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Abstract. Can quantum correlations of the singlet state be produced by two separate subsystems which
have interacted in the past but do not communicate? We show that, using a locally causal realist model
of the Einstein-Podolsky-Rosen-Bohm experiment, the answer is affirmative if coincidence in time is used
to decide which detection events are stemming from a single two-particle system, the criterion employed
in all experimental realizations of the Einstein-Podolsky-Rosen-Bohm gedanken experiment.

PACS. 03.65.-w Quantum Mechanics – 02.70.-c Computational Techniques – 03.65.Ud Entanglement and
quantum nonlocality – 03.65.Ta Foundations of quantum mechanics

Many experimental realizations and quantum mechanical
descriptions of the Einstein-Podolsky-Rosen gedanken ex-
periment [1] adopt the model proposed by Bohm [2]. In
this model, sketched in Figure 1, a source emits pairs of
particles with opposite magnetic moments. The two par-
ticles separate spatially and propagate in free space to
an observation station in which they are detected. As the
particle arrives at station i = 1, 2, it passes through a
Stern-Gerlach magnet [3]. The Stern-Gerlach magnet de-
flects the particle, depending on the orientation of the
magnet and the magnetic moment of the particle. The de-
flection defines the spin S = ±1/2 of the particle [3]. As
the particle leaves the Stern-Gerlach magnet, it generates
a signal in one of the two detectors. The firing of a detector
corresponds to a detection event.

The fundamental problem, first posed by EPR [1] in a
different form, is to explain how individual events, regis-
tered by different detectors in such a way that a measure-
ment on one particle does not have a causal effect on the
result of the measurement on another particle (Einstein’s
criterion on local causality), exhibit two-particle quan-
tum correlations that are found in experiments [4–11].
In this paper, we present a solution of this fundamental
problem by constructing a computer simulation model of
the Einstein-Podolsky-Rosen-Bohm (EPRB) experiment
inspired by the experimental realization with photons per-
formed by Weihs et al. [9], an experiment that comes very
close to realizing the EPR gedanken experiment.
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Fig. 1. (Color online) Schematic diagram of an EPRB exper-
iment with magnetic particles [2].

Real experiments require a criterion to decide
which events, registered in stations 1 and 2, corre-
spond to the detection of particles belonging to a pair
(a single two-particle system). In EPRB-experiments this
criterion is the coincidence in time of the events [9,12].
Therefore, in real experiments, each station has its own
clock that assigns a time-tag to each detection event. Ef-
fectively, this procedure discretizes time in intervals of a
width that is determined by the time-tag resolution τ [9].
In this paper, we consider ideal experiments only. There-
fore, we assume that the detectors register all the particles
and that the clocks remain synchronized.
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The set of data collected at station i = 1, 2 during an
experiment with N detection events may be written as

Υi = {xn,i = ±1, tn,i|n = 1, . . . , N} , (1)

where n labels the event, xn,i = ±1 specifies which of
the two detectors fired and tn,i is the time-tag indicating
the time at which a detector fired. In practice, the data
{Υ1, Υ2} may be analyzed for coincidences long after the
data has been collected [9]. Coincidences are identified by
comparing the time differences {tn,1 − tn,2|n = 1, . . . , N}
with a time window W [9]. Thus, for each pair of directions
a1 and a2 of the Stern-Gerlach magnets, the number of
coincidences Cxy ≡ Cxy(a1,a2) between detectors Dx,1

(x = ±1) at station 1 and detectors Dy,2 (y = ±1) at
station 2 is given by

Cxy =
N∑

n=1

δx,xn,1δy,xn,2Θ(W − |tn,1 − tn,2|), (2)

where Θ(t) is the Heaviside step function. We emphasize
that we count all events that, according to the same cri-
terion as the one employed in experiment, correspond to
the detection of pairs. The correlation E(a1,a2) between
the data at station 1 and 2 is defined by

E(a1,a2) =
C++ + C−− − C+− − C−+

C++ + C−− + C+− + C−+
, (3)

where the denominator is the sum of all coincidences.
As is well-known, quantum theory itself has nothing

to say about the individual events (quantum measure-
ment paradox), but it provides a framework to compute
the outcome of many repeated measurements [13,14]. The
quantum mechanical description of the EPRB experiment
assumes that the state of the two spin-1/2 particles is
described by the singlet state |Ψ〉 = (| ↑↓〉 − | ↓↑〉) /

√
2,

with single-spin expectation values 〈Ψ |σ1 ·a1|Ψ〉 = 〈Ψ |σ2 ·
a2|Ψ〉 = 0 , and the two-spin correlation

Ê(a1,a2) = 〈Ψ |σ1 · a1 σ2 · a2|Ψ〉 = −a1 · a2. (4)

Here σi = (σx
i , σy

i , σz
i ) are the Pauli spin-1/2 matrices

describing the spin of particle i = 1, 2 [14]. We introduced
the notation ̂ to distinguish the quantum mechanical
results from the results obtained by analysis of the data
{Υ1, Υ2}. Introducing the function

S(a,b, c,d) = E(a, c)−E(a,d)+E(b, c)+E(b,d), (5)

it can be shown that |Ŝ(a,b, c,d)| ≤ 2
√

2, for any choice
of the state |Ψ〉 [15]. On the other hand, |Ŝ(a,b, c,d)| ≤ 2,
if |Ψ〉 is an uncorrelated state. In other words, if Smax ≡
maxa,b,c,d S(a,b, c,d) > 2 the system is in a correlated
state. Thus, Smax is a convenient number to differentiate
between uncorrelated and correlated states.

Analysis of the experimental data according to the pro-
cedure discussed earlier, demonstrates that E(a1, a2) ≈
Ê(a1,a2) [4–11], leading to the conclusion that in a quan-
tum mechanical description, the state of the two spin-1/2

particles is correlated, even though the particles are spa-
tially and temporally separated and do not interact.

We now propose a computer simulation model that
generates the data {Υ1, Υ2}, see equation (1). The source
emits particles that carry a three-dimensional unit vec-
tor Sn,i = (−1)i+1(cosϕn sin θn, sin ϕn sin θn, cos θn), rep-
resenting the spin of the particles. The spin of a parti-
cle is completely characterized by ϕn and cos θn, which
we assume to be distributed uniformly over the interval
[0, 2π[ and [−1, 1], respectively. The Stern-Gerlach mag-
net projects the spin Sn,i onto its axis of orientation ai and
deflects the particle according to the sign of the projection.
Hence, xn,i = sign(Sn,i · ai). To assign a time-tag to each
event, we assume that as a particle passes through the de-
tection system, it may experience a time delay tn,i which
is distributed uniformly over the interval [t0, t0 + Tn,i].
From equation (2), it follows that only differences of time
delays matter. Hence, we may put t0 = 0. The time-tag
for the event n is then tn,i ∈ [0, Tn,i]. We thus need an
explicit expression for Tn,i. The choice Tn,i = const. is too
simple: in this case we recover the model considered by
Bell, which is known not to reproduce the correct quantum
correlation equation (4) [16]. Assuming that the particle
“knows” the direction of its own spin and the direction of
the Stern-Gerlach magnet only, we can construct a num-
ber that is rotationally invariant: Sn,i · ai. Thus, we may
assume Tn,i = F (Sn,i · ai). As we already used Sn,i · ai to
determine whether the particle generates a +1 or −1 sig-
nal, it is not unreasonable to expect that F is a function
of the outer product of both vectors and hence we choose,
Tn,i = T0|Sn,i × ai|d = T0|1 − (Sn,i · ai)2|d/2. Here, T0 is
the maximum time delay which defines the unit of time
and d is a free parameter in our model. In the sequel, we
express τ , W , tn,i and Tn,i in units of T0.

From the description of the model, it is evident that
the data xn,i and tn,i recorded at station i depend on the
variable Sn,i that the particles shared when they left the
source and on the local variable ai, representing the ori-
entation of the Stern-Gerlach magnet at station i = 1, 2.
Furthermore, it is obvious that xn,i or tn,i do not depend
on a3−i. This implies that for each event, the numbers
xn,i and tn,i do not depend on whatever action is taken at
observation station 3 − i. Furthermore, the event n does
not affect the data recorded for n′ 
= n. Therefore, our
model satisfies Einsteins condition of local causality. It
should be noted that Einstein’s concept of local causal-
ity is different from the condition of local causality intro-
duced by Bell [16]. The former applies to every individual
fact (ontological level), the latter merely to the probability
of a fact to occur (epistemological level) [17]. The model
that we propose does not rely on concepts of probabil-
ity theory: it is a purely ontological model of the EPRB
experiment. The coincidence equation (2), measured ex-
perimentally, cannot be written in terms of a product of
two single-particle probabilities, an essential feature of the
class of models examined by Bell [16]. Summarizing: our
model trivially satisfies Einstein’s criteria of local causal-
ity and realism.
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Fig. 2. (Color online) Graphical representation of the process
of counting pairs. The time interval is divided in bins of size τ ,
represented by the elementary squares. The two parallel, 45◦

lines indicate the time window W , which was chosen to be 2τ
in this example. In the limit N → ∞, the total number of pairs
for fixed ai and (ϕ, θ) is given by the number of whole squares
that fall within the time window and satisfy 1 ≤ ki < Ki

for i = 1, 2. For K1 > K2, all filled squares contribute while
for K′

1 = K2, the dark gray square does not contribute. For
K1 < K2 we interchange labels 1 and 2.

Our model can easily be simulated on the computer,
but for some choices of the parameters it can also be solved
analytically. In the limit N → ∞, equation (3) can be
written as

E(a1,a2) =

∫ π

0

∫ 2π

0 x1x2P (T1, T2, W ) sin θdθdϕ∫ π

0

∫ 2π

0
P (T1, T2, W ) sin θdθdϕ

, (6)

where P (T1, T2, W ) is the density of coincidences for
fixed ai and angles (ϕ, θ) (within a small surface area
sin θdθdϕ), Ti ≡ F (Si · ai), Si = Si(ϕ, θ) and xi =
sign(Si · ai).

An analytical expression for P (T1, T2, W ) can be de-
rived as follows. For a fixed time-tag resolution 0 < τ < 1,
the discretized time-tag for the nth detection event is
given by kn,i =

⌈
tn,iτ

−1
⌉

where 
x� denotes the smallest
integer that is larger or equal to x. The discretized time-
tag kn,i takes integer values between 1 and Ki ≡ 
τ−1Ti�,
where Ki is the maximum, discretized time delay for
a particle carrying angles (ϕ, θ) and passing through a
Stern-Gerlach magnet with orientation ai. If |kn,1−kn,2| <
k =

⌈
τ−1W

⌉
, the two spin-1/2 particles are defined to

form a pair. For fixed ai and (ϕ, θ), we can count the to-
tal number of pairs, or coincidences C, by considering the
graphical representation shown in Figure 2. After a careful

examination of all possibilities, we find that

C ≡ C(K1, K2, k) = (2k0 − 1)k12 − k0(k0 − 1)/2
− max(0, (K12 − 1)max(0, K12)/2)
+ max(0, k − k0)k0

− max(0, kk12 − K1K2), (7)

where k0 = min(K1, K2, k), k12 = min(K1, K2), and
K12 = k12 − max(0, max(K1, K2) − k).

It is clear that the result for the coincidences depends
on the time-tag resolution τ , the time window W and
the number of events N , just as in real experiments [4–
11]. Equation (7) greatly simplifies if we consider the case
k = 1 (W = τ), yielding C(K1, K2, 1) = min(K1, K2) as
is evident by looking at Figure 2. For fixed ai, (ϕ, θ), and
W = τ , the density P (T1, T2, τ) = C(K1, K2, 1)/K1K2

that we register two particles with a time-tag difference
less than τ is bounded by

τ
min(T1 + τ, T2 + τ)
(T1 + τ)(T2 + τ)

< P (T1, T2, τ) ≤ τ
min(T1, T2)

T1T2
.

(8)
For W = τ → 0 and Ti = |Si × ai|3, the integrals in
equation (6) can be evaluated in closed form. Without
loss of generality, we can choose the coordinate system
such that a1 = (1, 0, 0) and a2 = (cos α, sin α, 0). We find

E(a1, a2) = −
∫ 2π

0 y1y2
min(sin2 ϕ,sin2(ϕ−α))

sin2 ϕ sin2(ϕ−α) dϕ∫ 2π

0
min(sin2 ϕ,sin2(ϕ−α))

sin2 ϕ sin2(ϕ−α) dϕ
, (9)

where y1 = sign(cosϕ) and y2 = sign(cos(ϕ − α)). The
integrals in equation (9) can be worked out analytically
by careful examination of many different cases. The result
of this somewhat tedious but straightforward exercise is
E(a1, a2) = −a1 · a2, which is exactly the same as the
quantum mechanical result equation (4).

We now examine the case in which W → ∞. Then,
Θ(W − |tn,1 − tn,2|) = 1 and P (T1, T2, W ) = 1 such that
equation (6) reduces to [16]

E(a1, a2) =
−1
2π

∫ π

0

∫ 2π

0

x1x2sin θdθdϕ = −1 +
2|α|
π

.

(10)
Obviously, equation (10) does not agree with the quantum
theoretical expression equation (4).

For d = 3, the model behavior changes from quan-
tum mechanical correlated (entangled) to uncorrelated as
W increases from zero to infinity. This can also be seen
from Figure 3 which shows Smax as a function of W/τ
for various values of d. Smax is calculated numerically us-
ing equations (6) and (7). Note that the numerical results
agree with the values of Smax that have been obtained an-
alytically for W = τ → 0, d = 0, 3 and W → ∞. For d < 3,
2 ≤ Smax < 2

√
2 for any value of W/τ . Hence, for d < 3

our model cannot produce the correlations of the singlet
state. For d = 3, 2 ≤ Smax ≤ 2

√
2 and our model produces

the correlations of the singlet state if W/τ → 0. For d > 3,
2 ≤ Smax ≤ 4, and for a range of W/τ , Smax > 2

√
2, im-

plying that our model exhibits correlations that cannot be
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Fig. 3. (Color online) Maximum Smax of S(a,b, c, d) as a
function of the time window W relative to the time-tag resolu-
tion τ . Curves from bottom to top: results for d = 0, 1, . . . , 10.
Dashed line: Value of Smax = 2

√
2 if the system is described

by quantum theory.

described by the quantum theory of two spin-1/2 particles,
while it still satisfies Einstein’s criteria for local causilty
and realism.

In summary, starting from the factual observation that
experimental realizations of the EPR gedanken experi-
ment produce the data {Υ1, Υ2} (see Eq. (1)) and that
coincidence in time is a key ingredient for the data analy-
sis, we have constructed a computer simulation model that
satisfies Einstein’s conditions of local causality and real-
ism and exactly reproduces the correlation E(a1, a2) =
−a1 · a2 that is characteristic for a quantum system in
the singlet state. Salient features of this model are that
it generates the data set equation (1) event-by-event, uses
integer arithmetic and elementary mathematics to analyze
the data, does not rely on concepts of probability theory
and quantum theory, and provides a simple, rational and
realistic picture of the mechanism that yields correlations
such as equation (4).

We have shown that whether or not our model
produces quantum correlations depends on the data
analysis procedure that is performed after the data has
been collected: in order to observe the correlations of the
singlet state, the resolution τ of the devices that generate
the time-tags and the time window W should be made as
small as possible. Disregarding the time-tag data (d = 0
or W → ∞) yields results that disagree with quantum
theory but agree with the models considered by Bell [16].
The transition from a correlated (entangled) state to an
uncorrelated state can be easily checked without repeat-
ing the experiments. Indeed, according to our model, the
existence of such a transition can be tested by re-analyzing

available experimental data with different values of the
time window W .

Although quantum theory provides the framework to
compute the frequencies for observing events, it does not
describe individual events themselves [13,14]. Our work
suggests that it is possible to construct event-based sim-
ulation models that satisfies Einstein’s criteria of local
causality and realism and can reproduce the expectation
values calculated by quantum theory [18–22]. It there-
fore opens new routes to ontological descriptions of mi-
croscopic phenomena.
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