

In a recent experimental realization of Wheeler's delayed-choice experiment by

Jacques et al.76 linearly polarized single photons are sent through a polarizing BS

(PBS) that together with a second, movable, variable output PBS with adjustable

re°ectivity R forms an interferometer (see Fig. 5). In the ¯rst realization9 two 50/50

BSs were used.

Tilting the PBS of the variable output BS induces a time-delay in one of the arms

of the MZI, symbolically represented by the variable phase �1ðxÞ in Fig. 5, and thus

varies the phase shift �ðxÞ ¼ �0 � �1ðxÞ between the two arms of the MZI. A voltage

applied to an electro-optic modulator (EOM) controls the re°ectivity R of the

variable beam splitter BSoutput. If no voltage is applied to the EOM then R ¼ 0.
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Otherwise, R 6¼ 0 (see Eq. (2) in Ref. 76) and the EOM acts as a wave plate which

rotates the polarization of the incoming photon by an angle depending on the value

of R. The voltage applied to the EOM is controlled by a set of pseudo-random

numbers generated by the random number generator RNG. The key point in this

experiment is that the decision to apply a voltage to the EOM is made after the

photon has passed BSinput.

For 0 � R � 0:5 measured values of the interference visibility86V and the path

distinguishability76D, a parameter that quanti¯es thewhich-path information (WPI),

were found to ful¯ll the complementary relation V 2 þD2 � 1.76 For ðV ¼ 0;D ¼ 1Þ
and ðV ¼ 1;D ¼ 0Þ, obtained for R ¼ 0 and R ¼ 0:5, respectively, full and no WPI

was found, associated with particle-like and wave-like behavior, respectively. For 0 �
R � 0:5 partialWPI was obtained while keeping interference with limited visibility.76

Although the detection events (detector \clicks") are the only experimental facts

and logically speaking one cannot say anything about what happens with the pho-

tons traveling through the setup, Jacques et al.9,76 gave the following pictorial de-

scription: Linearly polarized single photons are sent through a 50/50 PBS (BSinput),

spatially separating photons with S polarization (path 0) and P polarization (path 1)

with equal frequencies. After the photon has passed BSinput, but before the photon

enters the variable BSoutput the decision to apply a voltage to the EOM is made. The

PBS of BSoutput merges the paths of the orthogonally polarized photons travelling

paths 0 and 1 of the MZI, but afterwards the photons can still be unambiguously

identi¯ed by their polarizations. If no voltage is applied to the EOM then R ¼ 0 and

the EOM does nothing to the photons. Because the polarization eigenstates of the

Wollaston prism correspond to the P and S polarization of the photons travelling

0D

1D

1

0
PBS PBS 

EOM

HWP WP 

RNG 

P 

S

1( )x

0S

BSinput BSoutput 

( )x

Fig. 5. Schematic diagram of the experimental setup of Wheeler's delayed-choice experiment with single

photons.9,76S: single-photon source; PBS: polarizing beam splitter; HWP: half-wave plate; EOM: electro-
optic modulator; RNG: random number generator; WP: Wollaston prism (= PBS); D0 and D1: detectors;

P, S: polarization state of the photons; �ðxÞ ¼ �0 � �1ðxÞ: phase shift between paths 0 and 1. The diagram

is that of a MZI composed of a 50/50 input BS (BSinput) and a variable output BS (BSoutput) with
adjustable re°ectivity R.
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path 0 and 1 of the MZI, each detection event registered by one of the two detectors

D0 or D1 is associated with a speci¯c path (path 0 or 1, respectively). Both detectors

register an equal amount of detection events, independent of the phase shift �ðxÞ in
the MZI. This experimental setting clearly gives full WPI about the photon within

the interferometer (particle behavior), characterized by D ¼ 1. In this case no in-

terference e®ects are observed and thus V ¼ 0. When a voltage is applied to the

EOM, then R 6¼ 0 and the EOM rotates the polarization of the incoming photon by

an angle depending onR. The Wollaston prism partially recombines the polarization

of the photons that have travelled along di®erent optical paths with phase di®erence

�ðxÞ and interference appears (V 6¼ 0), a result expected for a wave. The WPI is

partially washed out, up to be totally erased when R ¼ 0:5. Hence, the decision to

apply a voltage to the EOM after the photon left BSinput but before it passes BSoutput,

in°uences the behavior of the photon in the past and changes the representation of

the photon from a particle to a wave.9

5.3.1. Event-based model

We construct a model for the messengers representing the linearly polarized photons

and for the processing units representing the optical components in the experimental

setup (see Fig. 5) thereby ful¯lling the requirements that the processing units for

identical optical components should be reusable within the same and within di®erent

experiments and that the network of processing units is a one-to-one image of the

experimental setup. Although, in contrast to the experiments we have considered so

far, in this experiment it is necessary to include the polarization in the model for the

messengers representing the photons. These more general messengers can also be

used in a simulation of the experiments discussed previously. In the event-based

simulation of these experiments the polarization component of the message is simply

not used in the DLMs modeling the optical components of their experimental setup.

In what follows we describe the elements of the model in more detail.

— Source and particles: The polarization can be included in the model for the

messengers representing the photons by adding to the message a second harmonic

oscillator which also vibrates with frequency f. There are many di®erent but

equivalent ways to de¯ne the message. As in Maxwell's and quantum theory, it is

convenient (though) not essential to work with complex valued vectors, that is

with messages represented by two-dimensional unit vectors

u ¼ ðei ð1Þ
sin 
; ei 

ð2Þ
cos 
Þ; ð23Þ

where  ðiÞ ¼ 2�ftþ �i, for i ¼ 1; 2. The angle 
 determines the relative magnitude

of the two components and � ¼ �1 � �2 ¼  ð1Þ �  ð2Þ, denotes the phase di®erence

between the two components. Both 
 and � determine the polarization of the

photon. Hence, the photon can be considered to have a polarization vector

P ¼ ðcos � sin 2
; sin � sin 2
; cos 2
Þ. The third degree of freedom in Eq. (23) is

used to account for the time of °ight of the photon. Within the present model, it is
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thus postulated that the state of the photon is fully determined by the angles  ð1Þ,

 ð2Þ and 
 and by rules (to be speci¯ed), by which these angles change as the

photon travels through the network.

A messenger with message u at time t and position r that travels with velocity

v ¼ c=n, where c denotes the velocity of light and n is the index of refraction of the

material, along the direction q during a time interval t0 � t, changes its message

according to  ðiÞ !  ðiÞ þ � for i ¼ 1; 2, where � ¼ 2�fðt0 � tÞ. This suggests that
we may view the two-component vectors u as the coordinates of two local oscil-

lators, carried along by the messengers and that the messenger encodes its time of

°ight in these two oscillators.

It is evident that the representation used here maps one-to-one to the plane-wave

description of a classical electromagnetic ¯eld,42 except that we assign these

properties to each individual photon, not to a wave. As there is no communica-

tion/interaction between the messengers there can be no wave equation (partial

di®erential equation) that enforces a relation between the messages carried by

di®erent messages.

When the source creates a messenger, its message needs to be initialized. This

means that the three angles  ð1Þ,  ð2Þ and 
 need to be speci¯ed. The speci¯cation

depends on the type of light source that has to be simulated. For a coherent light

source, the three angles are di®erent but the same for all the messengers being

created. Hence, three random numbers are used to specify  ð1Þ,  ð2Þ and 
 for all

messengers.

In this section, we will demonstrate explicitly that in the event-based model (in

general, not only for this experiment) photons always have full WPI even if

interference is observed by giving the messengers one extra label, the path label

having the value 0 or 1. The information contained in this label is not accessible in

the experiment.76 We only use it to track the photons in the network of processing

units. The path label is set in the input BS and remains unchanged until detection.

Therefore, we do not consider this label in the description of the processing units

but take it into account when we detect the photons.

—PBS: A PBS is used to redirect photons depending on their polarization. For

simplicity, we assume that the coordinate system used to de¯ne the incoming

messages coincides with the coordinate system de¯ned by two orthogonal direc-

tions of polarization of the PBS.

In general, a PBS has two input and two output channels labeled by 0 and 1, just

like an ordinary BS (see Sec. 5.2.1). Note that in case of Wheeler's delayed choice

experiment, the ¯rst PBS has only one input channel labeled by k ¼ 0 and

therefore the second PBS has only one output channel labeled by k ¼ 0. In the

event-based model, the PBS has a similar structure as the BS. Therefore, in what

follows we only mention the main ingredients to construct the processing unit for

the PBS. For more details we refer to Sec. 5.2.1.

The PBS has two internal registers Rk;n ¼ ðR0;k;n;R1;k;nÞ with Ri;k;n for i ¼ 0; 1

representing a complex number, and an internal vector vn ¼ ðv0;n; v1;nÞ, where
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vi;n � 0 for i ¼ 0; 1, v0;n þ v1;n ¼ 1 and n denotes the message number. Before

the simulation starts uniform pseudo-random numbers are used to set v0, R0;0

and R1;0.

When the nth messenger carrying the message uk;n arrives at entrance port k ¼ 0

or k ¼ 1 of the PBS, the PBS ¯rst copies the message in the corresponding register

Rk;n and updates its internal vector according to

vn ¼ �vn�1 þ ð1� �Þqn; ð24Þ

where 0 < � < 1 and qn ¼ ð1; 0Þ (qn ¼ ð0; 1Þ) represents the arrival of the nth

messenger on channel k ¼ 0 (k ¼ 1). Note that the DLM has storage for exactly 10

real-valued numbers.

Next the PBS uses the information stored in R0;n, R1;n and vn to calculate four

complex numbers
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and generates a uniform random number rn between zero and one. If jh0;nj2þ
jh2;nj2 > rn, the PBS sends a message

w0;n ¼ ðh0;n;h2;nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh0;nj2 þ jh2;nj2

q
; ð26Þ

through output channel 1. Otherwise it sends a message

w1;n ¼ ðh1;n;h3;nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh1;nj2 þ jh3;nj2

q
; ð27Þ

through output channel 0.

—HWP: A HWP not only changes the polarization of the light but also its phase. In

optics, a HWP is often used as a retarder. In the event-based model, the retar-

dation of the wave corresponds to a change in the time of °ight (and thus the

phase) of the messenger. In contrast to the BS and PBS, a HWP may be simulated

without DLM. The device has only one input and one output port (see Fig. 5). A

HWP transforms the nth input message un into an output message

wn ¼ �iðu0;n cos 2�þ u1;n sin 2�;u0;n sin 2�� u1;n cos 2�Þ; ð28Þ

where � denotes the angle of the optical axis with respect to the laboratory frame.

Hence, in order to change S polarization into P polarization, or vice versa, a HWP
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is used with its optical axis oriented at �=4. This changes the phase of the photon

by ��=2.
—EOM: An EOM rotates the polarization of the photon by an angle depending on

the voltage applied to the modulator. In the laboratory experiment, the EOM is

operated such that when a voltage is applied it acts as a HWP that rotates the

input polarizations by �=4. We use a pseudo-random number to mimic the ex-

perimental procedure to control the EOM, but any other (systematic) sequence to

control the EOM can be used as well.

—WP: The WP is a PBS with one input channel and two output channels and is

simulated as the PBS described earlier.

—Detector: Detector D0 (D1) counts the output events at channel 0 (1) of the

Wollaston prism. The detectors are ideal particle counters, meaning that they

produce a click for each incoming particle. Hence, we assume that the detectors

have 100% detection e±ciency. Note that in this experimental con¯guration

adaptive threshold detectors (see Sec. 5.1.1) can be used equally well because their

detection e±ciency is 100%.3

— Simulation procedure: When a messenger is created we wait until its message has

been processed by one of the detectors before creating the next messenger (Ein-

stein's criterion of local causality). During a simulation run of N events the data

set �ð�ðxÞÞ ¼ fwn; dn; rnjn ¼ 1; . . . ;N ;�ðxÞ ¼ �0 � �1ðxÞg is generated, where

wn ¼ 0; 1 indicates which detector ¯red (D0 or D1), dn ¼ 0; 1 indicates through

which arm of the MZI the messenger (photon) came that generated the detection

event (note that dn is only measured in the simulation, not in the experiment),

and rn is a pseudo-random number that is chosen after the nth message has passed

the ¯rst PBS, determining which voltage is applied to the EOM. Note that in one

run ofN events a choice is made between no voltage (open MZI con¯guration) or a

particular voltage (closed MZI con¯guration) corresponding to a certain re°ec-

tivity R of the output BS (see Eq. (2) in Ref. 76). These choices are made such

that on average the MZI con¯guration is as many times open as it is closed. The

angle �ðxÞ denotes the phase shift between the two interferometer arms. This

phase shift is varied by applying a plane rotation on the phase of the particles

entering channel 0 of the second PBS. This corresponds to tilting the second PBS

in the laboratory experiment.76 For each �ðxÞ and MZI con¯guration the number

of 0 (1) output events N0 (N1) is calculated.

5.3.2. Simulation results

We ¯rst demonstrate that our model yields full WPI of the photons. Figure 6(a)

shows the number of detection events at D0 as a function of � ((� � �ðxÞ for a given

¯xed position of the PBS in BSoutput) for R ¼ 0:5. The events generated by photons

following paths 0 and 1 of the MZI are counted separately. It is clear that the number

of photons that followed paths 0 (squares) and 1 (triangles) is equal and that the

total intensity in output channel 0 (open circles) shows a sinusoidal function of �.
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Hence, although the photons have full WPI for all � they can build an interference

pattern by arriving one-by-one at a detector. Next, we calculate for R ¼ 0:05 and

R ¼ 0 and for each phase shift � and con¯guration (open or closed) of the MZI the

number of events registered by the two detectors behind the output BS, just like in

the experiment. Figures 6(b) and 6(c) depict the normalized detection counts at D0

(open circles) and D1 (closed circles). The simulation data quantitatively agree with

the averages calculated from quantum theory and qualitatively agree with experi-

ment (see Fig. 3 in Ref. 76). Calculation of D as described in Ref. 76 gives the results
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Fig. 6. Event-by-event simulation results of the normalized detector counts for di®erent values ofR ((a)–
(c)) and of V 2, D2 and V 2 þD2 as a function of the EOM voltage (d). (a) Markers give the results for the

normalized intensity N0=N as a function of the phase shift �, N0 denoting the number of events registered

at detector D0. Squares (triangles, hardly visible because they overlap with the squares) represent the
detection events generated by photons which followed path 0 (1). Open circles represent the total number

of detection events. (b)–(c) Open (closed) circles give the results for the normalized intensities N0=N

(N1=N) as a function of the phase shift �,N0 (N1) denoting the number of events registered at detectorD0

(D1), for (b) R ¼ 0:05 (V � 0:45) and (c) R ¼ 0 (V ¼ 0). For each value of �, the number of input events
N ¼ 10 000. The number of detection events per data point is approximately the same as in experiment.

Dashed lines represent the results of quantum theory. (d) Squares, circles and triangles present the

simulation results for V 2, D2 and V 2 þD2, respectively. Lines represent the theoretical expectations

obtained from Eqs. (2), (3) and (7) in Ref. 76 with � ¼ 24	 and V� ¼ 217V.
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for D2 and V 2 shown in Fig. 6(d). Comparison with Fig. 4 in Ref. 76 shows excellent

qualitative agreement.

5.4. Single neutron interferometry

Now that we have demonstrated the event-based simulation approach for the

event-by-event realization of an interference pattern in various single-photon in-

terference experiments, we consider in this section one of the basic experiments in

neutron interferometry, namely a Mach–Zehnder type of interferometer. In neutron

optics there exist various realizations of the Mach–Zehnder type of interferometer,

but we only consider a triple Laue di®raction type silicon perfect single crystal

interferometer. 36,87,88

Figure 7(left) shows the experimental con¯guration. The three crystal plates,

named the splitter, mirror and analyzer plate, are assumed to be identical, which

means that they have the same transmission and re°ection properties.36 The three

crystal plates have to be parallel to high accuracy87 and the whole device needs to be

protected from vibrations in order to observe interference.89 A monoenergetic neu-

tron beam is split by the splitter plate (BS0). Neutrons refracted by beam splitters

BS1 and BS2 (mirror plate) are directed to the analyzer plate (BS3), also acting as a

BS, thereby ¯rst passing through a rotatable-plate phase shifter (e.g. aluminum

foil36). Absorption of neutrons by the aluminum foil is assumed to be negligible.36

Minute rotations of the foil about an axis perpendicular to the base plane of the

0

S

HD

OD
1

O

1 2

3

Fig. 7. Left: Schematic picture of the silicon-perfect-crystal neutron interferometer.87 BS0; . . . ;BS3: BSs;

phase shifter 	: aluminum foil; neutrons that are transmitted by BS1 or BS2 leave the interferometer and
do not contribute to the interference signal. Detectors count the number of neutrons in the O- and

H-beams. Right: Event-based network of the interferometer shown on the left. S: single neutron source;

BS0; . . . ;BS3: BSs; 	0, 	1: phase shifters; DO, DH : detectors counting all neutrons that leave the inter-

ferometer via the O- and H-beams, respectively. In the experiment and in the event-based simulation,
neutrons enter the interferometer via the path labeled by �0 only. The wave amplitudes labeled by �1, �2

and �3 (dotted lines) are used in the quantum theoretical treatment only (see text). Particles leaving the

interferometer via the dashed lines are not counted.
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interferometer induce large variations in the phase di®erence 	 ¼ 	0 � 	1.
36,90 Fi-

nally, the neutrons are detected by one of the two detectors placed in the so-called

H-beam or O-beam. In contrast to single-photon detectors, neutron detectors can

have a very high, almost 100%, e±ciency.36 Neutrons which are not refracted by BS1

and BS2 leave the interferometer and are not counted. The intensities in the O- and

H-beams, obtained by counting individual neutrons for a certain amount of time,

exhibit sinusoidal variations as a function of the phase shift 	, a characteristic of

interference.36

The experiment could be interpreted in di®erent ways. In the quantum-cor-

puscular view a wave packet is associated with each individual neutron. At BS0

the wave packet splits in two components, one directed toward BS1 and other

toward BS2. At BS1 and BS2, these two components each split in two. Two of the

in total four components leave the interferometer and the other two components

are redirected toward each other at BS3 where they recombine. At BS3 the

recombined wave packet splits again in two components. Only one of these two

components triggers a detector. It is a mystery how four components of a wave

packet can conspire to do such things. Assuming that only a neutron, not merely a

part of it can trigger the nuclear reaction that causes the detector to \click", on

elementary logical grounds, the argument that was just given rules out a wave-

packet picture for the individual neutron (invoking the wave function collapse only

adds to the mystery). In the statistical interpretation of quantum mechanics there

is no such con°ict of interpretation.2,66 As long as we consider descriptions of the

statistics of the experiment with many neutrons, we may think of one single

\probability" wave propagating through the interferometer and as the statistical

interpretation of quantum theory is silent about single events, there is no con°ict

with logic either.36

In what follows we demonstrate that as in the case of the single-photon inter-

ference experiments, it is possible to construct a logically consistent, cause-and-e®ect

description in terms of discrete-event, particle-like processes which produce results

that agree with those of neutron interferometry experiments (individual detection

events and an interference pattern after many single detection events have been

collected) and the quantum theory thereof (interference pattern only).

5.4.1. Event-based model

We construct a model for the messengers representing the neutrons and for the

processing units representing the various components in the experimental setup (see

Fig. 7(right)).

— Source and particles: In analogy to the event-based model of a polarized photon

(see Sec. 5.3.1), a neutron is regarded as a messenger carrying a message repre-

sented by the two-dimensional unit vector

u ¼ ðei ð1Þ
cosð�=2Þ; ei ð2Þ

sinð�=2ÞÞ; ð29Þ
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where  ðiÞ ¼ �tþ �i, for i ¼ 1; 2. Here, t speci¯es the time of °ight of the neutron

and � is an angular frequency which is characteristic for a neutron that moves

with a ¯xed velocity v. A monochromatic beam of incident neutrons is assumed to

consist of neutrons that all have the same value of �, that is: they have the same

velocity.36 Both � and � ¼ �1 � �2 ¼  ð1Þ �  ð2Þ determine the magnetic moment

of the neutron, if the neutron is viewed as a tiny classical magnet spinning around

the direction m ¼ ðcos � sin �; sin � sin �; cos �Þ, relative to a ¯xed frame of refer-

ence de¯ned by a magnetic ¯eld. The third degree of freedom in Eq. (29) is used to

account for the time of °ight of the neutron. Within the present model, the state

of the neutron is fully determined by the angles  ð1Þ,  ð2Þ and � and by rules (to

be speci¯ed), by which these angles change as the neutron travels through the

network.

A messenger with message u at time t and position r that travels with velocity v,

along the direction q during a time interval t0 � t, changes its message according

to  ðiÞ !  ðiÞ þ � for i ¼ 1; 2, where � ¼ �ðt0 � tÞ.
In the presence of a magnetic ¯eldB ¼ ðBx;By;BzÞ, the magnetic moment rotates

about the direction of B according to the classical equation of motion. Hence, in a

magnetic ¯eld the message u is changed into the message w ¼ eig
NT��Bu, where g

denotes the neutron g-factor, 
N the nuclear magneton, T the time during which

the neutron experiences the magnetic ¯eld and � denotes the Pauli vector (here we

use the isomorphism between the algebra of Pauli matrices and rotations in three-

dimensional space).

When the source creates a messenger, its message needs to be initialized. This

means that the three angles  ð1Þ,  ð2Þ and � need to be speci¯ed. The speci¯cation

depends on the type of source that has to be simulated. For a fully coherent spin-

polarized beam of neutrons, the three angles are di®erent but the same for all the

messengers being created. Hence, three random numbers are used to specify  ð1Þ,

 ð2Þ and � for all messengers.

—Beam splitters BS0; . . . ;BS3: Exploiting the similarity between the magnetic

moment of the neutron and the polarization of a photon, we use a similar model

for the BS as the one used in Sec. 5.3.1 for polarized photons. The only di®erence is

that we assume that neutrons with spin up and spin down have the same re°ection

and transmission properties, while photons with horizontal and vertical polari-

zation have di®erent re°ection and transmission properties.42 Hence, what needs

to be changed with respect to Sec. 5.3.1 are the complex numbers h0;n; . . . ;h3;n.

For the neutrons, we have
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where the re°ectivity R and transmissivity T ¼ 1�R are real numbers which are

considered to be parameters to be determined from experiment.

—Phase shifter 	0, 	1: In the event-based model, a phase shifter is simulated

without DLM. The device has only one input and one output port and transforms

the nth input message un into an output message

wn ¼ ei	jun; j ¼ 0; 1: ð31Þ

—Detector: Detectors count all incoming particles. Hence, we assume that the

neutron detectors have a detection e±ciency of 100%. This is an idealization

of real neutron detectors which can have a detection e±ciency of 99% and

more.89

5.4.2. Simulation results

In Fig. 8, we present a few simulation results for the neutron MZI and compare them

to the quantum theoretical result ((a)–(c)) and to experiment (d). A quantum the-

oretical treatment of the neutron MZI depicted in Fig. 7 is given in Ref. 91. The

quantum statistics of the neutron interferometry experiment is described in terms of

the state vector

j�i ¼ ð�0";�0#;�1";�1#�2";�2#;�3";�3#ÞT ; ð32Þ

where the components of this vector represent the complex-valued amplitudes of the

wave function. The ¯rst subscript labels the pathway and the second subscript

denotes the direction of the magnetic moment relative to some B-¯eld. The latter is

not relevant for the neutron MZI experiment since the outcome of this experiment

does not depend on the magnetic moment of the neutron. As usual, the state vector

is assumed to be normalized, meaning that h�j�i ¼ 1. In the abstract representa-

tion of the experiment (see Fig. 7(right)) we use the notation �j ¼ ð�j";�j#Þ for

j ¼ 0; . . . ; 3.
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As the state vector propagates through the interferometer, it changes according to

j�0i ¼ t� r
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Fig. 8. (a)–(c) Event-by-event simulation results of the number of neutrons leaving the interferometer via

the H-beam (circles) and O-beam (squares) as a function of the phase di®erence 	 between the two paths
inside the interferometer. For each value of 	, the number of particles generated in the simulation is

N ¼ 100 000. The lines are the predictions of quantum theory. Solid line: pH , see Eq. (34); dotted line: pO, see

Eq. (35). (a)Model parameters:R ¼ 0:2,� ¼ 0:99, �1 ¼ �2 ¼ 0. (b) Sameas (a) except that� ¼ 0:5, reducing

the accuracy and increasing the response time of the DLM. (c) Same as (a) except that to mimic the partial
coherence of the incident neutron beam, the initial message carried by each particle has been modi¯ed by

choosing �1 and �2 uniformly random from the interval ½��=3; �=3
, reducing the amplitude of the inter-

ference. (d) Comparison between the counts of neutrons per second and per square cm in the beams of a

neutron interferometry experiment89 (open symbols) and the number of neutrons per sample leaving the
interferometer in an event-by-event simulation (solid symbols). Circles: counts in the H-beam; squares:

counts in the O-beam. The experimental data has been extracted from Fig. 2 of Ref. 89. The simulation

parametersR ¼ 0:22 and � ¼ 0:5 have been adjusted by hand to obtain a good¯t and the number of incident
particles in the simulation is N ¼ 22 727 per angle 	. Lines through the data points are guides to the eye.
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where t and r denote the common transmission and re°ection coe±cients, respec-

tively, and the subscripts i; j refer to the pair of elements of the eight-dimensional

vector on which the matrix acts. Conservation of probability demands that

jtj2 þ jrj2 ¼ 1.

In neutron interferometry experiments, particles enter the interferometer via the

path corresponding to the amplitude �0 only (see Fig. 7(right)), meaning that

j�i ¼ ð1; 0; 0; 0; 0; 0; 0; 0ÞT . The probabilities to observe a particle leaving the in-

terferometer in the H- and O-beams are then given by

pH ¼ j� 0
2j2 ¼ RðT 2 þR2 � 2RT cos	Þ; ð34Þ

pO ¼ j� 0
3j2 ¼ 2R2T ð1þ cos	Þ; ð35Þ

where 	 ¼ 	0 � 	1 is the relative phase shift, R ¼ jrj2 and T ¼ jtj2 ¼ 1�R. Note

that pH and pO do not depend on the imaginary part of t or r, leaving only one free

model parameter (for instance R). In the case of a 50–50 BS (T ¼ R ¼ 0:5),

Eqs. (34) and (35) reduce to the familiar expressions pH ¼ ð1=2Þsin2	=2 and

pO ¼ ð1=2Þcos2	=2, respectively. The extra factor two is due to the fact that one half

of all incoming neutrons, that is the neutrons that are transmitted by BS1 or BS2

(see Fig. 7), leave the interferometer without being counted.

The simulation results presented in Fig. 8(a) demonstrate that the event-by-event

simulation reproduces the results of quantum theory if � approaches one.3,5,7,8 In-

deed, there is excellent agreement with quantum theory. In this example, the

re°ectivity of the BSs is taken to be R ¼ 0:2. The parameter � which controls the

learning pace of the DLM-based processor can be used to account for imperfections of

the neutron interferometer. This is illustrated in Fig. 8(b) which shows simulation

results for � ¼ 0:5.

The quantum theoretical treatment assumes a fully coherent beam of neutrons.

In the event-based approach, the case of a coherent beam may be simulated by

assuming that the degree of freedom that accounts for the time of °ight of the

neutron takes the same initial value each time a message is created (�1 ¼ �2 ¼ 0).

In the event-based approach, we can mimic a partially coherent beam by simply

adding some noise to the message, that is when a message is created, �i for i ¼ 1; 2

is chosen random in a speci¯ed range. In Fig. 8(c), we present simulation results

for the case that �i is drawn randomly and uniformly from the interval ½��=3; �=3
,
showing that reducing the coherence of the beam reduces the visibility, as expected

on the basis of wave theory.42 Comparing Figs. 8(b) and 8(c), we conclude that

the same reduced visibility can be obtained by either reducing � or by adding

noise to the messages. On the basis of this interferometry experiment alone, it is

di±cult to exclusively attribute the cause of a reduced visibility to one of these

mechanisms.

Conclusive evidence that the event-based model reproduces the results of a single-

neutron interferometry experiment comes from comparing simulation data with

experimental data. In Fig. 8(d), we present such a comparison using experimental
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data extracted from Fig. 2 of Ref. 89. It was not necessary to try to make the best

¯t: the parameters R and � and the o®set of the phase 	 were varied by hand. As

shown in Fig. 8(d), the event-based simulation model reproduces, quantitatively, the

experimental results reported in Fig. 2 of Ref. 89.

6. Entanglement

In quantum theory, entanglement is the property of a state of a two or many-body

quantum system in which the states of the constituting bodies are correlated. The

most prominent example is the singlet state of two spin-12 particles

j�i ¼ 1ffiffiffi
2

p ðj"#i � j#"iÞ; ð36Þ

which cannot be written as a product state. According to quantum theory, if the

singlet state describes the correlation between the spins of the two particles and if we

perform a measurement of both spins along the same direction, we observe that the

particles have opposite but otherwise random values of their spins. Thus, in the

quantum theoretical description, the state of the two spin-12 particles may be cor-

related even though the particles are spatially and temporally separated and do not

necessarily interact. Note however that this is a statistical interpretation which does

not support the assumption that this singlet state is a property of each pair of

particles and does not support the idea that changing the state of one particle has a

causal e®ect on the state of the other.

6.1. EPRB thought experiment

In 1935, Einstein, Podolsky and Rosen (EPR) designed a thought experiment

demonstrating the \incompleteness" of quantum theory.93 The thought experi-

ment involves the measurement of the position and momentum of two particles

which interacted in the past but not at the time of measurement. Since this

experiment is not suited for designing a laboratory experiment, Bohm proposed in

1951 a more realistic experiment which measures the intrinsic angular momentum

of a correlated pair of atoms one-by-one.92 A schematic diagram of the experiment

is shown in Fig. 9. A source emits charge-neutral pairs of particles with opposite

magnetic moments þS and �S. The two particles separate spatially and propa-

gate in free space to an observation station in which they are detected. As the

particle arrives at station i ¼ 1; 2, it passes through a Stern–Gerlach magnet. The

magnetic moment of a particle interacts with the inhomogeneous magnetic ¯eld of

the Stern–Gerlach magnet. The Stern–Gerlach magnet de°ects the particle,

depending on the orientation of the magnet ai and the magnetic moment of the

particle. The Stern–Gerlach magnet divides the beam of particles in two, spatially

well-separated parts. As the particle leaves the Stern–Gerlach magnet, it generates

a signal in one of the two detectors D�;i. The ¯ring of a detector corresponds to a

detection event.
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According to quantum theory of the EPRB thought experiment, the results of

repeated measurements of the system of two spin-12 particles in the spin state j�i ¼
�0j""i þ �1j#"i þ �2j"#i þ �3j##i with

P3
j¼0 j�jj2 ¼ 1 are given by the single-spin

expectation values

Ê1ða1Þ ¼ h�j�1 � a1j�i ¼ h�j�1j�i � a1;
Ê2ða2Þ ¼ h�j�2 � a2j�i ¼ h�j�2j�i � a2

ð37Þ

and the two-particle correlations Êða1; a2Þ ¼ h�j�1 � a1�2 � a2j�i ¼ a1 � h�j�1 � �2j
�i � a2, where a1 and a2 are unit vectors specifying the directions of the analyzers, �i
denote the Pauli vectors describing the spin of the particles i ¼ 1; 2, and hXi ¼ Tr�X

with � being the 4� 4 density matrix describing the two spin-12 particle system. We

have introduced the notation Ê to make a distinction between the quantum theo-

retical results and the results obtained by analysis of data sets from a laboratory

experiment and from an event-based simulation (see Sec. 6.3). Quantum theory of

the EPRB thought experiment assumes that j�i does not depend on a1 or a2.

Therefore, from Eq. (37) it follows immediately that Ê1ða1Þ does not depend on a2
and that Ê2ða2Þ does not depend on a1. Note that this holds for any state j�i. For
later use, it is expedient to introduce the function

S � Sða1; a2; a 0
1; a

0
2Þ ¼ Eða1; a2Þ � Eða1; a 0

2Þ þ Eða 0
1; a2Þ þ Eða 0

1; a
0
2Þ; ð38Þ

for which it can be shown that jSj � 2
ffiffiffi
2

p
, independent of the choice of �.94

Fig. 9. Schematic diagram of the EPRB experiment with magnetic particles.92 The source emits charge-

neutral pairs of particles with opposite magnetic moments þS and �S. One of the particles moves to

station 1 and the other one to station 2. As the particle arrives at station i ¼ 1; 2, it passes through a

Stern–Gerlach magnet which de°ects the particle, depending on the orientation of the magnet ai and the
magnetic moment of the particle. As the particle leaves the Stern–Gerlach magnet, it generates a signal in

one of the two detectorsD�;i. Coincidence logic pairs the detection events of station 1 and station 2 so that

they can be used to compute two-particle correlations.
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The quantum theoretical description of the EPRB experiment assumes that the

state of the two spin-12 particles is described by the singlet state Eq. (36). For the

singlet state, Ê1ða1Þ ¼ Ê2ða2Þ ¼ 0, Êða1; a2Þ ¼ �a1 � a2 and the maximum value of

jSj is 2
ffiffiffi
2

p
. Note that the singlet state is fully characterized by the three quantities

Ê1ða1Þ, Ê2ða2Þ ¼ 0 and Êða1; a2Þ. Hence, in any laboratory experiment, thought

experiment or computer simulation of such an experiment, which has the goal to

measure e®ects of the system being represented by a singlet state, these three

quantities have to be measured and computed.

6.2. Bell and Boole inequalities

Quantum theory yields statistical estimates for Ê1, Ê2 and Ê12 and cannot say

anything about individual measurements.1 Nevertheless, for the singlet state quan-

tum theory predicts that, if measurement of the component �1 � a1 with a1 being a

unit vector, yields the value þ1, then measurement of �2 � a1 must yield the value �1

and vice versa. The fundamental question is how to relate the statistical results of

quantum theory and the individual measurements.

6.2.1. Bell's model and inequality

Bell made the following assumptions in constructing his model and deriving his

inequality95:

(1) Aða1; �Þ ¼ �1 and Bða2; �Þ ¼ �1, where A (B) denotes the result of measuring

�1 � a1 (�2 � a2) and � denotes a variable or a set of variables which only depend

on the preparation (source) and not on the measurement (magnet settings) of the

spin components. Note that this assumption already includes the hypothesis that

the orientation of one magnet does not in°uence the measurement result

obtained with the other magnet (often referred to as the locality condition). In

other words, A (B) does not depend on a2 (a1).

(2) If �ð�Þ is the probability distribution of � (
R
�ð�Þd� ¼ 1) then the expectation

value of the product of the two components �1 � a1 and �2 � a2 can be written as

Pða1; a2Þ ¼
R
d��ð�ÞAða1; �ÞBða2; �Þ. Note that one could also introduce vari-

ables �0 and �00 depending on the characteristics of the instruments on both sides.

Averaging over these instrument dependent variables would result in new vari-

ables having values between �1 and þ1. However, this is only the case if �0 and

�00 are completely independent. For example, if �0 and �00 are sets of variables

including the detection times, used for coincidence measurements in a laboratory

experiment, then assumption 2 does not hold.96

(3) Aða1; �Þ ¼ �Bða1; �Þ so that P ða1; a2Þ ¼ �
R
d��ð�ÞAða1; �ÞAða2; �Þ. This as-

sumption follows from the observation that Pða1; a2Þ ¼
R
d��ð�ÞAða1; �ÞBða2;

�Þ reaches �1 at a1 ¼ a2 only if Aða1; �Þ ¼ �Bða1; �Þ. Note that Pða1; a1Þ ¼ �1

if and only if Aða1; �Þ ¼ �Bða1; �Þ, making both these assumptions equivalent.

Hence, what Bell assumed is that the results of the measurements at both sides of
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the source can be represented by one and the same symbol \A" that depends only

on the respective magnet setting and on �. Moreover, also the measurement

outcomes of an experiment with another setting of (only one of) the magnets, can

be represented by the same symbol \A".

Using the above hypotheses and considering a third unit vector a3, Bell derived the

inequality95

jP ða1; a2Þ � Pða1; a3Þj � 1þ P ða2; a3Þ; ð39Þ

which is violated for certain magnet settings a1; a2; a3 if P ða1; a2Þ is replaced by

Êða1; a2Þ ¼ �a1 � a2, the quantum theoretical two-particle expectation value de-

scribing the averaged two-particle correlations obtained in EPRB experiments. Note

that 1, 2 and 3 are su±cient conditions for the Bell inequality to be obeyed. Hence, if

the Bell inequality is obeyed then one cannot say anything about the validity of the

assumptions, but if it is violated then one can say that at least one of the assumptions

must be false, thereby refuting Bell's model. It is worth mentioning that Bell ana-

lyzed a very restricted class of classical models, namely models which do not account

for (i) the physics of the detection process and/or (ii) the use of time-coincidences to

de¯ne particle pairs (see below). Although the above conclusion is the only logical

conclusion that can be drawn, it is common but erroneous practice to take a violation

of a Bell inequality as a \proof" of the quantum nature of the system under study.

Far reaching conclusions drawn from Bell's results, such as violations of Bell-like

inequalities having implications for action-on-a-distance, locality, realism, etc. have

all been shown to be logical fallacies.29,97–112

6.2.2. Boole inequality for the correlations of two-valued variables

We consider two-valued variables Sðx;nÞ ¼ �1 where x can be considered to rep-

resent the orientations a1; a2; a3 of the magnets in an EPRB experiment and n ¼
1; . . .N simply numbers the measurements in an experimental run. From the vari-

ables Sðx;nÞ with x ¼ a1; a2; a3 we compute the averages Fa1;a2 ¼
PN

n¼1 Sða1;nÞ
Sða2;nÞ=N, Fa1;a3 ¼

PN
n¼1 Sða1;nÞSða3;nÞ=N and Fa2;a3 ¼

PN
n¼1 Sða2;nÞSða3;nÞ=

N. According to Boole113 it is impossible to violate

jFa1;a2 � Fa1;a3 j � 1� Fa2;a3 ; ð40Þ

if there is a one-to-one correspondence between the two-valued variables Sða1;nÞ,
Sða2;nÞ, Sða3;nÞ of the mathematical description and each triple fXða1;nÞ;Xða2;
nÞ;Xða3;nÞg of binary data collected in the experimental run denoted by n. This

one-to-one correspondence is a necessary and su±cient condition for the inequality to

be obeyed. Note that inequalities Eqs. (39) and (40) have the same structure. We

emphasize that it is essential that the correlations Fa1;a2 , Fa1;a3 and Fa2;a3 have been

calculated from one data set that contains triples instead of from three sets in which

the data has been collected in pairs.111
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6.2.3. An inequality within quantum theory

From the algebraic identity ð1� xyÞ2 ¼ ðx� yÞ2 þ ð1� x2Þð1� y2Þ it follows that

jx� yj � 1� xy for real numbers x and y with jxj � 1 and jyj � 1. From this in-

equality, it immediately follows that

jxz� yzj � 1� xy; ð41Þ

for real numbers x, y, z such that jxj � 1, jyj � 1 and jzj � 1.

If we now assume that the two spin-12 particle system is in a product state j�i ¼
j�i1j�i2 with j�ij ¼ �0;jj"ij þ �1;jj"ij with j�0;jj2 þ j�1;jj2 ¼ 1 for j ¼ 1; 2, then

Ê1ða1Þ ¼ h�j�1j�i1 � a1;
Ê2ða2Þ ¼ h�j�2j�i2 � a2;

Êða1; a2Þ ¼ h�j�1j�i1 � a1h�j�2j�i2 � a2 ¼ Ê1ða1ÞÊ2ða2Þ
ð42Þ

and the correlation Êða1; a2Þ � Ê1ða1ÞÊ2ða2Þ ¼ 0. Using Eq. (41) and unit vectors

a1, a2, a3, we obtain a Bell-type inequality

jÊða1; a2Þ � Êða1; a3Þj � 1þ Êða2; a3Þ ð43Þ

and similarly the Bell-CHSH inequality114

jSj ¼ jÊða1; a2Þ � Êða1; a 0
2Þ þ Êða 0

1; a2Þ þ Êða 0
1; a

0
2Þj � 2; ð44Þ

for unit vectors a1, a
0
1, a2 and a 0

2.

Hence, if the state of the two spin-12 particle system is a product state, then the

Bell and Bell-CHSH inequality hold. On the other hand, if the Bell or Bell-CHSH

inequality is violated then the two-particle quantum system is not in a product state.

Note that these logical statements are made entirely within the framework of

quantum theory.

6.2.4. Bell inequality tests

In a typical ideal EPRB experiment three runs are performed in which N detection

events are collected on both sides (referred to by 1 and 2) of the source. The outcomes

of the detection events take the values þ1 or �1 and are represented by the symbol

X. This results in the three data sets

�a;b ¼ fXða;n; 1Þ;Xðb;n; 2Þ jn ¼ 1; . . . ;Ng;
~�a;c ¼ f ~Xða; ~n; 1Þ; ~Xðc; ~n; 2Þ j ~n ¼ 1; . . . ;Ng;

�̂b;c ¼ fX̂ðb; n̂; 1Þ; X̂ðc; n̂; 2Þ j n̂ ¼ 1; . . . ;Ng:

ð45Þ

Note that in real experiments the measurement outcomes are also labeled by the

time of measurement but for simplicity we omit this label here. Using these data sets
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for testing the validity of Bell's inequality Eq. (39) and of the structurally equivalent

Boole inequality Eq. (40), requires making the following assumptions:

(1) The same symbol X can be used for all the data collected in the three runs.

This results in the data set � ¼ fXða;n; 1Þ;Xða; ~n; 1Þ;Xðb;n; 2Þ;Xðb; ~n; 1Þ;
Xðc; ~n; 2Þ; Xðc; n̂; 2Þ jn; ~n; n̂ ¼ 1; . . . ;Ng.

(2) The data can be rearranged such that Xða;n; 1Þ ¼ Xða; ~n; 1Þ, Xðb; n̂; 1Þ ¼
Xðb;n; 1Þ and Xðc; ~n; 2Þ ¼ Xðc; n̂; 2Þ ¼ Xðc;n; 2Þ. This results in the data

set �0 ¼ fXða;n; 1Þ;Xðb;n; 2Þ;Xðb;n; 1Þ;Xðc;n; 2Þ jn ¼ 1; . . . ;Ng, a data set

containing quadruples, not yet triples, as used in the derivation of Bell's in-

equality and as required by Boole for his inequality to be obeyed. Reduction to a

set of triples requires the extra assumption:

(3) Xðb;n; 1Þ ¼ Xðb;n; 2Þ

Since the data in EPRB laboratory experiments are not collected as one set of triples

but as three sets of pairs, in case a violation of Boole's inequality Eq. (40) is found, at

least one of the assumptions 1, 2 or 3 is false. In other words, if the data sets collected

in an EPRB experiment satisfy these three conditions, the one-to-one correspondence

between the two-valued variables in the mathematical description and the observed

two-valued experimental data is guaranteed, and hence Boole's and thus also Bell's

inequality are satis¯ed. If the Bell inequality is violated then at least one of the

su±cient conditions 1, 2 or 3 to derive the Bell inequality is false, but then also at

least one of the assumptions listed above is false.

6.2.5. Summary

One could ask the question how to translate the inequality Eq. (43) together with its

accompanying assumptions, derived within the context of quantum theory, into an

experimental test. The answer is one simply cannot. It is not legitimate to replace the

quantum theoretical expectations that appear in Eq. (43) by certain empirical data,

simply because Eq. (43) has been derived within the mathematical framework of

quantum theory, not for sets of data collected, grouped and characterized by

experimenters. Since the collected data have values þ1 or �1 they can be tested

against the Boole inequalities only and the conclusions that follow from their vio-

lation (see Sec. 6.2.4) have no bearing on the quantum theoretical model, without

making additional assumptions which are not self-evident.

In conclusion, an inequality cannot be blindly applied to any set of experimental

data, a model or theory. The inequality should be derived in the proper context and

conditions and conclusions belonging to the respective derivations cannot simply be

mixed.

6.3. EPRB experiment with single photons

In this experiment, the polarization of each photon plays the role of the spin-12 degree-

of-freedom in Bohm's version92 of the EPR thought experiment.93 Using the fact that
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the two-dimensional vector space with basis vectors fjHi; jV ig, where H and V

denote the horizontal and vertical polarization of the photon, respectively, is iso-

morphic to the vector space with basis vectors fj"i; j#ig of spin-12 particles, we may

use the quantum theory of the latter to describe the EPRB experiments with pho-

tons. The expressions for the single-photon expectation values and the two-photon

correlations are similar to those of the genuine spin-12 particle problem except for

the restriction of a1 and a2 to lie in planes orthogonal to the direction of propagation

of the photons and that the polarization is de¯ned modulo �, not modulo 2� as in

the case of the spin-12 particles. The latter results in a multiplication of the angles

by a factor of two. For simplicity, it is often assumed that ai ¼ ðcos ai; sin ai; 0Þ for
i ¼ 1; 2. For the singlet state we then have Ê1ða1Þ ¼ Ê2ða2Þ ¼ 0 and Êða1; a2Þ ¼
� cos 2ða1 � a2Þ.

We take the EPRB experiment with single photons, carried out by Weihs

et al.25,115 as a concrete example. We ¯rst describe the data collection and analysis

procedure of the experiment and present results demonstrating that the conclusion

that the experimental results can be described by quantum theory is premature. Next

we illustrate how to construct an event-based model of an idealized version of this

EPRB experiment which reproduces the predictions of quantum theory for the single

and two-particle averages for a quantum system of two spin-12 particles in the singlet

state and a product state,3,31 without making reference to concepts of quantum

theory.

—Data collection: Figure 10 shows a schematic diagram of the EPRB experiment

with single photons carried out by Weihs et al.25,115 The source emits pairs of

photons. The photon pair splits and each photon travels in free space to an

observation station, labeled by i ¼ 1 or i ¼ 2, in which it is manipulated and

detected. The two stations are assumed to be identical and are separated spa-

tially and temporally. Hence, the observation at station 1 (2) cannot have a

causal e®ect on the data registered at station 2 (1).25 As the photon arrives at

station i ¼ 1; 2 it ¯rst passes through an EOM which rotates the polarization of

the photon by an angle �i depending on the voltage applied to the EOM.25,115

This voltage is controlled by a binary variable Ai, which is chosen at ran-

dom.25,115 Optionally, a bias voltage is added to the randomly varying volt-

age.25,115 The relation between the voltage applied to the EOM and the resulting

rotation of the polarization is determined experimentally, hence there is some

uncertainty in relating the applied voltage to the rotation angle.25,115 As the

photon leaves the EOM, a PBS directs it to one of the two detectors. The

detector produces a signal xn;i ¼ �1 where the subscript n labels the nth de-

tection event. Each station has its own clock which assigns a time-tag tn;i to each

signal generated by one of the two detectors.25,115 E®ectively, this procedure

discretizes time in intervals, the width of which is determined by the time-tag

resolution � . In the experiment, the time-tag generators are synchronized before

each run.25,115
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The ¯ring of a detector is regarded as an event. At the nth event at station i, the

dichotomic variable An;i, controlling the rotation angle �n;i, the dichotomic

variable xn;i designating which detector ¯res, and the time-tag tn;i of the de-

tection event are written to a ¯le on a hard disk, allowing the data to be analyzed

long after the experiment has terminated.25,115 The set of data collected at

station i may be written as

�i ¼ fxn;i; tn;i; �n;i jn ¼ 1; . . . ;Nig; ð46Þ

where we allow for the possibility that the number of detected events Ni at

stations i ¼ 1; 2 need not (and in practice is not) to be the same and we have

used the rotation angle �n;i instead of the corresponding experimentally relevant

dichotomic variable An;i to facilitate the comparison with the quantum theo-

retical description.

—Data analysis procedure: A laboratory EPRB experiment requires some criterion

to decide which detection events are to be considered as stemming from a single

or two-particle system. In EPRB experiments with photons, this decision is

taken on the basis of coincidence in time.25,116 Here, we adopt the procedure

employed by Weihs et al.25,115 Coincidences are identi¯ed by comparing the

Fig. 10. Schematic diagram of the EPRB experiment with single photons.25,115 The source emits pairs of

photons. The photon pair splits and one of the photons moves to station 1 and the other one to station 2.

As the photon arrives at station i ¼ 1; 2 it ¯rst passes through an EOM which rotates the polarization of
the photon by an angle �i depending on the voltage applied to the EOM. This voltage is controlled by a

binary variable Ai, which is chosen at random. As the photon leaves the EOM, a PBS directs it to one of

the two detectors D�;i. The detector produces a signal xn;i ¼ �1 where the subscript n labels the nth

detection event. Each station has its own clock which assigns a time-tag tn;i to each detection signal. A
data set fxn;i; tn;i;An;i jn ¼ 1; . . . ;Nig is stored on a hard disk for each station. Long after the experiment

is ¯nished both data sets can be analyzed and among other things, two-particle correlations can be

computed.
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time di®erences tn;1 � tm;2 with a window W ,25,115,116 where n ¼ 1; . . . ;N1 and

m ¼ 1; . . . ;N2. By de¯nition, for each pair of rotation angles a1 and a2, the

number of coincidences between detectors Dx;1 (x ¼ �1) at station 1 and detec-

tors Dy;2 (y ¼ �1) at station 2 is given by

Cxy ¼ Cxyða1; a2Þ

¼
XN1

n¼1

XN2

m¼1

�x;xn;1
�y;xm;2

�a1;�n;1�a2;�m;2�ðW � jtn;1 � tm;2jÞ; ð47Þ

where �ðtÞ denotes the unit step function. In Eq. (47), the sum over all events has

to be carried out such that each event (¼ one detected photon) contributes only

once. Clearly, this constraint introduces some ambiguity in the counting proce-

dure as there is a priori, no clear-cut criterion to decide which events at stations

i ¼ 1 and i ¼ 2 should be paired. One obvious criterion might be to choose the

pairs such that Cxy is maximum, but such a criterion renders the data analysis

procedure (not the data production) acausal. It is trivial though to analyze the

data generated by the experiment of Weihs et al. such that conclusions do not

su®er from this artifact.80 In general, the values for the coincidences Cxyða1; a2Þ
depend on the time-tag resolution � and the window W used to identify the

coincidences.

The single-particle averages and correlation between the coincidence counts are

de¯ned by

E1ða1; a2Þ ¼

X
x;y¼�1

xCxyX
x;y¼�1

Cxy

¼ Cþþ � C�� þ Cþ� � C�þ
Cþþ þ C�� þ Cþ� þ C�þ

;

E2ða1; a2Þ ¼

X
x;y¼�1

yCxyX
x;y¼�1

Cxy

¼ Cþþ � C�� � Cþ� þ C�þ
Cþþ þ C�� þ Cþ� þ C�þ

;

Eða1; a2Þ ¼

X
x;y¼�1

xyCxyX
x;y¼�1

Cxy

¼ Cþþ þ C�� � Cþ� � C�þ
Cþþ þ C�� þ Cþ� þ C�þ

;

ð48Þ

where the denominatorNc ¼ Ncða1; a2Þ ¼ Cþþ þ C�� þ Cþ� þ C�þ in Eq. (48) is

the sum of all coincidences.

In practice, coincidences are determined by a four-step procedure115:

(1) Compute a histogram of time-tag di®erences tn;1 � tm;2 of pairs of detection

events.

(2) Determine the time di®erence �G for which this histogram shows a maximum.

(3) Add �G to the time-tag data tn;1, thereby moving the position of the maximum

of the histogram to zero.

(4) Determine the coincidences using the new time-tag di®erences, each photon

contributing to the coincidence count at most once.
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The global o®set, denoted by �G, may be attributed to the loss of synchroni-

zation of the clocks used in the stations 1 and 2.115

Local-realistic treatments of the EPRB experiment assume that the correlation,

as measured in the experiment, is given by117

C ð1Þ
xy ða1; a2Þ ¼

XN
n¼1

�x;xn;1�y;xn;2
�a1;�n;1�a2;�m;2 ; ð49Þ

which is obtained from Eq. (47) (in which each photon contributes only once) by

assuming that N ¼ N1 ¼ N2, pairs are de¯ned by n ¼ m and by taking the limit

W ! 1. However, the working hypothesis that the value of W should not

matter because the time window only serves to identify pairs may not apply to

real experiments. The analysis of the data of the experiment of Weihs et al. shows

that the average time between pairs of photons is of the order of 30
s or more,

much larger than the typical values (of the order of a few nanoseconds) of the

time-window W used in the experiments.115 In other words, in practice, the

identi¯cation of photon pairs does not require the use ofW 's of the order of a few

nanoseconds.

—Data analysis results: Here, we present only a very limited set of results of our

analysis of the experimental data of Weihs et al. This data has already been

analyzed in Refs. 29, 31, 80, 118–124.

In order to test whether the experimental results are compatible with the pre-

dictions of quantum theory for a system of two spin-12 particles we ¯rst check

whether E1ða1; a2Þ is independent of a2 and E2ða1; a2Þ is independent of a1 be-

cause quantum theory predicts that this is the case independent of the state of the

two-particle system (see Eq. (37)). Since we are dealing with real data we need a

criterion to decide whether the data complies with this quantum theoretical

prediction. We consider the data E1ða1; a2Þ (E2ða1; a2Þ) to be in con°ict with the

quantum theoretical prediction if the data show a dependency on a1 (a2) that

exceeds ¯ve times the upper bound 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NCða1; a2Þ

p
to the standard deviation �Nc

.

We analyze a selection of single-particle expectations as a function of W for the

dataset newlongtime2 (see Fig. 11(a)). For small W , the total number of coin-

cidences is too small to yield statistically meaningful results. For W > 20 ns, it is

clear that the curves for E1ða1 ¼ 0; a2 ¼ �=8Þ and E1ða1; a 0
2 ¼ 3�=8Þ (open sym-

bols), and for E2ða1 ¼ 0; a2 ¼ �=8Þ and E2ða 0
1 ¼ �=4 ¼ 0; a2 ¼ �=8Þ (closed

symbols) are not independent of the settings a2 and a1, respectively. The change

of these single-spin averages observed in station 1 (station 2) when the settings are

changed in station 2 (station 1), systematically exceeds ¯ve standard deviations,

clearly violating our criterion for the data to be compatible with the prediction of

quantum theory of the EPRBmodel. According to standard practice of hypothesis

testing, the likelihood that this data set can be described by the quantum theory

of the EPRB experiment should be considered as extremely small. An analysis of

in total 23 data sets produced by the experiment of Weihs et al. shows that none of
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these data sets satis¯es our hypothesis test for being compatible with the pre-

dictions of quantum theory of the EPRB model. Based on the observation of

dependency of E1ða1; a2Þ on a2 and E2ða1; a2Þ on a1 one could conclude that the

data exhibits a spurious kind of \nonlocality" which cannot be described by the

quantum theory of the EPRB experiment. In trying to ¯nd an explanation for this

\nonlocality" we demonstrated elsewhere80,125 that including a model for the

detection e±ciencies of the detectors cannot resolve the con°ict between the ex-

perimental data of Weihs et al. and the quantum theoretical description of the

EPRB experiment.

Although the results for the single particle expectations demonstrate that the

experimental data cannot be described by a quantum theoretical model of two

spin-12 particles (independent of the state which the two photons are in), in what

follows we nevertheless investigate the function S (see Eq. (38)) as a function of

the time window W . Our motivation to do this is two-fold. First, the goal of the

experiment of Weihs et al. was to demonstrate a violation of the Bell-CHSH

inequality. We show that the amount of violation depends on W , a parameter

absent in the data collection procedure but chosen in the data analysis procedure.

Second, in Sec. 6.3.1, we demonstrate that the Bell-CHSH inequality can also be

violated in an event-based model, a classical dynamical system outside the realm

of classical Hamiltonian dynamics, of the type of EPRB experiment performed by

Weihs et al.

Figure 11(b) shows results of the function S as a function of W for the dataset

newlongtime2. For W < 150 ns, the Bell-CHSH inequality jSj � 2 is clearly vio-

lated. For W > 200 ns, much less than the average time (> 30
s) between two

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  50  100  150  200  250  300

S
in

gl
e 

sp
in

 a
ve

ra
ge

s

W (ns)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  50  100  150  200  250  300

|S
|

W (ns)

(b)

Fig. 11. Analysis of the data set newlongtime2. (a) Selected single-particle averages as a function ofW for
�G ¼ 0 and a1 ¼ 0, a 0

1 ¼ �=4, a2 ¼ �=8 and a 0
2 ¼ 3�=8. Open squares: E1ða1; a2Þ; open circles: E1ða1; a 0

2Þ;
solid squares: E2ða1; a2Þ; solid circles: E2ða 0

1; a2Þ. The error bars correspond to 2.5 standard deviations.

(b) jSj ¼ jEða1; a2Þ � Eða1; a 0
2Þ þEða 0

1; a2Þ þEða 0
1; a

0
2Þj as a function of the time window W . The dashed

lines represent the maximum value for a quantum system of two S = 1/2 particles in a separable (product)
state (jSj ¼ 2) and in a singlet state (jSj ¼

ffiffiffi
2

p
=2), respectively. Crosses:�G ¼ 0; solid circles connected by

the solid line: �G ¼ 0:5 ns.
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coincidences, the inequality jSj � 2 is satis¯ed, demonstrating that the \nature"

of the emitted pairs is not an intrinsic property of the pairs themselves but also

depends on the choice of W made by the experimenter. For W > 20 ns, there is no

signi¯cant statistical evidence that the \noise" on the data depends on W but if

the only goal is to maximize jSj, it is expedient to consider W < 20 ns.

In other words, depending on the value of W , chosen by the experimenter when

analyzing the data, the inequality jSj � 2may or may not be violated. Hence, also

the conclusion about the state of the system depends on the value of W . Analysis

of the data of the experiment by Weihs et al. shows that W can be as large as 150

ns for the Bell-CHSH inequality to be violated and in the time-stamping EPRB

experiment of Agüero et al.122jSj � 2 is clearly violated for W < 9
s. Hence, the

use of a time-coincidence window does not create a \loophole". Nevertheless, very

often it is mentioned that these single-photon Bell test experiments su®er from

the fair sampling loophole, being the result of the usage of a time window W to

¯lter out coincident photons or being the result of the usage of ine±cient detec-

tors.120 The detection loophole was ¯rst closed in an experiment with two

entangled trapped ions126 and later in a single-neutron interferometry experi-

ment127 and in an experiment with two entangled qubits.128 However, the latter

three experiments are not Bell test experiments performed according to the CHSH

protocol114 because the two degrees of freedom are not manipulated and measured

independently.

The narrow time window W in the experiment by Weihs et al. mainly acts as a

¯lter that selects pairs of which the individual photons di®er in their time tags by

the order of nanoseconds. The possibility that such a ¯ltering mechanism can lead

to correlations that are often thought to be a characteristic of quantum systems

only was, to our knowledge, ¯rst pointed out by Pearle129 and later by Fine,99

opening the route to a description in terms of locally causal, classical models. A

concrete model of this kind was proposed by Pascazio who showed that his model

approximately reproduces the correlation of the singlet state130 with an accuracy

that seems beyond what is experimentally achievable to date. Larson and Gill

showed that Bell-like inequalities need to be modi¯ed in the case that the coin-

cidences are determined by a time-window ¯lter.96 We found models that exactly

reproduce the results of quantum theory for the singlet and uncorrelated

state.3,26,28,31 Here, we closely follow Refs. 4, 28 and 31.

6.3.1. Event-based simulation

A minimal, discrete-event simulation model of the EPRB experiment by Weihs et al.

(see Fig. 10) requires a speci¯cation of the information carried by the particles, of the

algorithm that simulates the source and the observation stations, and of the pro-

cedure to analyze the data. Since in the description of the experiment the orientation

of the polarization vectors and the orientations of the optical axis of the polarizers

ai ¼ ðcos ai; sin ai; 0Þ for i ¼ 1; 2 is limited to the xy-plane we omit the z-component

in the simulation.
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— Source and particles: Each time, the source emits two particles which carry a

vector un;i ¼ ðcosð
n þ ði� 1Þ�=2Þ; sinð
n þ ði� 1Þ�=2ÞÞ, representing the polar-

ization of the photons. This polarization is completely characterized by the angle


n and the direction i ¼ 1; 2 to which the particle moves. A uniform pseudo-

random number generator is used to pick the angle 0 � 
n < 2�. Clearly, the

source emits two particles with a mutually orthogonal, hence correlated but

otherwise random polarization. Note that for the simulation of this experiment it

is not necessary that the particles carry information about the phase 2�fti;n,

although it would be possible. In this case the time of °ight ti;n is determined by

the time-tag model (see below).

—EOM: The EOM in station i ¼ 1; 2 rotates the polarization of the incoming particle

by an angle �i, that is its polarization angle becomes 
 0n;i � EOMið
n þ ði�
1Þ�=2; �iÞ ¼ 
n þ ði� 1Þ�=2� �i symbolically.Mimicking the experiment ofWeihs

et al. in which �1 can take the values a1; a
0
1 and �2 can take the values a2; a

0
2, we

generate two binary uniform pseudo-random numbers Ai ¼ 0; 1 and use them

to choose the value of the angles �i, that is �1 ¼ a1ð1� A1Þ þ a 0
1A1 and �2 ¼

a2ð1� A2Þ þ a 0
2A2.

—PBS: The simulation model for a PBS is de¯ned by the rule

xn;i ¼
þ1 if rn � cos2
 0n;i;

�1 if rn > cos2
 0n;i;

(
ð50Þ

where 0 < rn < 1 are uniform pseudo-random numbers. It is easy to see that for

¯xed 
 0n;i ¼ 
 0i, this rule generates events such that

lim
N!1

1

N

XN
n¼1

xn;i ¼ cos2�n;i; ð51Þ

with probability one, showing that the distribution of events complies with Malus

law. Note that this model for the PBS does not make use of a DLM and is therefore

much more simple than the event-based model of the PBS described in Sec. 5.3.1.

This simpli¯ed mathematical model su±ces to simulate the EPRB experiment but

cannot be used to simulate other optics experiments (for instance Wheeler's

delayed choice experiment). However, the PBS described in Sec. 5.3.1 can be used

to simulate the EPRB experiment.3

—Time-tag model: As is well-known, as light passes through an EOM (which is

essentially a tunable wave plate), it experiences a retardation depending on its

initial polarization and the rotation by the EOM. However, to our knowledge,

time delays caused by retardation properties of waveplates, being components of

various optical apparatuses, have not yet been explicitly measured for single

photons. Therefore, in the case of single-particle experiments, we hypothesize that

for each particle this delay is represented by the time tag28,31

tn;i ¼ �ð
 0n;iÞr 0n; ð52Þ
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that is, the time tag is distributed uniformly (0 < r 0n < 1 is a uniform pseudo-

random number) over the interval ½0; �ð
 0n;iÞ
. For �ð
 0n;iÞ ¼ T0 sin4 2
 0n;i this

time-tag model, in combination with the model of the PBS, rigorously reproduces

the results of quantum theory of the EPRB experiments in the limit W ! 0.28,31

We therefore adopt the expression �ð
 0n;iÞ ¼ T0 sin4 2
 0n;i leaving only T0 as an

adjustable parameter.

—Detector: The detectors are ideal particle counters, meaning that they produce a

click for each incoming particle. Hence, we assume that the detectors have 100%

detection e±ciency. Note that adaptive threshold detectors can be used (see

Sec. 5.1.1) equally well.3

— Simulation procedure: The simulation algorithm generates the data sets �i,

similar to the ones obtained in the experiment (see Eq. (46)). In the simulation, it

is easy to generate the events such that N1 ¼ N2. We analyze these data sets in

exactly the same manner as the experimental data are analyzed, implying that we

include the post-selection procedure to select photon pairs by a time-coincidence

window W . The latter is crucial for our simulation method to give results that

are very similar to those observed in a laboratory experiment. Although in

the simulation the ratio of detected to emitted photons is equal to one, the

¯nal detection e±ciency is reduced due to the time-coincidence post-selection

procedure.

6.3.2. Simulation results

In Fig. 12(a), we present simulation results for the distribution of time-tag di®er-

ences, as obtained by using time-tag model Eq. (52). The distribution is sharply

peaked and displays long tails, in qualitative agreement with experiment.115 The

single-particle averages E1ða1; a2Þ and E2ða1; a2Þ (results not shown) are zero up to

the usual statistical °uctuations and do not show any statistically relevant depen-

dence on a2 or a1, respectively, in concert with a rigorous probabilistic treatment of

this simulation model.31

Some typical simulation results for the two-particle correlations are depicted in

Fig. 12(b) for W ¼ 50 ns. For this value of the time-window W , the minimum and

maximum value of the two-particle correlations is not �1 and þ1, respectively, as

would be expected from the quantum theoretical description. Moreover, the two-

particle correlations look more like °attened cosine functions. For W ¼ 50 ns we ¯nd

jSj ¼ 2:62 which compares very well with the values between 2 and 2.57 extracted

from di®erent sets of experimental data of Weihs et al. However, for W ¼ 2 ns

(results not shown), the results for the two-particle correlations ¯t very well to the

prediction of quantum theory for the EPRB experiment. From these data, we extract

jSj ¼ 2:82.

Figure 13(a) depicts Sð�Þ for W ¼ 2 ns and shows that the event-based model

reproduces the result predicted by quantum theory for the singlet state (solid line),

namely S ¼ �2
ffiffiffi
2

p
cos �. Note that the comparison between the simulation results
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and quantum theory becomes perfect if more pairs are generated by the source (106

pairs is su±cient for most purposes).

From Fig. 13(b), it follows that a violation of the Bell-CHSH inequality jSj � 2

depends on the choice of W , a parameter which is absent in the quantum theoretical

description of the EPRB thought experiment. There are two limiting cases for which

S become independent of W . If W ! 1, it is impossible to let a digital computer

violate the inequality jSj � 2 without abandoning the rules of Boolean logic or

arithmetic.111 For relatively small W (W < 150 ns), the inequality jSj � 2 may be

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

-300 -200 -100  0  100  200  300

N
c

tn,1-tn,2 (ns)

(a)

-1

-0.5

 0

 0.5

 1

 0  45  90  135  180

E
(θ

)

θ (degrees)

(b)

Fig. 12. Simulation results using the time-tag model Eq. (52) with T0 ¼ 1000 ns. The total number of

pairs generated by the source is 3� 105, roughly the same as in experiment.25 (a) Coincidence count Nc as
a function of the time-tag di®erence tn;1 � tn;2. (b) Two-particle correlations as a function of � for

W ¼ 50 ns. Open squares: Eð�Þ ¼ Eða1 ¼ �; a2 ¼ �=8Þ; open circles: Eð�Þ ¼ Eða 0
1 ¼ �þ �=4; a2 ¼ �=8Þ;

solid squares: Eð�Þ ¼ Eða1 ¼ �; a 0
2 ¼ 3�=8Þ; solid circles: Eð�Þ ¼ Eða 0

1 ¼ �þ �=4; a 0
2 ¼ 3�=8Þ.

-3

-2

-1

 0

 1

 2

 3

 0  45  90  135  180

S

θ (degrees)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  50  100  150  200  250  300

|S
|

W (ns)

(b)
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p
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2

p
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violated. When W ! 0 the discrete-event models which generate the same type of

data as real EPRB experiments, reproduce exactly the single- and two-spin averages

of the singlet state and therefore also violate the inequality jSj � 2. Obviously, as the

discrete-event model does not rely on any concept of quantum theory, a violation of

the inequality jSj � 2 does not say anything about the \quantumness" of the system

under observation.109,111,131 Similarly, a violation of this inequality cannot say

anything about locality and realism.109–111,131 Clearly, the event-based model is

contextual, literally meaning \being dependent of the (experimental) measurement

arrangement". The fact that the event-based model reproduces, for instance, the

correlations of the singlet state without violating Einstein's local causality criterion

suggests that the data fxn;1;xn;2g generated by the event-based model cannot be

represented by a single Kolmogorov probability space. This complies with the idea

that contextual, non-Kolmogorov models can lead to violations of Bell's inequality

without appealing to nonlocality or nonobjectivism.110,132,133

In conclusion, event-based simulation models provide a cause-and-e®ect de-

scription of real EPRB experiments at a level of detail which is not covered by

quantum theory, such as the e®ect of the choice of the time-window. Some of these

simulation models exactly reproduce the results of quantum theory of the EPRB

experiment, indicating that there is no fundamental obstacle for an EPRB experi-

ment to produce data that can be described by quantum theory. However, as we have

shown, it is highly unlikely that quantum theory describes the data of the EPRB

experiment by Weihs et al. This suggests that in the real experiment, there may be

processes at work which have not been identi¯ed yet.

6.3.3. Why is Bell's inequality violated?

In Ref. 31, we have presented a probabilistic description of our simulation model that

(i) rigorously proves that for up to ¯rst-order in W it exactly reproduces the single

particle averages and the two-particle correlations of quantum theory for the system

under consideration; (ii) illustrates how the presence of the time-window W intro-

duces correlations that cannot be described by the original Bell-like \hidden-

variable" models.117 Here, we repeat the discussion presented in Ref. 4.

The time-coincidence post-selection procedure with the time-windowW ¯lters out

the \coincident" photons based on the time-tags tn;i thereby reducing the ¯nal de-

tection e±ciency to less than 100%, although in the simulation a measurement al-

ways returns a þ1 or �1 for both photons in a pair (100% detection e±ciency of the

detectors). Hence, even in case of a perfect detection process the data set that is

¯nally retained consists only of a subset of the entire ensemble of correlated photons

that was emitted by the source, exactly as in the laboratory experiments.

We brie°y elaborate on point (ii) (see Ref. 31 for a more extensive discussion).

Let us assume that there exists a probability P ðx1;x2; t1; t2 j �1; �2Þ to observe the

data fxi; tig conditional on the settings �i at stations i for i ¼ 1; 2. The probability

Pðx1;x2; t1; t2 j �1; �2Þ can always be expressed as an integral over the mutually
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exclusive events 
1, 
2, representing the polarization of the photons

Pðx1;x2; t1; t2 j �1; �2Þ ¼
1

4�2

Z 2�

0

Z 2�

0

P ðx1;x2; t1; t2 j �1; �2; 
1; 
2Þ

� P ð
1; 
2 j �1; �2Þd
1d
2: ð53Þ

We now assume that in the probabilistic version of our simulation model, for each

event, (i) the values of fx1;x2; t1; t2g are independent of each other, (ii) the values of

fx1; t1g (fx2; t2g) are independent of �2 and 
2 (�1 and 
1), (iii) 
1 and 
2 are inde-

pendent of �1 or �2. With these assumptions Eq. (53) becomes

Pðx1;x2; t1; t2 j �1; �2Þ¼
ðiÞ 1

4�2

Z 2�

0

Z 2�

0

Pðx1; t1 j �1; �2; 
1; 
2Þ

� P ðx2; t2 j �1; �2; 
1; 
2ÞP ð
1; 
2 j �1; �2Þd
1d
2

¼ðiiÞ 1

4�2

Z 2�

0

Z 2�

0

Pðx1; t1 j �1; 
1ÞP ðx2; t2 j �2; 
2Þ

� P ð
1; 
2 j �1; �2Þd
1d
2

¼ðiÞ 1

4�2

Z 2�

0

Z 2�

0

Pðx1 j �1; 
1ÞPðt1 j �1; 
1ÞPðx2 j �2; 
2Þ

� P ðt2 j �2; 
2ÞP ð
1; 
2 j �1; �2Þd
1d
2

¼ðiiiÞ 1

4�2

Z 2�

0

Z 2�

0

Pðx1 j �1; 
1ÞPðt1 j �1; 
1ÞPðx2 j �2; 
2Þ

� P ðt2 j �2; 
2ÞP ð
1; 
2Þd
1d
2; ð54Þ

which is the probabilistic description of our simulation model. According to our

simulation model, the probability distributions that describe the polarizers are given

by P ðxij�i; 
iÞ ¼ ½1þ xi cos 2ð�i � 
iÞ
=2 and those for the time-delays ti that are

distributed randomly over the interval ½0; �ð
i þ ði� 1Þ�=2� �iÞ
 are given by

P ðti j �i; 
iÞ ¼ �ðtiÞ�ð�ð
i þ ði� 1Þ�=2� �iÞ � tiÞ=�ð
i þ ði� 1Þ�=2� �iÞ, where �

ð�Þ denotes the unit step function. In the experiment25 and therefore also in our

simulation model, the events are selected using a time window W that the experi-

menters try to make as small as possible.115 Accounting for the time window, that is

multiplying Eq. (54) by a step function and integrating over all t1 and t2, the ex-

pression for the probability for observing the event ðx1;x2Þ reads

Pðx1;x2 j �1; �2Þ ¼
Z 2�

0

Z 2�

0

Pðx1 j �1; 
1ÞPðx2 j �2; 
2Þ�ð
1; 
2 j �1; �2Þd
1d
2; ð55Þ

where the probability density �ð
1; 
2 j �1; �2Þ is given by

�ð
1; 
2 j �1; �2Þ ¼

R þ1
�1
R þ1
�1 P ðt1 j �1; 
1ÞP ðt2 j �2; 
2Þ�
� ðW � jt1 � t2jÞPð
1; 
2Þdt1dt2R 2�

0

R 2�
0

R þ1
�1
R þ1
�1 P ðt1 j �1; 
1ÞP ðt2 j �2; 
2Þ�

� ðW � jt1 � t2jÞPð
1; 
2Þd
1d
2dt1dt2

: ð56Þ
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The simple fact that �ð
1; 
2 j �1; �2Þ 6¼ �ð
1; 
2Þ brings the derivation of the original

Bell (CHSH) inequality to a halt. Indeed, in these derivations it is assumed that the

probability distribution for 
1 and 
2 does not depend on the settings �1 or �2.
2,117

By making explicit use of the time-tag model (see Eq. (52)) it can be shown that31

(i) if we ignore the time-tag information (W > T0), the two-particle probability

takes the form of the hidden variable models considered by Bell,117 and we cannot

reproduce the results of quantum theory,117 (ii) if we focus on the case W ! 0

the single-particle averages are zero and the two-particle average Eð�1; �2Þ ¼
� cos 2ð�1 � �2Þ.

Although our simulation model and its probabilistic version Eq. (54) involve local

processes only, the ¯ltering of the detection events by means of the time-coincidence

window W can produce correlations which violate Bell-type inequalities.96,99,130

Moreover, for W ! 0 our classical, local and causal simulation model can produce

single-particle and two-particle averages that correspond with those of a singlet state

in quantum theory.

6.4. Bell-test experiment with single neutrons

The single-neutron interferometry experiment of Hasegawa et al.127 demonstrates

that the correlation between the spatial and spin degree of freedom of neutrons

violates a Bell-CHSH inequality. In this section, we construct an event-based model

that reproduces this correlation by using detectors that count every neutron and

without using any post-selection procedure. We show that the event-based model

reproduces the exact results of quantum theory if � ! 1� and that by changing � it

can also reproduce the numerical values of the correlations, as measured in experi-

ments.127,134 Note that this Bell-test experiment involves two degrees of freedom of

one particle, while the EPRB thought experiment92 and EPRB experiments with

single photons25,115,118,122 involve two degrees of freedom of two particles. Hence, the

Bell-test experiment with single neutrons is not performed according to the CHSH

protocol114 because the two degrees of freedom of one particle are not manipulated

and measured independently.

Figure 14 shows a schematic picture of the single-neutron interferometry exper-

iment. Incident neutrons pass through a magnetic-prism polarizer (not shown) which

produces two spatially separated beams of neutrons with their magnetic moments

aligned parallel (spin up), respectively anti-parallel (spin down) with respect to the

magnetic axis of the polarizer which is parallel to the guiding ¯eld B. The spin-up

neutrons impinge on a silicon-perfect-crystal interferometer.36 On leaving the ¯rst

beam splitter BS0, neutrons are transmitted or refracted. A mu-metal spin-turner

changes the orientation of the magnetic moment of the neutron from parallel to

perpendicular to the guiding ¯eld B. Hence, the magnetic moment of the neutrons

following pathH (O) is rotated by �=2 (��=2) about the y-axis. Before the two paths
join at the entrance plane of beam splitter BS3, a di®erence between the time of

°ights along the two paths can be manipulated by a phase shifter. The neutrons
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which experience two refraction events when passing through the interferometer

form the O-beam and are analyzed by sending them through a spin rotator and a

Heusler spin analyzer. If necessary, to induce an extra spin rotation of �, a spin

°ipper is placed between the interferometer and the spin rotator. The neutrons that

are selected by the Heusler spin analyzer are counted with a neutron detector (not

shown) that has a very high e±ciency (� 99%). Note that neutrons which are not

refracted by the mirror plate leave the interferometer without being detected.

The single-neutron interferometry experiment yields the count rate Nð�; 	Þ for

the spin-rotation angle � and the di®erence 	 of the phase shifts of the two di®erent

paths in the interferometer.127 The correlation Eð�; 	Þ is de¯ned by127

Eð�; 	Þ ¼ Nð�; 	Þ þNð�þ �; 	þ �Þ �Nð�þ �; 	Þ �Nð�; 	þ �Þ
Nð�; 	Þ þNð�þ �; 	þ �Þ þNð�þ �; 	Þ þNð�; 	þ �Þ : ð57Þ

6.4.1. Event-based model

A minimal, discrete event simulation model of the single-neutron interferometry

experiment requires a speci¯cation of the information carried by the particles, of the

algorithm that simulates the source and the interferometer components (see Fig. 15),

and of the procedure to analyze the data. Various ingredients of the simulation model

have been described in Sec. 5.4.1. In the following, we specify the action of the

remaining components, namely the magnetic-prism polarizer (not shown), the mu-

metal spin-turner, the spin-rotator and spin analyzer.

—Magnetic-prism polarizer: This component takes as input a neutron with an un-

known magnetic moment and produces a neutron with a magnetic moment that is

Fig. 14. Top: Schematic picture of the single-neutron interferometry experiment to test a Bell inequality

violation (see also Fig. 1 in Ref. 127). BS0; . . . ;BS3: beam splitters; phase shifter 	: aluminum foil;

neutrons that are transmitted by BS1 or BS2 leave the interferometer and do not contribute to the
interference signal. Detectors count the number of neutrons in the O- and H-beams.
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either parallel (spin up) or antiparallel (spin down) with respect to the z-axis

(which by de¯nition is parallel to the guiding ¯eld B). In the experiment, only a

neutron with spin up is injected into the interferometer. Therefore, as a matter of

simpli¯cation, we assume that the source S only creates messengers with spin up.

Hence, we assume that � ¼ 0 in Eq. (29).

—Mu-metal spin turner: This component rotates the magnetic moment of a neutron

that follows theH-beam (O-beam) by �=2 (��=2) about the y-axis. The processor
that accomplishes this takes as input the direction of the magnetic moment,

represented by the message u and performs the rotation u ! ei���
y=4u. We em-

phasize that we use Pauli matrices as a convenient tool to express rotations in

three-dimensional space, not because in quantum theory the magnetic moment of

the neutron is represented by spin-12 operators.

— Spin-rotator and spin-°ipper: The spin-rotator rotates the magnetic moment of a

neutron by an angle � about the x-axis. The spin-°ipper is a spin-rotator with

� ¼ �.

— Spin analyzer: This component selects neutrons with spin up, after which they

are counted by a detector. The model of this component projects the magnetic

moment of the particle on the z-axis and sends the particle to the detector if the

projected value exceeds a pseudo-random number r.

0

S

HD

OD1

O

1 2

3

/4yie

/4yie

/2xie
SR 

zBe

mu 
metal

Fig. 15. Event-based network of the experimental setup shown in Fig. 14. S: single neutron source;

BS0; . . . ;BS3: BSs; eþi��y=4, e�i��y=4: spin rotators modeling the action of a mu-metal; 	0, 	1: phase

shifters; SR ei��
x=2: spin rotator;DO, DH : detectors counting all neutrons that leave the interferometer via

theO- andH-beams, respectively. In the experiment and in the event-based simulation, neutrons with spin
up (magnetic moment aligned parallel with respect to the guiding magnetic ¯eld B) enter the interfer-

ometer via the path labeled by �0 only. The wave amplitudes labeled by �1, �2 and �3 (dotted lines) are

used in the quantum theoretical treatment only (see text). Particles leaving the interferometer via the
dashed lines are not counted.
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6.4.2. Simulation results

In Fig. 16(a), we present simulation results for the correlation Eð�; 	Þ, assuming that

the experimental conditions are very close to ideal and compare them to the quantum

theoretical result.

The quantum theoretical description of the experiment127 requires a four-state

system for the path and another two-state system to account for the spin-12 degree-of-

freedom. Thus, the statistics of the experimental data is described by the state vector

Eq. (32). In the experiment,127 the neutrons that enter the interferometer all have

spin up, relative to the direction of the guiding ¯eld B (see Fig. 14). Thus, the state

describing the incident neutrons is j�i ¼ ð1; 0; 0; 0; 0; 0; 0; 0ÞT , omitting irrelevant

phase factors. As the state vector propagates through the interferometer and the

spin-rotator (see Fig. 15), it changes according to

j�0i ¼
cosð�=2Þ i sinð�=2Þ
i sinð�=2Þ cosð�=2Þ

 !
6;7

t� r

�r� t

 !
5;7

t� r

�r� t
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�
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0 ei�1
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where the subscripts i; j refer to the pair of elements of the eight-dimensional vector

on which the matrix acts. Reading backwards, the ¯rst pair of matrices in Eq. (58)
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Fig. 16. (a) Correlation Eð�; 	Þ between spin and path degree of freedom as obtained from an event-

based simulation of the experiment depicted in Fig. 14. Solid surface: Eð�; 	Þ ¼ cosð�þ 	Þ predicted by

quantum theory; circles: simulation data. The lines connecting the markers are guides to the eye only.
Model parameters: re°ection percentage of BS0; . . . ;BS3 is 20% and � ¼ 0:99. For each pair ð�; 	Þ, four
times 10 000 particles were used to determine the four counts Nð�; 	Þ, Nð�þ �; 	þ �Þ, Nð�; 	þ �Þ and
Nð�þ �; 	þ �Þ. (b) Same as ¯gure (a) but � ¼ 0:55.
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represents beam splitter BS0, the second pair the mu-metal (a spin rotation about

the y-axis by �=4 and ��=4, respectively), the third and fourth pair beam splitters

BS1 and BS2, respectively, the ¯fth pair the phase shifters, the sixth pair beam

splitter BS3 and the last matrix represents the spin-rotator SR.

From Eq. (58), it follows that the probability to detect a neutron with spin up in

the O-beam is given by

pOð�; 	Þ ¼ j� 0
3;"j2 ¼ T R2½1þ cosð�þ 	Þ
; ð59Þ

where 	 ¼ 	0 � 	1. From Eq. (59) it follows that the correlation EOð�; 	Þ is given
by127

EOð�; 	Þ �
pOð�; 	Þ þ pOð�þ �; 	þ �Þ � pOð�þ �; 	Þ � pOð�; 	þ �Þ
pOð�; 	Þ þ pOð�þ �; 	þ �Þ þ pOð�þ �; 	Þ þ pOð�; 	þ �Þ

¼ cosð�þ 	Þ; ð60Þ

independent of the re°ectivity R ¼ jrj2 ¼ 1� T of the BSs (which have been as-

sumed to be identical). The fact that EOð�; 	Þ ¼ cosð�þ 	Þ implies that the state of

the neutron cannot be written as a product of the state of the spin and the phase. In

other words, in quantum language, the spin- and phase-degree-of-freedom are

entangled.127,135 Repeating the calculation for the probability of detecting a neutron

in the H-beam shows that EHð�; 	Þ ¼ 0, independent of the direction of the spin. If

the mu-metal would rotate the spin about the x-axis instead of about the y-axis, then

we would ¯nd EOð�; 	Þ ¼ cos� cos	, a typical expression for a quantum system in a

product state.

As shown by the markers in Fig. 16(a), disregarding the small statistical °uc-

tuations, there is close-to-perfect agreement between the event-based simulation

data for nearly ideal experimental conditions (� ¼ 0:99 and R ¼ 0:2) and quantum

theory. However, the laboratory experiment su®ers from unavoidable imperfections,

leading to a reduction and distortion of the interference fringes.127 In the event-based

approach it is trivial to incorporate mechanisms for di®erent sources of imperfections

by modifying or adding update rules. However, to reproduce the available data it is

su±cient to use the parameter � to control the deviation from the quantum theo-

retical result. For instance, for � ¼ 0:55, R ¼ 0:2 the simulation results for Eð�; 	Þ
are shown in Fig. 16(b).

In order to quantify the di®erence between the simulation results, the experi-

mental results and quantum theory it is customary to form the Bell-CHSH

function114,117

S ¼ Sð�; 	; �0; 	0Þ ¼ EOð�; 	Þ þ EOð�; 	0Þ � EOð�0; 	Þ þEOð�0; 	0Þ; ð61Þ

for some set of experimental settings �, 	, �0, and 	0. If the quantum system can be

described by a product state, then jSj � 2. If � ¼ 0, 	 ¼ �=4, �0 ¼ �=2, and

	0 ¼ �=4, then S � Smax ¼ 2
ffiffiffi
2

p
, the maximum value allowed by quantum theory.94

For � ¼ 0:55, R ¼ 0:2 the simulation results yield Smax ¼ 2:05, in excellent

agreement with the value 2:052� 0:010 obtained in experiment.127 For � ¼ 0:67,
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R ¼ 0:2 the simulation yields Smax ¼ 2:30, in excellent agreement with the value

2:291� 0:008 obtained in a similar, more recent experiment.136

In conclusion, since experiment shows that jSj > 2, according to quantum theory

it is impossible to interpret the experimental result in terms of a quantum system in

the product state.2 The system must be described by an entangled state. However,

the event-based simulation which makes use of classical, Einstein-local and causal

event-by-event processes can reproduce all features of this entangled state.

6.4.3. Why are results from quantum theory produced?

From Ref. 3, we know that the event-based model for the BS produces results cor-

responding to those of classical wave or quantum theory when applied in interfer-

ometry experiments. Important for this outcome is that the phase di®erence 	

between the two paths in the interferometer is constant for a relatively large number

of incoming particles. If, for each incoming neutron, we pick the angle 	 randomly

from the same set of predetermined values to produce Fig. 16, an event-based sim-

ulation with � ¼ 0:99 yields (within the usual statistical °uctuations) the correlation

Eð�; 	Þ � ½cosð�þ 	Þ
=2, which does not lead to a violation of the Bell-CHSH in-

equality (results not shown). Thus, if the neutron interferometry experiment could

be repeated with random choices for the phase shifter 	 for each incident neutron,

and the experimental results would show a signi¯cant violation of the Bell-CHSH

inequality, then the event-based model that we have presented here would be

ruled out.

7. Discussion

We have presented an event-based simulation method which allows for a mystery-

free, particle-only description of interference and entanglement phenomena ob-

served in various single-photon experiments and single-neutron interferometry

experiments. The statistical distributions which are observed in these single-par-

ticle experiments and which are usually thought to be of quantum mechanical

origin, are shown to emerge from a time series of discrete events generated by

causal adaptive systems, which in principle could be build using macroscopic

mechanical parts.

As shown in the examples, in the stationary state (after processing many events),

the event-based model reproduces the statistical distributions of quantum theory.

This might raise questions about the e±ciency of the method. Although the event-

based simulation method can be used to simulate a universal quantum computer,21,22

the so-called \quantum speed-up" cannot be obtained. This by itself is no surprise

because the quantum speed-up is the result of a mathematical construct in which

each unitary operation on the state of the quantum computer is counted as one

operation and in which preparation and read-out of the quantum computer are

excluded. Whether or not this mathematical construct is realized in Nature is an

open question.
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We hope that our simulation results will stimulate the design of new dedicated

single-photon and neutron interferometry experiments which help extending and

re¯ning our event-based approach.
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