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We address the basic meaning of apparent contradictions of quantum theory and probability frame-
works as expressed by Bell’s inequalities. We show that these contradictions have their origin
in the incomplete considerations of the premises of the derivation of the inequalities. A careful
consideration of past work, including that of Boole and Vorob’ev, has lead us to the formula-
tion of extended Boole-Bell inequalities that are binding for both classical and quantum models.
The Einstein-Podolsky-Rosen-Bohm gedanken experiment and a macroscopic quantum coherence
experiment proposed by Leggett and Garg are both shown to obey the extended Boole-Bell inequal-
ities. These examples as well as additional discussions also provide reasons for apparent violations
of these inequalities.
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1. INTRODUCTION

The foundations of quantum theory and quantum infor-
mation theory encompass central questions that connect
the ontology of two valued “elements of reality” to epis-
temic propositions about the possible correlations between
data related to these two valued elements. It is usually
maintained that the concepts of realism, macroscopic real-
ism, Einstein locality and contextuality need to be revised
to explain certain correlations of measurements related to
the work of Einstein, Podolsky and Rosen (EPR).1 In this
paper, we offer explanations of the problems surrounding
models of EPR experiments that do not touch the very
basic concepts of realism and locality but instead find a
satisfactory resolution by a careful amalgamate of the con-
tributions of Boole,2 Vorob’ev3 and Bell.4�5

We start on the purely mathematical side by noting that
the inequalities of Boole2 impose restrictions on the corre-
lations of certain sets of three or more two-valued integer
variables. Then, we show that elementary algebra suffices
to prove inequalities that have the same structure as those
of Boole and impose restrictions on the values of non-
negative functions of triples, quadruples etc. of two-valued

∗Author to whom correspondence should be addressed.

variables. These inequalities are also similar to those of
Bell4�5 but the proof of the former requires fewer assump-
tions. Finally, starting from the commonly accepted pos-
tulates of quantum theory we present a rigorous derivation
of inequalities for quantum theory equivalent to those of
Boole, again by using only linear algebra and the prop-
erties of non negative functions of three or more two-
valued variables. Although the conditions to prove all of
these inequalities are different to those in Boole’s or Bell’s
work, the inequalities themselves have the same structure
as those of Boole and Bell. Because of this similarity
we refer to them as the extended Boole-Bell inequalities
(EBBI).
Our proofs of the EBBI do not require metaphysical

assumptions but include the inequalities of Bell and apply
to quantum theory as well. Should the EBBI be violated,
the logical implication is that one or more of the necessary
conditions to prove these inequalities are not satisfied. As
these conditions do not refer to concepts such as locality
or macroscopic realism, no revision of these concepts is
necessitated by Bell’s work. Furthermore, it follows from
our work that, given Bell’s premises, the Bell inequalities
cannot be violated, not even by influences at a distance.
Many aspects of all of this have been discussed in

the literature by de la Peña et al.,6 Fine,7–11 Pitowsky,12
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Hess and Philipp,13�14 Khrennikov,15–18 and many other
authors.19–36 The number of papers indicating dissent with
Bell and his followers represents a rousing chorus and is
still increasing.
The structure of the paper is as follows. We add two

introductory subsections that explain the main points of
statistics and classical probability theory that need to be
carefully considered when discussing EPR experiments.
In Section 2, we discuss general, conceptual aspects of
the works of Boole,2 Kolmogorov-Vorob’ev3 and Bell4�5

and of their mutual relationships. Section 2 also presents
a derivation of Boole’s conditions of possible experience2

which differs from Boole’s. In Section 3 we demonstrate
by elementary arithmetics that real non negative functions
of dichotomic variables satisfy inequalities that are of the
same form as the Boole inequalities. Section 4 extends
the results of Section 3 to quantum theory. We use only
commonly accepted postulates of quantum theory to prove
that a quantum system describing triples of two-valued
dynamical variables can never violate EBBI. Although the
quantum theoretical description of experiments that mea-
sure two or more observables may involve non-commuting
operators, we show that this does not affect the derivation
and application of EBBI for the type of experiments we
consider in this paper. In Section 5, we consider the inter-
action of the spins of three neutrons with the magnetic
moment of a SQUID (Superconducting Quantum Interfer-
ence Device), a two-state system,37 at given time intervals.
We present a rigorous proof that the quantum theoreti-
cal description of this experiment results in two-particle
averages that cannot violate the EBBI, in contrast to state-
ments made in Ref. [37]. Section 6 discusses two types of
Einstein-Podolsky-Rosen-Bohm (EPRB) experiments. For
the original EPRB experiment,38 we show that the apparent
violation of the EBBI appears as a consequence of substi-
tuting the expression obtained from a quantum model with
two spins into inequalities, the EBBI, that hold for systems
of three spins only. Hence, no conclusions can be drawn
from this violation. We analyze realizable extensions of
the EPRB experiment23 in which the EBBI are satisfied.
In Section 7 we explain why actual experiments frequently
appear to violate Boole(Bell)-type inequalities. We demon-
strate apparent violations for a real-live situation involving
doctors and patients, for a local realist factorizable model
and for laboratory EPRB experiments. A summary and
conclusions are given in Section 8.

1.1. Experiments: Data and Statistics

We consider experiments and observations that can be rep-
resented by two-valued variables S = +1, −1. For exam-
ple, in a coin tossing experiment one may assign S =+1
to the observation of head and S =−1 to the observation
of tails. In a Stern-Gerlach experiment, one may define the
observation of a “click” on one detector as corresponding

to S = +1 and the observation of a “click” on the other
detector as corresponding to S =−1.
During one experimental run, that lasts for a certain

period of time, a large set of data may be gathered. Further
post-measurement data analysis requires that this data set
is labeled accordingly. Data labeling not only involves sim-
ply enumerating the observations but also needs to keep
track of the experimental conditions under which the data
are gathered. The detail of labeling determines the ques-
tions that can be asked, the hypothesis that can be checked,
the correlations that can be calculated and so on. Further-
more, if several runs are made, the labels should include
a unique identification of each run.
Adding labels according to the experimental conditions

requires a careful consideration of the conditions that
might influence the experimental outcomes during the time
period of the measurements. For example, in the coin toss-
ing experiment it might be essential to know how many
coins are tossed during one run, but it might also be impor-
tant to know the location where the various players are
tossing the coins. In this case, the two-valued variables
S acquire three labels, one label numbering the coin, one
label representing the location where the player tosses the
coin and one label simply numbering the tosses. Similarly,
in an EPRB experiment the variables S should carry the
index (1 or 2) of the magnet, an index representing the ori-
entation of the relevant magnetic field, and a time label for
the detection of the event. Note that even if the time label
or any other label as for example a temperature label or
an earth magnetic field label does not seem to be of direct
importance for the experimental outcomes, the time label
might well be essential for the data analysis procedure and
hence the variables S should also be labeled accordingly.
Later, during the post-processing step, one can then test
the hypothesis that one or the other label may be irrele-
vant but the converse is impossible: If we have discarded
(willingly or unwillingly) one or more labels during the
data collection process, these labels cannot be recovered
and we may well draw conclusions that seem paradoxical.
In some experiments, we collect one data element at a

time, in others such as the EPR thought experiment we
collect two. We will consider experiments that produce n-
tuples of two-valued data that are collected by “observers”
who may not be aware of all aspects of certain dynamical
processes that have created the data. It is thus crucial to
employ an exact nomenclature that describes the handling
of data.
The data of n-tuples collected by the observer are there-

fore denoted by

��n� ≡ ��S1��� � � � � Sn��� � �= 1� � � � �M	 (1)

where each Si�� (i = 1� � � � � n� may assume the values
±1 and M denotes the number of n-tuples which may
be regarded as fixed. We limit the discussion to pairs
(n = 2), triples (n = 3) and, occasionally, quadruples
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(n= 4). Data sets of different runs of a given sequence of
experiments are denoted by ���n� ≡ ���S1��� � � � � �Sn��� � �=
1� � � � �M	, and ���n� ≡ �� �S1��� � � � � �Sn��� � � = 1� � � � �M	
for the second, and third run, respectively.
As a first step in the analysis of the data, it is com-

mon practice to extract new sets from the data set ��n�

by grouping the data in different ways. The reduced data
sets that are obtained by removing some elements of each
n-tuple are denoted as



�n�
i ≡ �Si�� � �= 1� � � � �M	



�n�
ij ≡ ��Si��� Sj��� � �= 1� � � � �M	



�n�
ijk ≡ ��Si��� Sj��� Sk��� � �= 1� � � � �M	

� � � (2)

where 1 ≤ i < j < · · · ≤ n. Although the approach taken
in this paper readily extends to n > 3, we confine the dis-
cussion to experiments and their description in terms of
no more than three dichotomic variables, because no addi-
tional insight is gained by considering n > 3.

We illustrate the use of the notation by an example.
Let n= 3, meaning that an experiment produces triples of
data that we collect to form the set ��3�. Suppose that we
want to analyze this data by extracting three data sets of
pairs, namely 


�3�
12 , 


�3�
13 , and 


�3�
23 . Without further knowl-

edge about the conditions under which the experiments are
carried out, we have



�3�
ij �= ��2�� �i� j�= �1�2�� �1�3�� �2�3� (3)

even though the symbols that appear in both sets are the
same. In other words, in general there is no justification,
logical or physical, to assume that the data in 


�3�
ij and ��2�

have the same properties. A similar notation is used to
label averages of (products of) the Si��. For instance, F

�3�
ij

and F �2� are used to denote the average over � of all prod-
ucts of pairs �Si��� Sj��� of the reduced data set 
�3�

ij and
of the set ��2�, respectively. If the number of subscripts is
equal to n we may, without creating ambiguities, omit all
the subscripts. Thus, we have 
�2� ≡ 


�2�
12 , F

�3� ≡ F
�3�
123 , and

so on.
In 1862, Boole showed that whatever process generates

a data set ��3� of triples of variables S =±1, the averages
of all products of pairs in a data set 


�3�
ij with �i� j� =

�1�2�� �1�3�� �2�3� have to satisfy the inequalities2

�F �3�
ij ±F

�3�
ik � ≤ 1±F

�3�
jk

�i� j� k�= �1�2�3�� �3�1�2�� �2�3�1� (4)

where F
�3�
ij denote the averages of all products of pairs

in the set of triples �S1� S2� S3� (see Eq. (11)). To prove
Boole’s inequalities Eq. (4) it is essential that all pairs are
selected from one and the same set of triples.2 If we select
pairs from three different sets of pairs of dichotomic vari-
ables, then Boole’s inequalities Eq. (4) cannot be derived

and may be violated. Indeed, if the original data are col-
lected in three sets of pairs, that is if the data sets are ��2�,
���2�, ���2� instead of ��3�, then the average of products of
pairs in these three sets have to satisfy the less restrictive
inequalities

�F �2�± �F �2�� ≤ 3±� �F �2�� (5)

If we then test the hypothesis that F �2� = F
�3�
12 , �F �2� = F

�3�
13 ,

and �F �2� = F
�3�
23 and find that Boole’s inequalities Eq. (4)

are violated we can only conclude that this hypothesis was
incorrect. Therefore, if the data collected in an experiment
result in pair correlations that violate the Boole inequali-
ties, one or more of the following conditions must be true:
1. The pairs of two-valued data have not been selected
properly, that is the pairs have not been selected from one
data set with triples of two-valued data.
2. There is no one-to-one mapping of the experimental
outcomes to the chosen two-valued variables (see Subsec-
tion 1.2).
3. The labeling of the data is deficient.
4. The data processing procedure violates one or more
rules of integer arithmetic.

No other conclusion can be drawn from the apparent
violation because the only assumptions needed to derive
Boole’s inequalities are that the variables S take values
+1, −1, that integer arithmetic holds and that the pairs of
variables S are selected from a set containing triples of
variables S.
The Boole inequalities Eq. (4) can be used to test the

hypothesis that the process giving rise to the data gener-
ates at least triples. A theoretical model that purports to
describe this process should account for the possibility that
the correspondence between the empirical averages and
the averages calculated from the model may be deficient.
Therefore, it is important to see to what extent one can
generalize Boole’s results to theories within the context of
a theoretical model itself, that is without making specific
hypotheses about the relation between the empirical data
and the model. This is of particular relevance to quantum
theory as the latter, by construction, does not make pre-
dictions about individual events but about averages only.39

1.2. Logical Basis of Probability Frameworks

We introduce here some aspects of the works of Boole,2

Kolmogorov-Vorob’ev,3 Bell4�5 and others with particular
emphasis on the connection of probability models to logi-
cal elements and at the same time to data sets. In particu-
lar we discuss two questions that need to be agreed upon
when dealing with any given set of experimental data in a
probabilistic model for two-valued possible outcomes:
(i) Can the data be brought into a one-to-one corre-
spondence with elements x1, x2, x3� � � �(xi = 0�1) or
S1� S2� S3� � � � (Si = ±1) of a two-valued logic, and do
we thus have a one-to-one correspondence of logical ele-
ments to data (OTOCLED)? This correspondence must be

J. Comput. Theor. Nanosci. 8, 1011–1039, 2011 1013
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based on sense impressions related to the experiments and
measurements.
(ii) Are the data justifiably grouped into n-tuples (n ≥ 2)
corresponding to a specific hypothesis about the correla-
tion of the experimental facts? We call this the correlated
n-tuple hypothesis (CNTUH). For example, if we inves-
tigate the consequences of a particular illness in a large
number of patients and we have the hypothesis that there
are three symptoms to the illness, we assign to each patient
a triple such as �S1 =+1� S2 =−1� S3 =+1� meaning the
patient was positive for symptom 1 and 3 and negative
for 2.

The second question has been addressed in Subsec-
tion 1.1 and we will concentrate mostly on the first.
We investigate the correlations of pair outcomes such as

�S1 =+1� S2 =−1� that are consistent with possible expe-
rience and denote the rules that we obtain for these pair
correlations with Boole as conditions of possible expe-
rience (COPE). Note that this name (chosen by Boole)
is somewhat misleading because the actual premises that
have COPE as a consequence contain the requirement of
a one-to-one correspondence with logical elements as well
as a hypothesis that n-tuples of these elements “belong
together,” for instance because they correspond to symp-
toms of single patients. This belonging together means
that we give meaning or preference to certain sets and
we concatenate these sets by regarding them as a logical
“indivisible whole.” In the case of Boole, the indivisibility
corresponds to the allocation of three symptoms to a single
patient and the corresponding use (see below) of elements
of logic grouped in triples.2 The work of Kolmogorov-
Vorob’ev deals also with such n-tuple groupings by use
of n functions (random variables) on one common prob-
ability space.3 Bell groups data into triples or quadruples
by letting each three or four of his functions representing
the data depend on the identical element of reality �.4�5

Finally, we group below into n-tuples by forming functions
on sets of two, three or four variables.
If COPE show an inconsistency with the data, then we

may conclude either that our view contained in (i) or (ii)
or both must in some way be inadequate or we may go
further and conclude that the concepts that form the basis
for the language of (i) and (ii) such as reality, macroscopic
reality or locality are inadequate. For example, the symp-
toms observed for a given patient might be influenced by
those of others at a distance which may make a different
grouping necessary.
As mentioned, it is one of the main results of this

paper that the inconsistencies of pair correlations of data of
EPRB experiments and other experiments related to quan-
tum mechanics as indicated by certain inequalities such as
those of John Bell5 are the consequences of the inadequa-
cies of (i) and/or (ii) in describing the data instead of inad-
equacies of basic concepts such as realism or macroscopic
realism. Locality considerations also need not be blamed

for the inconsistencies although these have a special stand-
ing: Influences at a distance can never be disproved. We
show our point by the fact that if (ii) is valid for n-tuple
size n≥ 3 then the inequalities of Boole, of Vorob’ev (and
others) and of Bell (that represent non-trivial restrictions
for the pair-correlations) are valid even if we relate the
data only to dichotomic variables and treat them as inde-
pendent of their connections to any logic. This means we
deal then with the axioms of integers to derive the inequal-
ities and can then never find a violation. If a violation is
found then the hypothesis in (ii) that lead to the grouping
in n-tuples must be rejected.
To set the stage we discuss a number of examples.

Boole2 introduced a system of elements of mathemati-
cal logic (Boolean variables) such as true and false that
can be brought into a one-to-one correspondence with two
numbers such as x = 0, 1 or S = ±1 and that follow the
algebra of these integers. This system is then linked to
actual experimental outcomes. In Kolmogorov’s final form
of probability theory one deals in a logical fashion with
the more general elementary events as well as random
variables (that can assume more than two values) and con-
structs a sample space and probability space. The ques-
tion of the truth content of a proposition is thus reduced
to the question of the truth of the axioms of the prob-
ability framework that is used. However, the concept of
“truth” does not deal with the assertions of a purely math-
ematical framework because by the word “true” we invari-
ably designate the one-to-one correspondence with a “real”
observation or measurement of some object. It is therefore
the OTOCLED that takes central stage. However, OTO-
CLED occupies only a paragraph in standard probability
texts (see e.g., Feller40) and we therefore add an instructive
example.
Consider a coin toss that can result in the outcomes

heads and tails. We may link these outcomes to the val-
ues that a two-valued logical variable x may assume. If
we deal with more than one coin, we need to introduce
different variables because it is obvious that different coin
tosses can result in different outcomes while each single
coin can only show one outcome. Furthermore, the coins
need not be fair and may have different bias. Therefore
different logical elements x� x̂� x̃� � � �need to be introduced
to describe the correspondence to the actual experiments.
Things become complicated if these coins contain some
magnetic substance and various magnets with different ori-
entations influence the different experiments. Then we may
need to introduce a corresponding different logical symbol
for different coins as well as for different magnet orienta-
tions e.g., use different subscripts such as a�b� c for differ-
ent magnet orientations. Furthermore there may be some
other influences that co-determine the toss outcomes. For
example we may decide that we perform composite exper-
iments on three coins at a time and we need to include in
addition subtle changes in the earth magnetic field for each
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such three-coin-experiment CNTUH that we label by an
index �= 1�2� � � � �M . Logical elements tracking all these
differences are then denoted by e.g., xa��� x̂b��� x̃c��. Thus,
the one-to-one correspondence of logical elements (or ele-
mentary events etc.) to observations or measurements as
well as ordering into n-tuples requires the knowledge of all
the intricacies of the actual vehicles and apparatuses of the
measurements. Only if we have this knowledge and only
if we can establish a one-to-one correspondence of logical
elements and actual experiments and measurements that
accounts for all important details, can we use the algebra
of the logical variables to describe the experiments.
While this knowledge may be available for idealized

coins, it is in general not available in physical experi-
ments and is not available by definition if we attempt
to describe these experiments by probability theory. This
simply means that our introduction of logical elements in
groups of n-tuples and choice of correspondence to actual
experimental facts represents a “theory” that may or may
not be sufficient to guarantee full consistency. This fact
becomes particularly important when we consider correla-
tions of different experiments or correlations in composite
(more than one coin) experiments. In the above mentioned
experiment that involves a changing magnetic field, the
correlations between all the data will be different if we
use one coin, two coins, three coins or more coins in any
given composite experiment. Generalizations of this sim-
ple example to physical experiments are used below when
discussing Boole’s inequalities and in Section 7.
In general physical experiments (involving e.g.,

observers such as Alice and Bob, a cat, a decaying
radioactive substance and the moon), one usually indicates
possible differences in experimental outcomes by the intro-
duction of Einstein’s space-time. The statement “the moon
shines while Bob cooks” is not precise enough to express
an everlasting truth that can be linked to logical elements
such as the xa�� above. In order to establish a generally
valid correspondence more precise coordinates need to be
given such as “the moon shines while Bob cooks dinner
given space-time coordinates rx� ry� rz� t.” The outcomes
of measurements and observations are then described by
functions of space-time and we need in general to intro-
duce a different logical element corresponding to each dif-
ferent function and to each different space-time label. In
the Kolmogorov framework such expansion of correspon-
dence is established, for example, by the introduction of
a time label of random variables for Stochastic Processes
or for Martingales; generalization to space-time being rel-
atively straightforward.
The question arises naturally if criteria can be estab-

lished on whether the characterization of experiments (per-
formed by using some “theory” related to the data) and the
chosen one-to-one correspondence of these experiments to
logical elements (or Kolmogorov’s elementary events) and

to n-tuples of data (a grouping that co-determines cer-
tain correlations) is sufficiently detailed so that no con-
tradictions between actual experiments and the results of
the used probability theory model can arise. Such cri-
teria were derived in Boole’s work of 1862 in form of
the mentioned inequalities. The combinatorial-topological
content of these inequalities was not explored by Boole
and was derived much later (1962) by Vorob’ev3. Again
a few years later, John Bell4 unveiled the importance of
inequalities that were virtually identical to Boole’s and
based on CNTUH; the difference being the application to
medical statistics by Boole and to quantum mechanics by
Bell. Key for the understanding of Bell’s work is that Bell
does not seem to have been aware of the fact (proven by
Boole in 1862, see Section 2) that the assumption of (ii)
on the basis of dichotomic variables is sufficient to always
validate the known Boole-Bell inequalities independent of
any action or influence at a distance.

2. BOOLE’S CONDITIONS OF POSSIBLE
EXPERIENCE

Here we summarize the work of Boole2 related to his
topic “conditions of possible experience” (COPE). We first
explain the basic facts in terms of Boole’s inequalities for
logical variables. Subsequently we connect these inequali-
ties derived for logical variables to actual experiments and
corresponding data and link these inequalities to the work
of Vorob’ev.3

2.1. Boole Inequalities

Let us consider three Boolean variables x1 = 0�1, x2 =
0�1, and x3 = 0�1 and let us use the short hand notation
x̄i = 1−xi for i= 1�2�3. Obviously the following identity
holds:

1 = x̄1x̄2x̄3+x1x̄2x̄3+ x̄1x2x̄3+x1x2x̄3

+ x̄1x̄2x3+x1x̄2x3+ x̄1x2x3+x1x2x3 (6)

We want to pick pairs of contributions such that each pair
can be written as a product of two Boolean variables only.
A nontrivial condition on the Boolean variables appears
when we group terms such that there is no way that we can
continue adding two contributions and reduce the number
of variables in a term. For instance,

1 = x̄1x̄2x̄3+ �x1x̄2x̄3+x1x̄2x3�+ �x̄1x̄2x3+ x̄1x2x3�

+�x1x2x̄3+ x̄1x2x̄3�+x1x2x3

= x̄1x̄2x̄3+x1x̄2+ x̄1x3+x2x̄3+x1x2x3 (7)

We rewrite Eq. (7) as

x1x̄2+ x̄1x3+x2x̄3 = 1− x̄1x̄2x̄3−x1x2x3 (8)

J. Comput. Theor. Nanosci. 8, 1011–1039, 2011 1015
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and as the two right most terms in Eq. (8) are zero or one,
we have

x1x̄2+ x̄1x3+x2x̄3 ≤ 1 (9)

Similar inequalities can be derived by grouping terms dif-
ferently. Alternatively, if we replace x1 by x̄1 in Eq. (9),
we obtain another inequality. Replacing x2 by x̄2 in these
two inequalities, we obtain two new ones and replacing x3
by x̄3 in the resulting four inequalities, we finally end up
with eight different but very similar inequalities.
It is often convenient to work with variables S = ±1

instead of x = 0�1. Thus, we substitute Si = 2xi − 1 for
i = 1�2�3 in Eq. (9) and obtain

−S1S2−S1S3−S2S3 ≤ 1

+S1S2+S1S3−S2S3 ≤ 1 (10)

where the second inequality has been obtained from the
first by substituting S1 → −S1. Note that we can write
Eq. (10) as �S1S2+S1S3� ≤ 1+S2S3. This inequality is in
essence already a Boole inequality for logical variables.2

2.2. Boole’s Inequalities and Experience

We now turn to the connection of the above results to
actual data and experience. We first note, and this is cru-
cial, that Eqs. (9) and (10) are derived from Eq. (7) that
was based on logical triples while Eqs. (9) and (10) deal
with pair products only. If we wish to make a connection
of the logic to actual data, we then need to establish a
one-to-one correspondence of the logical triples to data-
triples (OTOCLED) and we need to cover the set of all
data by the set of all such triples. If and only if this one-
to-one correspondence is correctly established, does Boole
relate his inequalities to “experience” (see discussions in
Section 7.1). We assume that this has been accomplished
and correspondingly add a new label � to the variables.
Then, using the notation introduced in Section 1, the set of
data is ��3� = ��S1��� S2��� S3�����= 1� � � � �M	 and n= 3.
The averages of Si��Sj�� over all � define the

correlations

F
�3�
ij = 1

M

M∑
�=1

Si��Sj�� = F
�3�
ji (11)

where 1≤ i < j ≤ 3. Note, and this is essential, that F �3�
ij is

calculated from the pairs in the reduced data set 

�3�
ij ,

not from pairs in some data set ��2�.
From inequalities Eq. (10), it then follows directly that

we have

�F �3�
12 ±F

�3�
13 � ≤ 1±F

�3�
23 (12)

where the inequality with the minus signs follows from
the one with the plus signs by letting S3 →−S3. By per-
mutation of the labels 1, 2, and 3 we find

�F �3�
ij ±F

�3�
ik � ≤ 1±F

�3�
jk

�i� j� k�= �1�2�3�� �3�1�2�� �2�3�1� (13)

which are exactly Boole’s conditions of possible experi-
ence in terms of the concurrencies �1+Si��Sj���/2.

2 Note
that Boole wrote his inequalities in terms of frequen-
cies. The inequalities Eq. (13) have the same structure as
the inequalities derived by Bell.4�5 Under the conditions
stated, namely that F �3�

ij is calculated from triples of data
�S1��� S2��� S3���, a violation of Eq. (13) is mathematically
impossible.
It is easy to repeat the steps that lead to Eq. (13) if the

data are grouped into quadruples, that is the data set is
��4� = ��S1��� S2��� S3��� S4��� � � = 1� � � � �M	. Then, the
correlations F �4�

ij satisfy inequalities such as

�F �4�
13 −F

�4�
23 +F

�4�
14 +F

�4�
24 � ≤ 2 (14)

which is reminiscent of the Clauser-Horn-Shimony-Holt
(CHSH) inequality.41 Again, a violation of inequalities
of the type Eq. (14) is logically and mathematically
impossible if F

�4�
ij is calculated from quadruples of data

�S1�� S2�� S3�� S4��. In the remainder of this paper, we
focus on data sets containing at most triples, the extension
to quadruples etc., bringing no new insights.

2.3. A Trap to Avoid I

We emphasize again that it is essential to keep track of the
fact that the correlations F �3�

ij have been calculated from the
data set that contains triples ��3� instead of from another
set ��2� in which the data has been collected in pairs. Of
course, the sorting in triples may not correspond to the
physical process of data creation. In general, there is no
reason to expect that one of the three 


�3�
ij ’s is related to

��2�, even though both sets contain two-valued variables.
It could be, as in the examples of Section 7, that the pair
correlations are different if the measurements are taken in
pairs instead of triples. If the experiment yields the data
sets ��2�, ���2�, and ���2� containing pairs only and if we
have physical differences in the taking of pair-data, then
we may have to replace Eq. (10) by the inequalities

−3≤−S1��S2��− �S1���S2��− �S1�� �S2�� ≤ 3

−3≤+S1��S2��+ �S1���S2��− �S1�� �S2�� ≤ 3 (15)

for �= 1� � � � �M . A more detailed account of these consid-
erations that also relates to the EPR-experiments discussed
in Section 7.
We may now again calculate averages. However, a dif-

ferent inequality applies for the averages of pairs that we
denote by F �2�. From inequality Eq. (15) obtained for data
sets ��2�, ���2� and ���2� composed of pairs, we get

�F �2�± �F �2�� ≤ 3−� �F �2�� (16)

which differs from Bell’s inequality4�5 but is the correct
Boole inequality if pairs instead of triples of dichotomic
variables match the experimental facts.

1016 J. Comput. Theor. Nanosci. 8, 1011–1039, 2011
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2.4. Relation to Kolmogorov’s Probability Theory

Although we do not need to involve references to
Kolmogorov for the reasoning presented here, it may be
useful for some readers to rephrase the above in this lan-
guage. Conditions of the type shown in Eq. (13) have
been studied in great detail by Vorob’ev3 on the basis
of Kolmogorov’s probability theory. Vorob’ev showed in
essence by very general combinatorial and topological
arguments that the non-trivial restriction of Eq. (10) to ≤ 1
instead of the trivial ≤ 3 is a consequence of the cycli-
cal arrangement of the variables that form a closed loop:
the choice of variables in the first two terms determines
the choice for the variables in the third term. Vorob’ev
has proven that any nontrivial restriction expressed by this
type of inequalities is a consequence of a combinatorial-
topological “cyclicity.” For the Kolmogorov definitions
this means that violation of such inequalities implies that
functions corresponding to S1� S2� S3 can not be defined
on one probability space i.e., are not Kolmogorov random
variables. If no cyclicity is involved, the functions can be
defined on a single given Kolmogorov probability space
and no nontrivial restriction is obtained.

2.5. Summary

Using elementary arithmetic only, we have shown that
whatever process generates data sets organized in triples

��3� ≡ ��S1��� S2��� S3��� � �= 1� � � � �M	 (17)

the correlations F
�3�
ij have to satisfy Boole’s inequalities

Eq. (13). If they do not, the procedure to compute F
�3�
ij

from the data ��3� violates a basic rule of integer arith-
metic. If the data are collected and grouped into pairs,
then in general the correlations need only obey inequality
Eq. (16).

3. BOOLE INEQUALITIES FOR
NON NEGATIVE FUNCTIONS

Groups of two-valued data, generated by actual experi-
ments or just by numerical algorithms have to comply with
the inequalities of Section 2, independent of the details of
the physical or arithmetic processes that produce the data.
Assuming that the premises for an inequality to hold are
satisfied, which may include a certain grouping of the data
(CNTUH) or a one-to-one correspondence of two-valued
variables to logical elements (OTOCLED) or both, a vio-
lation of this inequality is then tantamount to a violation
of the rules of integer arithmetic.
We now ask whether there exist inequalities, similar

to those of Section 2, for certain theoretical models that
describe the two-valued variables that result in the data.
As it is not our intention to address this question in its full
generality, we will confine the discussion to models based

on Kolmogorov’s axioms of probability theory and/or on
the axioms of quantum theory.
The Kolmogorov framework features a well-defined

relation between the elements � of the sample space 

(representing the set of all possible outcomes) and the
actual data. In our case of countable 
, Kolmogorov
“events” F are just subsets of 
. The probability that
F will occur in an experiment yet to be performed is
expressed by a real valued positive function on 
, the
probability measure. This allows us to calculate mathe-
matical expectations and correlations related to the data.40

Combined with our focus on dichotomic variables, this
naturally leads us to the study of non negative functions
of n dichotomic variables as presented below.
The quantum theoretical description of a system con-

taining n two-state objects leads one to consider non neg-
ative functions of n dichotomic variables, each variable
corresponding to an eigenvalue of each of the n dynamical
variables. As the detailed relationship between quantum
theory and non negative functions is of no importance for
the remainder of this section, we relegate the derivation of
this relationship to Section 4.
In the remainder of this section, we derive Boole-like

inequalities for real, non negative functions of dichotomic
variables using elementary algebra only.

3.1. Two Variables

It is not difficult to see that any real-valued function f �2� =
f �2��S1� S2� of two dichotomic variables S1 =±1 and S2 =
±1 can be written as

f �2��S1� S2�=
E

�2�
0 +S1E

�2�
1 +S2E

�2�
2 +S1S2E

�2�

4
(18)

where

E
�2�
0 = ∑

S1=±1

∑
S2=±1

f �2��S1� S2� (19)

E
�2�
i = ∑

S1=±1

∑
S2=±1

Sif
�2��S1� S2�� i = 1�2 (20)

E�2� = ∑
S1=±1

∑
S2=±1

S1S2f
�2��S1� S2� (21)

We ask for the constraints on the E’s that appear
in Eq. (18) for non negative function f �2��S1� S2�. If
f �2��S1� S2�≥ 0, from Eq. (19) we have E

�2�
0 ≥ 0 and from

E
�2�
0 +S1S2E

�2� ≥−S1�E
�2�
1 +S1S2E

�2�
2 � (22)

it follows that

E
�2�
0 ±E�2� ≥ �E�2�

1 ±E
�2�
2 � (23)

Writing 4f �2��S1� S2� = E
�2�
0 + S1S2E

�2� + S1�E
�2�
1 +

S1S2E
�2�
2 �, it directly follows that if both E

�2�
0 ≥ 0 and

Eq. (23) hold, then f �2��S1� S2� is non negative. Thus, we
have proven

J. Comput. Theor. Nanosci. 8, 1011–1039, 2011 1017
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Theorem 1. For a real-valued function f �2��S1� S2� that is
a function of two variables S1 =±1 and S2 =±1 to be non
negative, it is necessary and sufficient that the expansion
coefficients defined by Eqs. (19–21) satisfy the inequalities

0 ≤ E
�2�
0 � �E�2�

1 ±E
�2�
2 � ≤ E

�2�
0 ±E�2� (24)

As we deal with functions of two variables only, it is not
a surprise that the inequalities Eq. (24) do not resemble
Boole’s inequalities Eq. (13).

3.2. Three and More Variables

Next, we consider real functions of three dichotomic vari-
ables. As in the case of two dichotomic variables, one
readily verifies that any real function of three dichotomic
variables can be written as

f �3��S1� S2� S3� =
E

�3�
0 +S1E

�3�
1 +S2E

�3�
2 +S3E

�3�
3

8

+ S1S2E
�3�
12 +S1S3E

�3�
13 +S2S3E

�3�
23

8

+ S1S2S3E
�3�

8
(25)

where

E
�3�
0 = ∑

S1=±1

∑
S2=±1

∑
S3=±1

f �3��S1� S2� S3� (26)

E
�3�
i = ∑

S1=±1

∑
S2=±1

∑
S3=±1

Sif
�3��S1� S2� S3� (27)

E
�3�
ij = ∑

S1=±1

∑
S2=±1

∑
S3=±1

SiSjf
�3��S1� S2� S3� (28)

E�3� = ∑
S1=±1

∑
S2=±1

∑
S3=±1

S1S2S3f
�3��S1� S2� S3� (29)

where i = 1�2�3 and �i� j�= �1�2�� �1�3�� �2�3�.
We postulate now that all functions f �n� obey f �n� ≥ 0

for n ≥ 1. In the Kolmogorov framework this would be
a step toward defining a “probability measure” that, of
course, also needs to include the proper definition of alge-
bras that are certain systems F of subsets of the sample
space 
 and that relate to the pair, triple or quadruple mea-
surements. The coefficients E

�3�
ij that appear in Eq. (25)

relate to the pair correlations of the various variables Si
and we ask ourselves the question whether Boole-type
inequalities can be derived for them and what form these
inequalities will assume. We formalize our results by

Theorem 2. The following statements hold:
2.1 If f �3��S1� S2� S3� is a real non negative function of
three variables S1 = ±1, S2 = ±1, and S3 = ±1, the
inequalities

�E�3�
ij ±E

�3�
ik � ≤ E

�3�
0 ±E

�3�
jk (30)

with �i� j� k�= �1�2�3�� �3�1�2�� �2�3�1� hold.

2.2 Given four real numbers satisfying �E�3�
ij � ≤ E

�3�
0 for

�i� j�= �1�2�� �1�3�, �2�3� and satisfying Eq. (30), there
exists a real, non negative function f �3��S1� S2� S3� of three
variables S1 = ±1, S2 = ±1, and S3 = ±1, such that
Eqs. (26) and (28) hold.

Proof: To prove 2.1, we first note that from f �3��S1�
S2� S3� ≥ 0 and Eqs. (25–29), it follows that 0 ≤ E

�3�
0 and

that �E�3�
1 � ≤ E

�3�
0 , �E�3�

2 � ≤ E
�3�
0 , �E�3�

3 � ≤ E
�3�
0 , �E�3�

12 � ≤ E
�3�
0 ,

�E�3�
13 � ≤ E

�3�
0 , �E�3�

23 � ≤ E
�3�
0 , and �E�3�� ≤ E

�3�
0 . We now ask

ourselves whether the non negativity of f �3��S1� S2� S3�
enforces more stringent conditions on the E’s. We follow
the same procedure as the one that lead to Eq. (13). Let
us rewrite Eq. (26) as

E
�3�
0 = f �3��−1�−1�−1�

+ �f �3��+1�−1�−1�+ f �3��+1�−1�+1��

+ �f �3��−1�−1�+1�+ f �3��−1�+1�+1��

+ �f �3��−1�+1�−1�+ f �3��+1�+1�−1��

+ f �3��+1�+1�+1� (31)

From the representation Eq. (25), it follows that

f �3��+1�−1�−1�+ f �3��+1�−1�+1�

= E
�3�
0 +E

�3�
1 −E

�3�
2 −E

�3�
12

4

f �3��−1�−1�+1�+ f �3��−1�+1�+1�

= E
�3�
0 −E

�3�
1 +E

�3�
3 −E

�3�
13

4

f �3��−1�+1�−1�+ f �3��+1�+1�−1�

= E
�3�
0 +E

�3�
2 −E

�3�
3 −E

�3�
23

4
(32)

such that Eq. (31) reduces to

E
�3�
0 − f �3��−1�−1�−1�− f �3��+1�+1�+1�

= 3E�3�
0 −E

�3�
12 −E

�3�
13 −E

�3�
23

4
(33)

Using 0 ≤ f �3��S1� S2� S3�, we find

−3E�3�
0 ≤−E

�3�
12 −E

�3�
13 −E

�3�
23 ≤ E

�3�
0 (34)

where the lower bound trivially follows from �E�3�
12 � ≤ E

�3�
0 ,

�E�3�
13 � ≤ E

�3�
0 and �E�3�

23 � ≤ E
�3�
0 . Using different groupings

in pairs, we find that E�3�
12 , E

�3�
13 , and E

�3�
23 are bounded by

the inequalities

−3E�3�
0 ≤−S1S2E

�3�
12 −S1S3E

�3�
13 −S2S3E

�3�
23 ≤ E

�3�
0 (35)

for any choice of S1 = ±1, S2 = ±1 and S3 = ±1. Alter-
natively, we have the upper bound

�E�3�
ij ±E

�3�
ik � ≤ E

�3�
0 ±E

�3�
jk (36)
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where �i� j� k� = �1�2�3�� �3�1�2�� �2�3�1�. Thus, we
have proven that if a real non negative function f �3� of
three dichotomic variables exists, then the correlations
defined by Eq. (28) satisfy the inequalities Eq. (30). Notice
that Eq. (30) is necessary but not sufficient for f �3� to be
non negative (see also Theorem 4).
To prove 4.2, we assume that we are given four real

numbers that satisfy the inequalities �Aij � ≤ A0 and �Aij ±
Aik� ≤ A0±Ajk for �i� j� k� = �1�2�3�� �3�1�2�, �2�3�1�.
Then, the function g�3� defined by

g�3��S1� S2� S3�=
A0+S1S2A12+S1S3A13+S2S3A23

8
(37)

is non negative, as is easily seen by writing
8g�3��S1� S2� S3�= S1S2�A12+S2S3A13�+A0+S2S3A23 and
using the assumptions that �Aij � ≤ A0 for �i� j� =
�1�2�� �1�3�, �2�3� and �Aij ± Aik� ≤ A0 ± Ajk for
�i� j� k� = �1�2�3�� �3�1�2�� �2�3�1�. Setting A0 = E

�3�
0

and Aij = E
�3�
ij for �i� j� = �1�2�� �1�3�� �2�3� completes

the proof.
Although the context and derivation of Eq. (36) is dif-

ferent from that used by Boole2 or Bell,4�5 the similarity
to the Boole and Bell inequalities is striking. Therefore,
we will refer to inequalities that have the same structure as
Eq. (30) as the extended Boole-Bell inequalities (EBBI).
As in Section 2, the above theorem readily generalizes

to functions of n > 3 dichotomic variables. This general-
ization brings no new insight.

3.3. A Trap to Avoid II

In analogy with Section 2.3, we now consider the case
of three different real non negative functions of two
dichotomic variables. In the spirit of the notation intro-
duced earlier, we denote these functions by f �2�, �f �2�, and
�f �2�, respectively. The corresponding averages are then
E

�2�
0 � � � � �E�2�, �E�2�

0 � � � � � �E�2�, and �E�2�
0 � � � � � �E�2�, respec-

tively. In view of the complete arbitrariness of f �2�, �f �2�,
and �f �2�, there is no reason to expect that one can
derive inequalities such as �E�2�± �E�2�� ≤E

�2�
0 ± �E�2�. Some

inequalities can be obtained by introducing additional
assumptions about the three functions. For instance, we
have

Theorem 3. Let f �2��S� S ′�, �f �2��S� S ′�, �f �2��S� S ′� be real
non negative functions of two variables S =±1 and S ′ =
±1 defined by

f �2��S� S ′�= E
�2�
0 +SS ′E�2�

4

�f �2��S� S ′�= E
�2�
0 +SS ′ �E�2�

4

�f �2��S� S ′�= E
�2�
0 +SS ′ �E�2�

4
(38)

then the inequalities

�E�2�± �E�2�� ≤ 3E�2�
0 −� �E�2��

�E�2�± �E�2�� ≤ 3E�2�
0 −� �E�2��

� �E�2�± �E�2�� ≤ 3E�2�
0 −�E�2�� (39)

are satisfied.

Proof: The assumption that f �2�, �f �2�, and �f �2� are non
negative obviously implies that 0 ≤ E

�2�
0 , �E�2�� ≤ E

�2�
0 ,

� �E�2�� ≤ E
�2�
0 , and � �E�2�� ≤ E

�2�
0 . We consider

f �2��S1�−S2�+ �f �2��−S1� S3�+ �f �2��S2�−S3�

= 3E�2�
0 −S1S2E

�2�−S1S3 �E�2�−S2S3 �E�2�

4
(40)

from which it immediately follows that

S1S2E
�2�+S1S3 �E�2�+S2S3 �E�2� ≤ 3E�2�

0 (41)

On the other hand, from �E�2�� ≤ E
�2�
0 , � �E�2�� ≤ E

�2�
0 and

� �E�2�� ≤ E
�2�
0 it follows that

−3E�2�
0 ≤ S1S2E

�2�+S1S3 �E�2�+S2S3 �E�2� ≤ 3E�2�
0 (42)

Hence Eq. (41) does not impose additional constraints on
the E�2�’s that appear in Eq. (38). Rewriting Eq. (42) as

−S1S2�E
�2�+S2S3 �E�2��≤ 3E�2�

0 +S2S3 �E�2�

S1S2�E
�2�+S2S3 �E�2��≤ 3E�2�

0 −S2S3 �E�2� (43)

and noting that S1 = ±1, S2 = ±1, and S3 = ±1 are arbi-
trary and that it is allowed to interchange the roles of E�2�,
�E�2�, and �E�2�, Eq. (39) follows. Obviously, the inequali-
ties Eq. (39) are the equivalent of the inequalities Eq. (16)
that we obtained in the case that data sets consist of pairs,
collected by performing three different experiments.
In view of the logical contradictions that may follow

from the assumption that correlations of two dichotomic
variables computed from data sets of pairs satisfy the same
inequalities as the same correlations computed from data
sets of triples, it is of interest to inquire under what cir-
cumstances we can derive inequalities akin to Eq. (30),
with the superscript �3� replaced by the superscript �2�.
We have

Theorem 4. The following statements hold:
4.1 The three functions of two dichotomic variables
defined by

f �2��S1� S2� =
E

�2�
0 +S1E

�2�
1 +S2E

�2�
2 +S1S2E

�2�

4

�f �2��S1� S3� =
�E�2�
0 +S1 �E�2�

1 +S3 �E�2�
2 +S1S3 �E�2�

4

�f �2��S2� S3� =
�E�2�
0 +S2 �E�2�

1 +S3 �E�2�
2 +S2S3 �E�2�

4
(44)
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can be derived from a common function f �3��S1� S2� S3� of
three dichotomic variables by using

f �2��S1� S2� =
∑

S3=±1

f �3��S1� S2� S3�

�f �2��S1� S3� =
∑

S2=±1

f �3��S1� S2� S3�

�f �2��S2� S3� =
∑

S1=±1

f �3��S1� S2� S3� (45)

if and only if E�2�
0 = �E�2�

0 = �E�2�
0 , E�2�

1 = �E�2�
1 , E�2�

2 = �E�2�
1 ,

and �E�2�
2 = �E�2�

2 .
4.2 If (1) the three functions Eq. (44) are non negative
and (2) E�2�

0 = �E�2�
0 = �E�2�

0 , E�2�
1 = �E�2�

1 , E�2�
2 = �E�2�

1 , �E�2�
2 =

�E�2�
2 , and (3) the inequalities

�E�2�± �E�2�� ≤ E
�2�
0 ± �E�2�

�E�2�± �E�2�� ≤ E
�2�
0 ± �E�2�

� �E�2�± �E�2�� ≤ E
�2�
0 ±E�2� (46)

are satisfied, then there exists a non negative
f �3��S1� S2� S3� such that Eq. (45) holds.10

4.3 If f �3��S1� S2� S3� is a real non negative function of
three dichotomic variables, the three functions defined by
Eq. (45) are non negative and the coefficients E�2�, �E�2�

and �E�2� that appear in their representation Eq. (44) sat-
isfy the inequalities Eq. (46).10

Proof: Statement 4.1 directly follows from representa-
tion Eq. (25), the fact that changing the order of summa-
tions does not change the result, and the definitions E�3�

0 ≡
E

�2�
0 = �E�2�

0 = �E�2�
0 , E�3�

1 ≡ E
�2�
1 = �E�2�

1 , E�3�
2 ≡ E

�2�
2 = �E�2�

1 ,
E

�3�
3 ≡ �E�2�

2 = �E�2�
2 , E�3�

12 ≡E�2�, E�3�
13 ≡ �E�2�, and E

�3�
23 ≡ �E�2�.

To prove 4.2, we write Eq. (25) as

f �3��S1� S2� S3� =
E

�3�
0 +S1E

�3�
1 +S2E

�3�
2 +S1S2E

�3�
12

16

+ E
�3�
0 +S1E

�3�
1 +S3E

�3�
3 +S1S3E

�3�
13

16

+ E
�3�
0 +S2E

�3�
2 +S3E

�3�
3 +S2S3E

�3�
23

16

+ S1S2E
�3�
12 +S1S3E

�3�
13 +S2S3E

�3�
23 −E

�3�
0

16

+ S1S2S3E
�3�

8

= f �2��S1� S2�+ �f �2��S1� S3�+ �f �2��S2� S3�

4

+ S1S2E
�3�
12 +S1S3E

�3�
13 +S2S3E

�3�
23 −E

�3�
0

16

+ S1S2S3E
�3�

8
(47)

which is non negative if

�E�3�� ≤ 2f �2��S1� S2�+2 �f �2��S1� S3�+2 �f �2��S2� S3�

+ S1S2E
�3�
12 +S1S3E

�3�
13 +S2S3E

�3�
23 −E

�3�
0

2
(48)

for any choice of S1 = ±1, S2 = ±1, and S3 = ±1. By
assumption, the first three terms in Eq. (48) are non neg-
ative. Hence, Eq. (48) always admits a solution for E�3� if
S1S2E

�3�
12 +S1S3E

�3�
13 +S2S3E

�3�
23 ≥E

�3�
0 which by comparison

with Eq. (35) is nothing but the condition that the EBBI
Eq. (30) are satisfied. Using 4.1 we conclude that, under
the conditions stated, the EBBI Eq. (30) can be written
as Eq. (46). Finally, to prove 4.3, we note that if expres-
sion Eq. (25) is non negative, the three functions defined
by Eq. (45), being the sum of non negative numbers, are
non negative and the proof follows if we put E�2�

0 = E
�3�
0 ,

E�2� = E
�3�
12 , �E�2� = E

�3�
13 , and �E�2� = E

�3�
23 .

Theorem 4 shows that if and only if the non
negative two-variable functions f �2��S1� S2�, �f �2��S1� S3�,�f �2��S2� S3� can be derived from a common real non neg-
ative function f �3��S1� S2� S3� of three variables S1 =±1,
S2 = ±1, and S3 = ±1, only then it is allowed to
replace in the EBBI Eq. (30) the superscripts �3� by the
superscripts �2�.

3.4. Relation to Bell’s Work

For completeness, we show now that the above construc-
tion includes the restricted class of probabilistic models
that form the core of Bell’s work.5 To see the mathemati-
cal structure of these models, it suffices to use elementary
arithmetic and a minimum of probability concepts. Bell5

considers models that are defined by

f �2��S� S ′� =
∫
f �1��S � �� �f �1��S ′ � ������d�

= 1+SE
�2�
1 +S ′E�2�

2 +SS ′E�2�

4

�f �2��S� S ′� =
∫
f �1��S � �� �f �1��S ′ � ������d�

= 1+S �E�2�
1 +S ′ �E�2�

2 +SS ′ �E�2�

4

�f �2��S� S ′� =
∫ �f �1��S � �� �f �1��S ′ � ������d�

= 1+S �E�2�
1 +S ′ �E�2�

2 +SS ′ �E�2�

4
(49)

where

f �1��S � �� = 1+SE�1����

2

�f �1��S � �� = 1+S �E�1����

2

�f �1��S � �� = 1+S �E�1����

2
(50)
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���� is a probability density, a non negative function,
which satisfies

∫
����d�= 1 and 0≤ f �1��S � ��≤ 1, 0≤

�f �1��S ���≤ 1, and 0≤ �f �1��S ���≤ 1. The variable � is an
element of a set that does not need to be defined in detail.
In Bell’s work, � represents the “elements of reality” cor-
responding to entangled pairs as introduced by EPR but
this representation is of no concern for what follows in
this section. From Eqs. (49)–(50) it follows that

E
�2�
1 = �E�2�

1 =
∫
E�1��������d�

E
�2�
2 = �E�2�

1 =
∫

�E�1��������d�

�E�2�
2 = �E�2�

2 =
∫

�E�1��������d�

E�2� =
∫
E�1���� �E�1��������d� (51)

and so on. Obviously, f �2��S� S ′�, �f �2��S� S ′�, and
�f �2��S� S ′�, being sums of non negative contributions, are
probabilities too.
We can easily construct the non negative function f �3�

from which all three functions Eq. (49) can be derived by
summing over the appropriate variable, namely9

f �3��S� S ′� S ′′� =
∫
f �1��S � �� �f �1��S ′ � �� �f �1��S ′′ � ������d�

= E
�3�
0 +SE

�3�
1 +S ′E�3�

2 +S ′′E�3�
3

8

+ SS ′E�3�
12 +SS ′′E�3�

13 +S ′S ′′E�3�
23

8

+ SS ′S ′′E�3�

8
(52)

In particular, we have E�2� = E
�3�
12 , �E�2� = E

�3�
13 , and �E�2� =

E
�3�
23 . From representation Eq. (52) it follows that the class

of models defined by Eq. (49) satisfies the conditions of
Theorem 4, hence these models satisfy the EBBI Eq. (46).
The fact that there exists a non negative function of

three variables (Eq. (52)) from which the three functions
of two variables (Eq. (49)) can be recovered by summing
over one of the variables suffices to prove that the results
of Bell’s work are a special case of Theorem 4. In Bell’s
original derivation of his inequalities, no such arguments
appear. However, it is well-known that Bell’s assumptions
to prove his inequalities are equivalent to the statement that
there exists a three-variable joint probability that returns
the probabilities of Bell.9�10 No additional (metaphysical)
assumptions about the nature of the model, other than the
assignment of non negative real values to pairs and triples
are required to arrive at this conclusion.
The relation of Bell’s work to Theorems 2 and 4 shows

the mathematical solidity and strength of Bell’s work. It
also shows, however, the Achilles heel of Bell’s interpreta-
tions: Because � has a physical interpretation representing

an element of reality, Eq. (49) implies that in the actual
experiments identical �’s are available for each of the data
pairs �1�2�� �1�3�� �2�3�. This means that all of Bell’s
derivations assume from the start that ordering the data
into triples as well as into pairs must be appropriate and
commensurate with the physics. This “hidden” assumption
was never discussed by Bell and his followers5 and has
“invaded” the mathematics in an innocuous way. Once it
is made, however, the inequalities Eq. (30) apply and even
influences at a distance cannot change this. The implica-
tions of this fact are discussed throughout this paper and
examples of actual classical experiments illustrating our
point are given in Section 7.

3.5. Summary

The assignment of the range of a real-valued non negative
function to triple sets of outcomes implies that the inequal-
ities Eq. (30) hold. Conversely, if the inequalities Eq. (30)
are violated the real-valued function f �3��S1� S2� S3� of the
three two-valued variables S1, S2 and S3 cannot be non
negative. No non-trivial restrictions can be derived for E�2�,
that is for pair sets of outcomes, unless the non negative
functions of two variables can be obtained from one non
negative function of three variables.
To fully understand all the implications of this result

and the true content of Bell’s derivations we need to
return to the nature of correlations between data. In case
of assigning a positive value to triples of data we put
a “correlation-measure” (the positive value of the func-
tion) to the correlation of positive and negative values for
three variables while if we consider pairs the measure is
imposed on two variables only.
In terms of Boole’s elements of logic this means that the

elements of logic corresponding to e.g., the realizations of
the value of the variable S1 for two different pairs may be
altogether different. One pair could be measured at differ-
ent times, for different earth magnetic fields than the other.
We refer the reader to the more detailed explanations in
Section 7. If the realizations of S1� S2� S3 correspond to
the same logical elements no matter which of the three
cyclically arranged pairs is chosen, then the inequalities
Eq. (30) are valid irrespective if we deal with pairs or
triples.
In Kolmogorov’s framework one needs to define a mea-

sure on an algebra and we deal with single indivisible
elements ��3� of a sample space that actualize (bring their
outcomes into existence) a given triple. If, on the other
hand we deal with a pair then we need sample space ele-
ments ��2� to actualize a given pair. This means that we
deal, in principle, with different sample spaces 
 and with
different Kolmogorov probability spaces when considering
models for triples or pairs.
Note that our approach above is more explicit in

expressing the relationship of the mathematics to the
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experiments by designating different functions to differ-
ent experimental groupings and in this way dealing more
explicitly with the correlations. The second trademark of
our approach above is that OTOCLED is not explicitly
addressed and may be different for each different group-
ing of data be it into pairs or triples. In this respect our
approach is similar to that of quantum theory that does
not deal with the single outcomes and OTOCLED. We
show below that we can therefore compare our approach
and quantum theory to address questions of the validity
of Boole-type inequalities for experiments generating pairs
and triples of data.
Last but not least we note that John Bell4 based his

famous theorem on two assumptions:
(a) Bell assumed in his original paper by the alge-
braic operations of his Eqs. (14)–(22) and the additional
assumption that his � represents elements of reality a clear
grouping into triples because he implies the existence of
identical elements of reality for each of the three pairs.
(b) By the same operations Bell assumed that he deals
with dichotomic variables that follow the algebra of inte-
gers. From our work above it is then an immediate corol-
lary that Bell’s inequalities cannot be violated; not even
by influences at a distance.

4. EXTENDED BOOLE-BELL INEQUALITIES
FOR QUANTUM PHENOMENA

We now apply the method of Section 3 to quantum theory.
The main result of this section is that a quantum theo-
retical model can never violate the extended Boole-Bell
inequalities because these EBBI can be derived within the
framework of quantum theory itself. This result follows
directly from the mathematical structure of quantum the-
ory, just as the results of Sections 2 and 3 follow from the
rules of elementary algebra. The basic concepts sufficient
to derive the EBBI for quantum theory are42

Postulate I: To each state of the quantum system there
corresponds a unique state operator � which must be
Hermitian, non negative and of unit trace.
Postulate II: To each dynamical variable there corre-

sponds a Hermitian operator whose eigenvalues are the
possible values of the dynamical variable.
Postulate III: The average value of a dynamical variable,

represented by the operator X, in the state represented by
�, is �X
 = Tr�X.
We focus on systems that are being characterized by

variables that assume two values only. According to Pos-
tulate II, this implies that the dynamical variables in the
corresponding quantum system can be represented by 2×2
Hermitian matrices. It is tradition to describe such sys-
tems by means of the Pauli-spin matrices. Each Pauli spin
matrix represents a dynamical variable describing the pro-
jection of the magnetic moment of a spin-1/2 particle to
one of the three spatial directions. The Hilbert space �

of a system of n of these spin-1/2 objects is the direct
product of the n two-dimensional Hilbert spaces �i, that is
� = �1⊗· · ·⊗�n. In this and the following sections, we
denote the Pauli-spin matrices describing the spin compo-
nents of the ith spin-1/2 particle by �i = ��x

i ��
y
i ��

z
i �. The

symbol �i is to be interpreted as (1) a two-by-two matrix
when it acts on the Hilbert space �i and (2) as a shorthand
for �⊗· · ·⊗�⊗�i ⊗�⊗· · ·⊗� when it acts on the full
Hilbert space � . The eigenvalues of �z

i are +1 and −1 and
the corresponding eigenvectors are the spin-up state � ↑
i
and the spin-down state � ↓
i, respectively. It is convenient
to label the eigenvalues by a two-valued variable S = ±1
such that �+1
i = � ↑
i and �−1
i = � ↓
i. Thus, we have
�z
i �S
i = S�S
i and �z

i �S1 · · ·Sn
 = Si�S1 · · ·Sn
. The state
of a system of n of these spin-1/2 particles is represented
by a 2n×2n non negative definite, normalized matrix ��n�.
In the following we will call ��n� the density matrix.42

In the subsections that follow, we consider two different
types of experiments that produce n-tuples of two-valued
variables. First, we discuss experiments in which these
measurements are performed on n different spin-1/2 par-
ticles (Section 4.1). In this case, quantum theory gives a
description of the n dynamical variables representing the
spins of the n spin-1/2 particles in terms of Pauli matri-
ces that always commute and guarantees the existence of a
non-negative function P�n��S1� � � � � Sn� of the n two-valued
variables S1� � � � � Sn.
Second, in Section 4.2 we consider n successive mea-

surements of the filtering type on the spin of one spin-1/2
particle. The quantum theoretical description of this exper-
iment involves Pauli spin matrices that may not commute
but nevertheless, quantum theory guarantees the existence
of a non-negative function P�n��S1� � � � � Sn� of the n two-
valued variables S1� � � � � Sn.
From Section 3, we already know that the proof of the

EBBI only requires the existence of a non-negative func-
tion P�n��S1� � � � � Sn� for n > 2. Therefore, for the type of
experiments such as the ones described in Sections 4.1
and 4.2, quantum theory guarantees that the EBBI can
be derived and cannot be violated even if the quantum
theoretical description involves non-commuting operators:
The non-commutativity of these operators does not enter
the derivation of the EBBI and is therefore superfluous.
This also holds for the EPRB experiment described in
Section 4.6.
EPRB experiments involve measurements that are per-

formed on n = 2 spin-1/2 particles and the pairs of two-
valued variables are determined by means of Stern-Gerlach
magnets that perform filtering-type experiments on the
spins of the two spin-1/2 particles. A generalized EPRB
set-up involves m > 2 such experiments with different
settings (orientations of the Stern-Gerlach magnets) that
are being performed in parallel, yielding m pairs of two-
valued data. The (products of) spin matrices that describe
the result of the m different experiments do not neces-
sarily commute. However, as explained in more detail in
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Sections 4.4–4.6, (non-)commutation is not a necessary
condition for the apparent violation of the EBBI.

4.1. Spin Measurements on n Different
Spin-1/2 Particles

In the case of experiments that involve measurements of
the spins of n different spin-1/2 particles along particular
directions, the corresponding Pauli matrices trivially com-
mute, that is ��x

i ��
y
j � = ��x

i ��
z
j � = ��

y
i ��

z
j � = 0 for all

i �= j .
We assume that the n-particle system is in an arbitrary

quantum state described by the density matrix

��n� = ∑
�S′	��S′′	

a�S ′
1 � � � S

′
n� S

′′
1 � � � S

′′
n ��S ′

1 � � � S
′
n
�S ′′

1 � � � S
′′
n �
(53)

where, in general, the 2n × 2n coefficients
a�S ′

1 � � � S
′
n� S

′′
1 � � � S

′′
n � are complex numbers, with values

restricted by the conditions ��n� = ���n��† and Tr��n� = 1.
The sum in Eq. (53) runs over all 2n×2n possible values
S ′
1 =±1� � � � � S ′

n =±1� S ′′
1 =±1� � � � � S ′′

n =±1. We ask for
the average value, as postulated by quantum theory, for
observing a given n-tuple of eigenvalues �S1� � � � � Sn� of
the 2n×2n matrix �z

1 � � � �
z
n . The 2n×2n Hermitian matrix

M that corresponds to this collection of n dynamical
variables is represented by M = �S1� � � � � Sn
�S1� � � � � Sn�.42
Note that M = M2 is a diagonal matrix that has one
nonzero element (a one) only. According to Postulate III,
the average �M
 is given by

P�n��S1� � � � � Sn�

≡ Tr��n�M

= ∑
�S′	� �S′′	

a�S ′
1 � � � S

′
n� S

′′
1 � � � S

′′
n ��S1 � � � Sn � S ′

1 � � � S
′
n


×�S ′′
1 � � � S

′′
n � S1 � � � Sn


=∑
�S	

a�S1 � � � Sn� S1 � � � Sn�

= �S1 � � � Sn���n��S1 � � � Sn
 (54)

where our notation suggests that P�n��S1� � � � � Sn� may be
interpreted as a probability in Kolmogorov’s sense. As we
now show, this is indeed the case.
First because of Postulate I, P�n��S1� � � � � Sn� is the diag-

onal element of a non negative definite matrix with max-
imum eigenvalue less or equal than one. Therefore, we
have 0≤ P�n��S1� � � � � Sn�≤ 1. Second, by construction, the
2n matrices �S1� � � � � Sn
�S1� � � � � Sn� for S1 =±1� � � � � Sn =
±1 are an orthonormal and a complete resolution of
the identity matrix (

∑
�Si=±1	 �S1� � � � � Sn
�S1� � � � � Sn� = �),

hence
∑

�Si=±1	 P
�n��S1� � � � � Sn�= Tr��n� = 1. To complete

the proof, we need to consider more general obser-
vations. Let us write M ′ for the matrix that corre-
sponds to the observation of the n-tuple of eigenvalues

�S ′
1� � � � � S

′
n� �= �S1� � � � � Sn�. Obviously, MM ′ = M ′M =

0 and from Postulate III, �MM ′
 = P�n���S1� � � � � Sn� ∧
�S ′

1� � � � � S
′
n�� = 0, where ∧ denotes the logical “and”

operation. Likewise the average value, as postulated
by quantum theory, of observing the n-tuple of
eigenvalues �S1� � � � � Sn� or (inclusive) �S ′

1� � � � � S
′
n� is

given by �M +M ′
 = P�n���S1� � � � � Sn�∨ �S ′
1� � � � � S

′
n�� =

P�n��S1� � � � � Sn�+ P�n��S ′
1� � � � � S

′
n� where ∨ denotes the

logical inclusive “or” operation. These results trivially
extend to observations that correspond to more than two
projectors, completing the proof that the sample space
formed by the 2n elementary events �S1� � � � � Sn� and the
function Eq. (54) may therefore be regarded as a joint
probability in the Kolmogorov sense. Alternatively, one
could use the consistent history approach to define the
probabilities for the elementary events �S1� � � � � Sn�.

43�44

Note that Eq. (54) does not entail a complete description of
the state of the quantum system with n different spin-1/2
particles because Eq. (54) relates to the diagonal elements
of ��n� only.
Within quantum theory, Eq. (53) gives the complete

description of the state of a system with n different spin-
1/2 particles. From this state, we can extract all the com-
plete descriptions of systems with k < n different spin-1/2
particles by performing partial traces and find relations
between P�n��S1� � � � � Sn� and P�k��S1� � � � � Sk� for k < n.
In this case, all the k-tuples �S1� � � � � Sk�, k = 1� � � � � n−1
trivially form one common Kolmogorov sample space (see
the concrete examples of Sections 5 and 6): All k-tuples
(k < n) are drawn from one master set of all n-tuples, all
for the same experiment with precisely the same prepara-
tion and measurement procedure. Evidently, it would then
be a serious mistake to regard this P�k��S1� � � � � Sk� for k <
n as the probability to observe the k-tuples �S1� � � � � Sk�
in a different system of k spin-1/2 particles. To make this
mathematical precise, it is necessary to add a label n to
the variables Si such that there cannot be doubt as to from
which experiment they have been obtained. Then, in gen-
eral we have

P�k��S
�k�
1 �����S

�k�
k � �=P�k��S

�n�
1 �����S

�n�
k � for k<n (55)

In particular, given P�2��S
�2�
1 � S

�2�
2 �, P�2��S

�2�
1 � S

�2�
3 � and

P�2��S
�2�
2 � S3�

�2� one may or may not be able to con-
struct a common Kolmogorov sample space and find the
P�3��S

�3�
1 � S

�3�
2 � S

�3�
3 � from which the two-particle proba-

bilities are the marginals. As we have already seen in
Section 3, the necessary and sufficient condition for this
common Kolmogorov sample space to exist is that the
EBBI are satisfied. Clearly, this condition is independent
of whether or not the operators in the quantum theoretical
model commute, see Sections 4.4–4.6 for more details.
Summarizing: For experiments that measure the spins

of n different spin-1/2 particles along particular directions,
quantum theory gives a description of the n dynamical
variables representing the spins of these particles in terms
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of Pauli matrices that always commute and guarantees the
existence of a non-negative function P�n��S1� � � � � Sn� of the
n two-valued variables that correspond to the eigenvalues
of these matrices. The formulation of quantum mechanics
dictates the difference of the logical elements in the differ-
ent joint probabilities for different experiments. Quantum
mechanics gets around the awkward notation introduced
above by forbidding us to consider the single outcomes
any further. However, when we write down joint probabili-
ties we need to consider very carefully the different logical
elements that determine the joint probabilities and we need
to present them mathematically as different objects.

4.2. Filtering-Type Measurements on
the Spin of One Spin-1/2 Particle

We consider an experiment in which we perform
successive measurements of the filtering-type on one spin-
1/2 particle only and show that also for this case, quan-
tum theory guarantees the existence of P�n��S1� � � � � Sn� as
a probability on the sample space of elementary events
�S1� � � � � Sn�.
In Figure 1, we show a schematic diagram of such an

experiment with two filtering stages, the generalization to
an arbitrary number of stages being trivial. As we show
below, the number n of two-valued variables that describe
the result of the measurement of the spin at each stage
is equal to the number of filtering stages. In other words,
for each spin-1/2 particle passing through a filtering appa-
ratus with n stages, the experiment yields an n-tuple of
two-valued variables. In order to obtain the averages that
quantum theory predicts, we obviously have to repeat the
single-spin experiment using identical preparation.
Spin-1/2 particles enter the Stern-Gerlach magnet M0,

with its magnetic field along direction a. M0 “sends”

b

D–1, 2

D+1, 2

a

b

D–1, 1

D+1, 1y

x

z

M0

M2

M1

Fig. 1. Conceptual layout of a filtering type experiment. Spin-1/2 parti-
cles pass through a Stern-Gerlach magnet M0 that projects the spin onto
either the a direction or the −a direction. In case of the former (latter)
projection, the particle is directed to the Stern-Gerlach magnet M1 (M2).
M1 and M2 are assumed to be identical and project the spin onto either
the b direction or the −b direction. A “click” of one of the four detectors
D+1�1, D−1�1, D+1�2, and D−1�2 signals the arrival of a particle.

each of them either to Stern-Gerlach magnet M1 or M2.
The magnets M1 and M2, identical and both with their
magnetic field along direction b, subdivide the particle
stream once more and finally, each of the particles is reg-
istered by one of the four detectors D+1�1, D−1�1, D+1�2,
and D−1�2.
We label the particles by a subscript �. After the �th

particle leaves M1 or M2, it will trigger one of the four
detectors (we assume ideal experiments, that is at any
time one and only one out of four detectors fires). We
write x�i� j�

� = 1 if the �th particle was detected by detec-
tor Di�j and x�i�j�

� = 0 otherwise. Next, we define two new
dichotomic variables by

S1�� = �x�+1�1�
� +x�−1�1�

� �− �x�+1�2�
� +x�−1�2�

� �

S2�� = �x�+1�1�
� +x�+1�2�

� �− �x�−1�1�
� +x�−1�2�

� � (56)

If S1�� =±1, the spin has been projected on the ±a direc-
tion. Likewise, if S2�� = ±1, the spin has been projected
on the ±b direction.
We now describe this experiment by quantum theory. It

is a straightforward exercise (see pages 172 and 250 in
Ref. [42]) to show that the projection operators M�S1�a)
are given by

M�S1�a�=
�+S1� ·a

2
(57)

where we have omitted the spin subscript to make abso-
lutely clear that in this subsection, we consider measure-
ments on one and the same particle only. Of course, the
projection operators for the second stage follow the expres-
sion of Eq. (57) with the unit vector a replaced by b and
S1 replaced by S2.

Assume now that the system is prepared in the state
with the density matrix

��1� = �+� ·x
2

(58)

where the vector x (�x� ≤ 1) fully determines the state
but is not specified further. Then, according to quantum
theory, the probability that we observe a given pair �S1� S2�
is given by42

P�2��S1� S2� = Tr��1�M�S1�a�M�S2�b�M�S1�a�

= 1+S1x ·a+S2x ·aa ·b+S1S2a ·b
4

(59)

Note that �M�S1�a��M�S2�b�� �= 0 unless a =
±b, ���M�S1�a�� �= 0 unless x = ±a, and that
���M�S2�b�� �= 0 unless x = ±b. Thus, for virtually
all cases of interest, none of the operators in Eq. (59)
commute, yet quantum theory yields the probability
P�2��S1� S2� in all these cases. Note that except for an
inconsequential sign and independent of the state of the
system ��1�, the two-spin correlation of this filtering-type
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experiment on one particle is the same as the two-spin cor-
relation of the EPRB filtering-type experiment considered
by Bell.5

The filtering-type experiment shown in Figure 1 can
be extended to include n successive measurements on the
same particle. As an example, we add one more stage.
Imagine that we then replace the four detectors in Figure 1
by four identical Stern-Gerlach magnets with their fields
along the c direction followed by an array of eight detec-
tors D+1�1, D−1�1, D+1�2, D−1�2, D+1�3, D−1�3, D+1�4, and
D−1�4 (numbered from top to bottom, diagram not shown).
The path that a particle has followed is then uniquely
determined by the three dichotomic variables

S1�� = x�+1�1�
� +x�−1�1�

� +x�+1�2�
� +x�−1�2�

�

−x�+1�3�
� −x�−1�3�

� −x�+1�4�
� −x�−1�4�

�

S2�� = x�+1�1�
� +x�−1�1�

� +x�+1�3�
� +x�−1�3�

�

−x�+1�2�
� −x�−1�2�

� −x�+1�4�
� −x�−1�4�

�

S3�� = x�+1�1�
� +x�+1�2�

� +x�+1�3�
� +x�+1�4�

�

−x�−1�1�
� −x�−1�2�

� −x�−1�3�
� −x�−1�4�

� (60)

Then, according to quantum theory, the probability that we
observe the given triple �S1� S2� S3� is

42

P�3��S1�S2�S3�

=Tr��1�M�S1�a�M�S2�b�M�S3�c�M�S2�b�M�S1�a�

=�1+S1x ·a+S2x ·aa ·b+S3x ·aa ·bb·c+S1S2a ·b
+S1S3a ·bb·c+S2S3b·c+S1S2S3x ·ab·c�·8−1 (61)

demonstrating that also for three actual measurements on
the same particle, quantum theory yields a well defined
probability distribution.
Summarizing: For filtering-type experiments such as

the one depicted in Figure 1 and the ones analyzed in
Sections 5 and 6, quantum theory guarantees the existence
of probabilities P�n��S1� � � � � Sn� even though the quan-
tum theoretical description of the n measurements involves
operators that may not commute.

4.3. EBBI for Quantum Phenomena

In the two previous subsections, we have shown that for
the type of experiments that we consider in this paper,
quantum theory guarantees the existence of non-negative
functions P�n��S1� � � � � Sn� of n dichotomic variables, for
any value of n. Without loss of generality, we may
write

P�1��S1�=
1+S1E

�1�

2
(62)

P�2��S1� S2�=
1+S1E

�2�
1 +S2E

�2�
2 +S1S2E

�2�

4
(63)

P�3��S1� S2� S3�=
1+S1E

�3�
1 +S2E

�3�
2 +S3E

�3�
3

8

+ S1S2E
�3�
12 +S1S3E

�3�
13 +S2S3E

�3�
23

8

+ S1S2S3E
�3�

8
(64)

We are now in the position to apply the results of Section 3
and state: A quantum mechanical system that describes an
experiment which measures
1. singles of a two-valued variable cannot violate the
inequality

�E�1�� ≤ 1 (65)

2. pairs of two-valued variables cannot violate the
inequalities

�E�2�
i � ≤ 1� �E�2�� ≤ 1� �E�2�

1 ±E
�2�
2 � ≤ 1±E�2� (66)

3. triples of two-valued variables cannot violate Boole’s
inequalities

�E�3�
ij ±E

�3�
ik � ≤ 1±E

�3�
jk (67)

for i= 1�2 and �i� j� k�= �1�2�3�� �3�1�2�� �2�3�1�. It is
important to note that inequalities Eq. (67) follow directly
from the fact that the expression Eq. (54) is non negative:
No additional assumptions need be invoked in order to
prove the inequalities Eq. (67). We emphasize that Eq. (67)
can never be violated by a quantum system that describes
a triple of two-valued dynamical variables. Notice that the
derivation of the above results does not depend in any
way on a particular “interpretation” of quantum theory:
We have made use of the commonly accepted mathemat-
ical framework of quantum theory only. The derivation
of inequalities Eqs. (65)–(67) does not make reference to
metaphysical concepts: It is the mathematical structure of
quantum theory that imposes inequalities Eqs. (65)–(67).
For the examples of quantum systems treated in

Sections 5 and 6 there is no need to deploy the full machin-
ery of the density matrix formalism as the states of these
systems are described by pure states. We briefly recapit-
ulate how the description in terms of pure states fits into
the general density-matrix formalism.
The quantum system is said to be in a pure state if and

only if � = �2, see Ref. [42] For a pure state the density
matrix takes the form

�= �� 
�� � (68)

in which case �� 
 is called the state vector or wave
function. Therefore, the expressions Eqs. (62)–(64) do not
change and the inequalities Eqs. (65)–(67) have to be
satisfied.
For a system of n spin-1/2 objects in a pure state,

the state vector �� 
 can be expanded into the complete,
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orthonormal set of many-body basis states ��S1 � � � Sn
 �
S1 =±1� � � � � Sn =±1	. We have

�� 
 = ∑
�S	

c�S1� � � � � Sn��S1 � � � Sn
 (69)

where c�S1� � � � � Sn� are, in general, complex coefficients
and the sum is over the 2n possible values of the n-tuple
of eigenvalues �S1� � � � � Sn�. For instance, the state vector
of two spin-1/2 objects in the singlet state is

�Singlet
 = �+1�−1
− �−1�+1
√
2

= � ↑↓
−� ↓↑
√
2

(70)

such that c�+1�−1� = −c�−1�+1� = 2−1/2 and
c�+1�+1�=−c�−1�−1�= 0.

4.4. Example

It may seem that the derivation of the inequalities
Eqs. (65)–(67) depends on our choice that the up and down
states of the spins are eigenvectors of the z-components
of the spin operators. This is not the case. Let us assume
that the observation of, say, spin one is not along the
z-direction but along some direction specified by a unit
vector a. The corresponding matrix would then be �1 · a,
not �z

1 . This change has no effect on the proof that leads
to Eq. (67) except, and this is very important, we should
keep track of the fact that the measurement on spin one
is performed along the direction a. Usually, this should be
clear from the context but if not, it is necessary to include
the directions of measurement in the notation of the prob-
abilities by writing P�1��S1 � a� instead of P�1��S1� etc.

As an illustration, let us consider a system of two spin-
1/2 objects. For such a system there are only three essen-
tially different averages of dynamical variables namely
��1 · a
, ��2 · b
, and ��1 · a�2 · b
 where a and b
are unit vectors. Knowing these averages for a�b =
�1�0�0�� �0�1�0�� �0�0�1� suffices to completely deter-
mine the state of the quantum system, that is ��2�. In the
simplest version of the EPRB experiments, the two spins
are measured in three different directions a, b, and c.
Accordingly, we obtain the probabilities

P�2��S1� S2 � ab�
= 1+S1��1 ·a
+S2��2 ·b
+S1S2��1 ·a�2 ·b


4
�P�2��S1� S3 � ac�

= 1+S1��1 ·a
+S3��2 · c
+S1S3��1 ·a�2 · c

4

�P�2��S2� S3 � bc�
= 1+S2��1 ·b
+S3��2 · c
+S2S3��1 ·b�2 · c


4
(71)

Let us assume that ��1 ·b
 = ��2 ·b
, which is the case for
the quantum theoretical description of the EPRB exper-
iment. Then, from Theorem 4 we conclude that all the
inequalities

���1 ·a�2 ·b
±��1 ·a�2 · c
� ≤ 1±��1 ·b�2 · c

���1 ·a�2 ·b
±��1 ·b�2 · c
� ≤ 1±��1 ·a�2 · c


���1 ·a�2 · c
±��1 ·b�2 · c
� ≤ 1±��1 ·a�2 ·b
 (72)

are satisfied if and only if there exists a probability
P�3��S1� S2� S3 � abc� that returns the probabilities Eq. (71)
as marginals.
Anticipating the general discussion of Section 4.6,

we show now that non-commutation of the matrices
�1 ·a�2 ·b, �1 · a�2 · c, and �1 · b�2 · c does not prohibit
the existence of P�3��S1� S2� S3 � abc� as a joint probabil-
ity. Assume therefore that �1 ·a�2 ·b, �1 ·a�2 · c, and �1 ·
b�2 · c do not mutually commute and that the inequalities
Eq. (72) hold. Next, assume that ��1 ·b
 = ��2 ·b
, which
is indeed the case for the quantum theoretical description
of the EPRB experiment. Then, if 0≤ P�2��S1� S2 � ab�≤ 1;
0 ≤ �P�2��S1� S2 � ac�≤ 1, and 0 ≤ �P�2��S1� S2 � bc�≤ 1, we
have

P�3��S1�S2�S3 �abc�

= P�2��S1�S2 �ab�+ �P�2��S1�S3 �ac�+ �P�2��S2�S3 �bc�
4

= 1+S1��1 ·a
+S2��2 ·b
+S3��2 ·c
+S1S2��1 ·a�2 ·b

8

+ S1S3��1 ·a�2 ·c
+S2S3��1 ·b�2 ·c

8

(73)

Theorem 4, Eq. (47) shows that P�3��S1� S2� S3 � abc� as
given by Eq. (73) represents the well-defined probabil-
ity to observe a given triple �S1� S2� S3�, even though the
operators that are being measured, do not commute. The
necessary condition for P�3��S1� S2� S3 � abc� to exist as a
probability is that the EBBI are satisfied, independent of
the presence of non-commuting operators in the theory (for
a more extensive discussion, see Section 4.6).

4.5. A Trap to Avoid III: Separable States

Separable (product) states are special in that the state of
the system is determined by the states of the individual,
distinguishable subsystems. In this subsection, we study
this aspect in its full generality, simply because nothing is
gained by limiting the discussion to spin-1/2 systems.
Let us consider a composite quantum system that con-

sists of two identical subsystems. The Hilbert space � of
the composite quantum system is the direct product of the
Hilbert spaces �i of the subsystems, that is � =�1⊗�2.

42

The subsystems are assumed to be in the state represented
by the density matrices �

�1�
1 ��� and �

�1�
2 ���, respectively.
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The variable � is an element of a set that does not need to
be defined in detail. In the following, to simplify the nota-
tion, it is implicit that matrices with a subscript i act on
the Hilbert space �i and are unit matrices with respect to
the Hilbert space �3−i. We denote by Tri the trace over the
subspace of the ith subsystem. Next, we define the matrix

��2� =
∫
�
�1�
1 ����

�1�
2 �������d� (74)

where ���� is a probability density, that is a non
negative function, which satisfies

∫
����d� = 1 (com-

pare with Eq. (49)). Using the properties of the trace,
Tr��1�

1 ����
�1�
2 ��� = Tr1�

�1�
1 ���Tr2�

�1�
2 ��� = 1 and the fact

that ��2� is a sum of non negative matrices, it follows that
Eq. (74) is a density matrix for the system consisting of
subsystems one and two. Density matrices of the form
Eq. (74) are called separable.
Notice that expression Eq. (74) is not the most gen-

eral state of a system consisting of two subsystems: Any
convex combination of ��1�

1 ����
�1�
2 ��′� qualifies as a den-

sity matrix but, as will become clear from the derivation
that follows, for this general class of states one cannot
prove EBBI. The difference between states of the form
Eq. (74) and a general state is similar to the difference
between functions of triples and three functions of pairs
discussed in Sections 2 and 7.1. Indeed, the state Eq. (74)
of a composite systems of two identical subsystems can
be recovered from the state

��3� =
∫
�
�1�
1 ����

�1�
2 ����

�1�
3 �������d� (75)

of a composite system of three identical subsystems by
performing the trace operation over one of the three sub-
systems. For a general state, this construction fails.
Let there be three dynamical variables for subsystem i=

1�2, represented by the matrices Ai, Bi, and Ci. In analogy
with the Boole inequalities, we wish to derive inequalities
for sums and differences of the correlations

�A1B2
 = Tr��2�A1B2

=
∫
Tr1�

�1�
1 ���A1Tr2�

�1�
2 ���B2����d�

≡
∫
�A1
��B2
�����d�

�A1C2
 = Tr��2�A1C2

=
∫
Tr1�

�1�
1 ���A1Tr2�

�1�
2 ���C2����d�

≡
∫
�A1
��C2
�����d�

�B1C2
 = Tr��2�B1C2

=
∫
Tr1�

�1�
1 ���B1Tr2�

�1�
2 ���C2����d�

≡
∫
�B1
��C2
�����d� (76)

As long as we confine ourselves to finite-dimensional
Hilbert spaces (as we do here), we may, without loss of
generality, assume that Ai, Bi, and Ci are normalized such
that the eigenvalues of these matrices are in the interval
�−1�1�. Then, from Postulate I it follows that ��Ai
�� ≤ 1,
��Bi
�� ≤ 1, and ��Ci
�� ≤ 1 for all �. From the algebraic
identity �1±xy�2 = �x± y�2+ �1−x2��1− y2� it follows
that �a±b� ≤ 1±ab for real numbers a and b with �a� ≤ 1
and �b� ≤ 1. Then, it immediately follows that �ac±bc� ≤
1± ab for real numbers a, b, and c such that �a� ≤ 1,
�b� ≤ 1, and �c� ≤ 1. Combining all these results we find

��A1B2
±�A1C2
� ≤
∫
��A1
��B2
�±�A1
��C2
������d�

≤
∫
�1±�B2
��C2
������d� (77)

We can turn inequality Eq. (77) into a Boole-Bell inequal-
ity if we assume that �B1
� = �B2
� for all �, which is
the case if the two subsystems are identical. Indeed, then
Eq. (77) becomes

��A1B2
±�A1C2
� ≤
∫
�1±�B1
��C2
������d�

≤ 1±�B1C2
 (78)

and by permutation of the symbols A, B, and C, all other
Boole-like inequalities follow.
We can now ask the question what conclusion one can

draw if, for some specific model, we find that inequality
Eq. (78) is violated. Disregarding technical conditions such
as the requirements on the spectral range of the matrices
Ai, Bi, and Ci, the only logically correct conclusion is that
the density matrix ��2� of the composite system cannot be
represented by a state of the form Eq. (74). In other words,
a necessary condition that a quantum system consisting of
two identical, distinguishable systems is represented by the
separable state Eq. (74) is that the inequalities Eq. (78) are
not violated. Although this is a nontrivial statement about
the state of the composite system no other conclusion can
be drawn from the violation of Eq. (78).
We emphasize that it is not legitimate to replace the

quantum theoretical expectations that appear in Eq. (78) by
certain empirical data, simply because Eq. (78) has been
derived within the mathematical framework of quantum
theory, not for sets of data collected, grouped and charac-
terized by experimenters. The latter can be tested against
the original Boole inequalities only and the conclusions
that follow from their violation have no bearing on the
quantum theoretical model which as shown in Section 4,
can never violate the EBBI Eq. (67).45�46

Although the derivation of Eq. (78) may seem to be
unrelated to the derivations of EBBI of the preceding
sections, this is not the case. Indeed, as mentioned earlier,
the system of two identical subsystems can be trivially
embedded in a system of three identical subsystems by
constructing the density matrix of the latter according to
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Eq. (75). If we now limit ourselves to subsystems that have
two states only, it is a simple exercise to show that

P�3��S1� S2� S3�

=
∫
P�1��S1 � ��P �1��S2 � ��P �1��S3 � ������d� (79)

which is formally identical to Eq. (52) and hence, Theo-
rems 2 and 4 of Section 3 apply.
Summarizing: For a composite quantum system consist-

ing of two identical subsystems i = 1�2 and described by
a separable state, correlations of three dynamical variables
represented by finite, normalized Hermitian matrices Ai,
Bi, and Ci, obey the Boole-like inequality Eq. (78). As the
(non-)commutativity of the three matrices Ai, Bi, and Ci

does not enter the conditions required to prove inequality
Eq. (78), it would be a logical fallacy to relate the appar-
ent violation of Eq. (78) to the non-commutativity of the
three matrices Ai, Bi, and Ci.

4.6. Non-Commuting Operators, Common
Probability Spaces and EBBI

It is well known that the involvement of non-commuting
operators in quantum problems may prohibit the use of
one common (Kolmogorov) probability space8�42�47 for
these problems. In essence, the point is this: If A and
B are Hermitian matrices, they are diagonalizable.48 If
they commute (�A�B�= 0), there exists a unitary transfor-
mation that simultaneously diagonalizes A, B, and AB.48

Therefore if �A�B� = 0, then according to Postulate II,
the dynamical variables that are represented by A, B
and AB can simultaneously assume one of their possi-
ble values. In this case, it becomes meaningful to speak
about the observation of events corresponding to A, B,
and AB and the product rule, one of the cornerstones of
Kolmogorov’s axiomatic framework of probability theory
is satisfied.42 However, if �A�B� �= 0, it is no longer pos-
sible to simultaneously attribute eigenvalues to A, B and
AB: Any attempt to assign numbers to the probabilities
that appear in the product rule fails.42 In this case, the
dynamical variables cannot be defined on one common
Kolmogorov probability space. However, for a given state
of the quantum system, the probability distributions cor-
responding to each of the dynamical variables may be
interrelated.42 The most important consequence of such
interrelation is the Heisenberg uncertainty principle for the
position and momentum of a particle.42 We now show
that the Heisenberg uncertainty principle, when applied
to the EPRB experiment, does not impose any relation
between probability distributions corresponding to differ-
ent measurements.
If X, Y and Z = i�X�Y � are matrices, application of the

Schwarz inequality yields42

�X2−�X
2
�Y 2−�Y 
2
 ≥ 1
4
��Z
�2 (80)

where the average of X is defined by �X
 = Tr�X, �
denoting the density matrix that describes the state of the
quantum system. If X and Y represent the coordinate and
momentum operators, respectively, Eq. (80) reduces to the
Heisenberg uncertainty relation in its original form.
In the standard EPRB experiment, described in

Section 4.4, we perform three experiments, each experi-
ment yielding a pair of two-valued variables for the pairs
of setting �a�b�, �a� c�, and �b� c�. Using �j · x�j · y =
x ·y+ i�x×y� ·�j for j = 1�2, it follows that

��1 ·a�2 ·b��1 ·a�2 · c� = 2i�b× c� ·�2

��1 ·a�2 ·b��1 ·b�2 · c� = 2i�a×b� ·�1+2i�b× c� ·�2

��1 ·a�2 · c��1 ·b�2 · c� = 2i�a×b� ·�1 (81)

From Eq. (81), it follows that if a× b �= 0, a× c �= 0,
and b× c �= 0, none of the commutators in Eq. (81) van-
ish. Suppose that a× b = 0. Then a and b are (anti-)
parallel and of the two experiments that yield �1 · a�2 · c
and �1 ·b�2 · c, one is redundant. The same holds for the
other cases in which two directions of measurement are
(anti-)parallel. Clearly, the condition for the three exper-
iments to be fundamentally distinct is that none of the
commutators in Eq. (81) vanishes. In other words, if one
or two of the commutators in Eq. (81) vanish, the exper-
iment is completely described by at most two dichotomic
variables and hence there exists no EBBI (see Section 4.3).
Combining inequality Eq. (80) and Eq. (81) we find

�1−��1 ·a�2 ·b
2��1−��1 ·a�2 · c
2�
≥ ��b× c� · ��2
�2

�1−��1 ·a�2 ·b
2��1−��1 ·b�2 · c
2�
≥ ��a×b� · ��1
+ �b× c� · ��2
�2

�1−��1 ·a�2 · c
2��1−��1 ·b�2 · c
2�
≥ ��a×b� · ��1
�2 (82)

As the EPRB experiment is described by a system in
the singlet state we have ��1
 = ��2
 = 0 and hence

�1−��1 ·a�2 ·b
2��1−��1 ·a�2 · c
2�≥ 0

�1−��1 ·a�2 ·b
2��1−��1 ·b�2 · c
2�≥ 0

�1−��1 ·a�2 · c
2��1−��1 ·b�2 · c
2�≥ 0 (83)

Clearly, none of these inequalities imposes any condition
on or any relation between the probability distributions
for measuring ��1 ·a�2 ·b
, ��1 ·a�2 · c
, or ��1 ·b�2 · c
,
also in the case where the operators involved do not com-
mute. Obviously, the fact that the operators in the quan-
tum theoretical description of the EPRB experiment do not
commute does not impose interrelations between the prob-
ability distributions for measuring the eigenvalues of these
operators.
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We further address the question to what extent the non-
commutativity of the matrices that appear in the quan-
tum theoretical description of EPRB-like experiments (see
Section 4.4) leads to testable consequences. The discussion
that follows equally holds for all other quantum systems
considered in this paper.
We return to our derivation of the EBBI and exclude

redundant experiments (implying that none of the com-
mutators in Eq. (81) vanishes). If the EBBI are satis-
fied, quantum theory guarantees that P�3��S1� S2� S3� exists
while if the EBBI are violated it does not. But in both
cases, the matrices �1 ·a�2 ·b, �1 ·a�2 · c, and �1 ·b�2 · c,
never mutually commute, independent of whether or not
the EBBI are satisfied. The logical implication is that the
condition that these matrices do not mutually commute is
a superfluous condition for the apparent violation of the
EBBI. The apparent violation of the EBBI does imply that
P�3��S1� S2� S3� does not exist as a probability. However,
it would be a logical fallacy to directly relate this non-
existence of a joint probability to a general statement that
the presence of non-commuting operators in the theory
prohibits the existence of a common probability space.47

Summarizing: We have shown that apparent violations
of the EBBI cannot be attributed to the non-commutativity
of the (products of) spin operators, the expectation val-
ues of which appear in the EBBI. A more general, much
stronger, indication that non-commutativity is actually
irrelevant for the apparent violations of the EBBI is that
these violations are also found for genuine “classical”
models (see Section 7), both in the case of data and for
“factorizable” probabilistic models. Evidently, in the realm
of these classical models, non-commutativity is neither
necessary nor sufficient for violations of EBBI nor is com-
mutativity necessary or sufficient to guarantee the validity
of EBBI.

5. APPLICATION TO QUANTUM
FLUX TUNNELING

In an idealized picture, the flux trapped in a SQUID may
be viewed as a prototype two-state system, the macro-
scopic flux tunneling between the two states. Leggett
and Garg have described an experiment to detect signa-
tures of the tunneling process by measuring the state of
the flux as a function of the time differences between
measurements.37 To illustrate how the general theory
applies to this problem, we adopt the quantum mechan-
ical model proposed by Ballentine.49 In this model, one
neutron at a time is being propelled through the SQUID
and the state of the flux is inferred by measuring correla-
tions of the spin of the neutrons as a function of the time
differences between successive neutrons.49

A schematic diagram of this experiment is shown in
Figure 2. At time t0, we prepare the system, that is the
SQUID, in spin state ��0
. At fixed times t0 ≤ t1 ≤ t2 ≤ t3,

H0

y

x

z

D–1

D+1Neutron

M1 M2

Fig. 2. Conceptual layout of an experiment to measure the magnetic
flux through a SQUID. A neutron passes through a Stern-Gerlach mag-
net (M1) that aligns the magnetic moment of the neutron along the
y-direction, interacts with the magnetic moment of the system described
by a Hamiltonian H0, and passes through another Stern-Gerlach magnet
(M2) that deflects the neutron according to the projection of its magnetic
moment on the z-direction. The detectors D+1 and D−1 signal the arrival
of a neutron with spin up and spin down respectively.

we shoot three neutrons one after each other through the
system, let the neutron spin interact with the magnetic
moment of the system, and detect the spin of the neutrons
when they no longer interact with the system. We repeat
this procedure many times and count the number of neu-
trons with spin up and spin down. Then, we repeat the
whole procedure, choosing again t1, t2 and t3, and study
the counts as a function of t1− t0, t2− t1, and t3− t2.
At t = t0, the initial state (after preparation) of the

system+neutrons is given by

���t0�
 = ��0�1�2�3
 (84)

where ��j
 with j = 1�2�3 represents the state of the spin
of the jth neutron. Obviously, the system described by
Eq. (84) is initially in a product state, which is equivalent
to the (rather obvious) statement that in the initial state
there are no correlations between the four objects. Accord-
ing to quantum theory, we have

P�3��S1� S2� S3 � t3� t2� t1���t0��

= ��S1� S2� S3 ���t3� t2� t1�
�2 (85)

where ���t3� t2� t1�
 denotes the state of the system+
neutrons at the time that the third neutron has triggered
one of the detectors. In Eq. (85) we have included ��t0�
into the list of conditions on the probability even though
��t0� is not an element of Boolean logic. However, the
condition ��t0� in Eq. (85) should be interpreted opera-
tionally: At t0, the system has been prepared in a particular
manner such that its state is represented by ���t0�
.42
The numerical quantities accessible through measure-

ment are the clicks of the detector. For each run of the
experiment, there are three of these clicks (we assume
100% detection efficiency, no loss of neutrons etc.), which
we denote by the triples �S1��� S2��� S3���. From M repeti-
tions with the same t1, t2, and t3, we compute the empirical
averages and correlations

�Si
3 =
1
M

M∑
�=1

Si��� i = 1�2�3

J. Comput. Theor. Nanosci. 8, 1011–1039, 2011 1029
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�SiSj
3 =
1
M

M∑
�=1

Si��Sj��� �i� j�= �1�2�� �1�3�� �2�3�

�S1S2S3
3 =
1
M

M∑
�=1

S1��S2��S3�� (86)

where the subscript 3 in �·
3 refers to the three observa-
tions that are made in each run of the experiment. Assum-
ing that quantum theory describes this experiment, we
expect to find that

�Si
3 → E
�3�
i � i = 1�2�3

�SiSj
3 → E
�3�
ij � �i� j�= �1�2�� �1�3�� �2�3�

�S1S2S3
3 → E�3� (87)

where the notation A→ B means that as M →�, A= B
with probability one.
From Sections 2 and 4, we know that it is mathemati-

cally impossible to violate the inequalities

��SiSj
3±�SiSk
3� ≤ 1±�SjSk
3 (88)

�E�3�
ij ±E

�3�
ik � ≤ 1±E

�3�
jk (89)

with �i� j� k� = �1�2�3�� �3�1�2�� �2�3�1�. If the real
experiment would show a violation of the Boole inequal-
ities Eq. (88), this can only imply that we have made
one or more mistakes in elementary arithmetic. Indeed,
this experiment complies with the condition that lead to
Eq. (88), namely that each instance yields a triple of two-
valued numbers �S1��� S2��� S3���.
From a violation of Eq. (89) we can only deduce that

the specific quantum mechanical model calculation that
yields the expression of E�3�

ij needs to be revised. Indeed,
we have shown in Section 4 that Eq. (89) must be satisfied
in general.
It is instructive to scrutinize the arguments claimed in

Ref. [37] that lead to the wrong conclusion that the above
quantum mechanical system can violate Eq. (89). Ref. [37]
starts with “macroscopic realism”: A macroscopic system
with two macroscopically distinct states available to it will
at all times be in one or the other of these states. Then, the
crucial and incorrect assumption is made that macroscopic
realism implies the existence of consistent joint probabil-
ities p12�S1� S2�, p13�S1� S3�, p23�S2� S3�, and p�S1� S2� S3�
that obey37

p12�S1� S2� =
∑

S3=±1

p�S1� S2� S3�

p13�S1� S3� =
∑

S2=±1

p�S1� S2� S3�

p23�S2� S3� =
∑

S1=±1

p�S1� S2� S3� (90)

Macroscopic realism does not imply Eq. (90) as should
be clear by now. However, together with the additional

grouping into triples (CNTUH), it most definitely does.
Then because the measurements are performed on groups
of three neutrons, we may indeed follow Ref. [37] and
define the correlation functions K�3�

ij by

K
�3�
ij = ∑

S1=±1

∑
S2=±1

∑
S3=±1

SiSjp�S1� S2� S3� (91)

= ∑
Si=±1

∑
Sj=±1

SiSjpij �Si� Sj� (92)

for �i� j�= �1�2�� �1�3�� �2�3� where the latter expression
follows from the requirement of consistency. As we have
seen in Section 4, the fact that p�S1� S2� S3� exists as a
probability is sufficient to prove that

�K�3�
ij ±K

�3�
ik � ≤ 1±K

�3�
jk (93)

for �i� j� k� = �1�2�3�� �3�1�2�� �2�3�1�, containing the
Leggett-Garg inequality37 as a particular case. Now,
because there exists a joint probability for triples, the EBBI
and consequently also the Leggett-Garg inequality, can-
not be violated. However, in Ref. [37] a contradiction
is predicted because it is assumed, without justification,
that K�3�

ij = P�tj − ti� with P�t�≈ e−��t� cos�t, an expres-
sion obtained from a quantum mechanical calculation of a
correlation function that involves two measurements only.
This is inconsistent: Inequality Eq. (93) has been derived
from a probability distribution that involves three, not only
two, measurements. If the numerical values of K

�3�
ij as

determined from experiments involving two measurements
lead to violations of inequality Eq. (93), the only correct
action is to reject the assumption that these are the values
of K

�3�
ij that will be observed in an experiment that per-

forms three measurements. As we have seen over and over
again by now: In general one cannot deduce inequalities
such as Eq. (93) if experiment or theory deal with pairs of
two-valued variables only.

5.1. Concrete Example

We adopt the specific model analyzed by Ballentine49 to
illustrate how the line of thought adopted in Ref. [37]
yields conclusions that are in conflict with the EBBI,
that is with elementary arithmetic. The Hamiltonian of the
system (the SQUID) is defined by

H0 = ��x
0 (94)

This Hamiltonian describes a spin-1/2 object that is tun-
neling between the spin-up and spin-down state with an
angular frequency �. During the time � that the system
interacts with the jth neutron, the Hamiltonian changes to

Hj = ��x
0 +��z

0�
x
j (95)

At time t0, we prepare the system in the state with spin up,
that is ��0
 = � ↑
 and we prepare neutrons such that their
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spins are aligned along the positive y-direction. Thus, the
initial state of the jth neutron is

��j
 =
1√
2
�� ↑
+ i� ↓
� (96)

Following Ref. [49], we consider the limiting case in
which the interaction time � → 0 and the coupling constant
�→� such that �� =�/4. For this choice of parameters,
the correlation between the system and neutron spin is
maximal.49 In this case, the wave function after the three
neutrons have interacted with the system reads

����t3��t2��t1�

= cos��t3 cos��t2 cos��t1 � ↑↑↑↑


− cos��t3 cos��t2 sin��t1 � ↓↓↓↓

+ i cos��t3 sin��t2 cos��t1 � ↓↑↓↓

− i cos��t3 sin��t2 sin��t1 � ↑↓↑↑

+ sin��t3 cos��t2 cos��t1 � ↓↑↑↓

+ sin��t3 cos��t2 sin��t1 � ↑↓↓↑

− i sin��t3 sin��t2 cos��t1 � ↑↑↓↑

− i sin��t3 sin��t2 sin��t1 � ↓↓↑↓
 (97)

where �ti = ti − ti−1. For general �ti, Eq. (97) represents
a highly entangled, four-spin state. A straightforward cal-
culation yields

E
�3�
12 = cos2��t2

E
�3�
13 = cos2��t3 cos 2��t2

E
�3�
23 = cos2��t3 (98)

where we omit the expressions of averages that are not rel-
evant for testing the inequalities. Substituting the expres-
sions Eq. (98) in the inequalities Eq. (89), one finds that
the latter are always satisfied, as expected on general
grounds. On the other hand, if we consider experiments in
which we collect pairs instead of triples, quantum theory
yields

E�2� = cos2��t2− t1�

�E�2� = cos2��t3− t1�

�E�2� = cos2��t3− t2� (99)

Obviously, for this model E�3�
12 = E�2� and E

�3�
23 = �E�2� but

E
�3�
13 �= �E�2�. Should we now make the mistake to assume

that E
�3�
12 = E�2� = cos2��t2 − t1�, E

�3�
23 = �E�2� = cos2�

�t3 − t2� and E
�3�
13 = �E�2� = cos2��t3 − t1� and substi-

tute these expressions into the inequalities Eq. (89), we
would find that the latter can be violated. However,
it is clear that the only conclusion that one can draw
from this violation is that the assumption E

�3�
12 = E�2�,

E
�3�
23 = �E�2�, E�3�

13 = �E�2� is wrong: Although the system that
describes the two-neutron measurement can quite naturally
be embedded in a system that describes the three-neutron
measurement, this embedding is nontrivial in the sense that
E

�3�
13 �= �E�2�.

5.2. Summary

It is not legitimate to substitute the expressions of E�2�,
�E�2�, �E�2�, as obtained from a quantum theoretical descrip-
tion of an experiment that involves pairs only, into inequal-
ities that have been derived from a quantum theoretical
description of an experiment that involves triples of vari-
ables. As shown in Section 4, quantum theory does not
provide inequalities that put bounds on �E�2� in terms of
E�2� and �E�2�. The derivation of the EBBI requires a sys-
tem with at least three different two-valued variables.

6. APPLICATION TO
EINSTEIN-PODOLSKY-ROSEN-BOHM
(EPRB) EXPERIMENTS

6.1. Original EPRB Experiment

In Figure 3, we show a schematic diagram of the Einstein-
Podolsky-Rosen thought experiment1 in the form proposed
by Bohm.38 In the quantum mechanical description of this
experiment, it is assumed that the system consists of two
spin-1/2 objects. According to the axioms of quantum
theory,42 repeated measurements on the system described
by the normalized state vector �� 
 yield statistical esti-
mates for the single-particle expectation values E

�2�
1 =

�� ��1 ·a�� 
, E�2�
2 = �� ��2 ·b�� 
 and for the two-particle

correlation E�2� = �� ��1 · a�2 · b�� 
 where a and b are
unit vectors.
For a quantum system of two spin-1/2 objects, we can

derive an inequality as follows. We consider two additional

D–1

D+1

S

D–1

D+1
a b

y

x

z

Ma Mb

Fig. 3. Schematic diagram of the Einstein-Podolsky-Rosen-Bohm
(EPRB) thought experiment. The source S produces pairs of spin-1/2
particles. The particle going to the left (right) passes through a Stern-
Gerlach magnet Ma (Mb) that directs the particle to either detector D+1

or D−1, depending on whether its spin after passing the magnet is paral-
lel or anti-parallel to the direction a (b). If the detector D+1 at the left
(right) of the source fires, we set S1 = +1 (S2 = +1), otherwise we set
S1 =−1 (S2 =−1). In this idealized experiment, each pair produced by
the source generates a pair of signals �S1 =±1� S2 =±1�.
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experiments that yield �E�2� = �� ��1 ·a�2 ·c�� 
 and �E�2� =
�� ��1 · b�2 · c�� 
 where c is also a unit vector. Using
the Schwartz inequality ��� �X�� 
�2 ≤ �� �X†X�� 
 with
X =X† = �1 ·a�2 ·b±�1 ·a�2 ·c we find X†X = 2+2b ·c
and hence

�E�2�± �E�2��2 ≤ 2�1±b · c� (100)

Note that in essence, the proof of inequality Eq. (100)
follows from the Schwartz inequality which in turn follows
from the assumption that the inner product on the Hilbert
space is non negative.
If the system is in the singlet state Eq. (70) we have

E
�2�
1 = E

�2�
2 = 0, E�2� = −a · b, �E�2� = −a · c, and �E�2� =

−b · c. Substituting these expressions in Eq. (100) yields

�E�2�± �E�2��2 = �a · �b± c��2
= �b± c�2 cos2 �± = 2�1±b · c� cos2 �±
≤ 2�1±b · c� (101)

where �± denotes the angle between the vectors a and
b± c. Thus, from Eqs. (100) and (101) we conclude that
a quantum system in the singlet state satisfies Eq. (100)
with equality if a lies in the plane formed by b and c.

6.2. Summary

The inequality Eq. (100) has been derived for a quantum
system consisting of two spin-1/2 objects. If some numer-
ical values of the correlations would lead to a violation of
this inequality this would merely indicate that the calcula-
tion that yields these numerical values is wrong.
It is well-known that if we read the superscript �2� as

�3� and substitute the expressions E�2� = −a · b, �E�2� =
−a · c, and �E�2� = −b · c into EBBI Eq. (67) then, for a
range of choices of a, b and c, at least one of the inequal-
ities Eq. (67) is not satisfied.5 However, in contrast to the
far-reaching conclusions that many researchers have drawn
from this apparent violation, from the viewpoint of quan-
tum theory, the only logically correct conclusion one can
draw is that it is not allowed to read the superscript �2�
as �3�. Alternatively, we may adopt the hypothesis that
the system is described by a density matrix of the form
Eq. (74). Then the observation that the singlet state may
lead to a violation of the inequality Eq. (78) merely implies
that this hypothesis is false.

6.3. Extended EPRB Experiment

In the original EPRB thought experiment, one only mea-
sures pairs of two-valued variables. This fact has been
used by many researchers to (correctly) question the
applicability of Bell’s inequalities to experimental data.
However, there exists a straightforward extension of the
original EPRB experiment23 that allows us to properly

define the probability distribution of three two-valued vari-
ables. We show below that this experiment (which is as
realizable as the original EPRB experiment) as well as its
quantum theoretical description can never lead to a viola-
tion of the EBBI.
The arrangement of this extended EPRB experiment is

shown in Figure 4. The key point of this experiment is that
the variable S2, which in the original EPRB experiment
is obtained by measuring the spin as the particle leaves
the Stern-Gerlach apparatus Mb characterized by the unit
vector b, can be retrieved from the data collected by the
detectors D+1�1, D−1�1, D+1�2, and D−1�2. At the same time,
these four detectors yield the value of a variable corre-
sponding to S3.
Thus, for each emitted pair labeled �, this experiment

yields a triple (S1��, S2��, S3��), which as Boole showed,
can never lead to a violation of Eq. (13). Obviously, from
the construction of this experiment alone, one can expect
that there is some kind of correlation between S2�� and
S3��. Note that although the source emits pairs of parti-
cles only, in this extended version of the EPRB experi-
ment there are six detectors and eight, not four, possible
outcomes.
What is left is to show explicitly that the quantum theo-

retical results for the experiment shown in Figure 4 satisfy
EBBI Eq. (89). This demonstration is mainly for pedagogi-
cal purposes. Indeed, from the general theory of Section 4,
we already know that a quantum theory for a system of
three two-valued variables cannot violate Eq. (89). For
simplicity of presentation, we consider the case that a, b
and c lie in the same plane (which is the case most readily
realized in experiments that use the photon polarization)
and that the system is in the singlet state Eq. (70). To

c

D–1, 2

D+1, 2

D–1

D+1

S

a b

c

D–1,1

D+1, 1y

x

z

Ma Mb

M ′c

Mc

Fig. 4. Same as Figure 3 except that the detectors at the right are
replaced by two Stern-Gerlach magnets and four detectors. The two addi-
tional Stern-Gerlach magnets Mc and M ′

c are both assumed to be iden-
tical, c being the direction of their magnetic fields. The detectors at the
left yield the signal S1 = ±1. If detectors D+1�1 or D−1�1 fire, we set
S2 =+1, otherwise we set S2 =−1. If detectors D+1�1 or D+1�2 fire, we
set S3 =+1, otherwise we set S3 =−1. In this idealized experiment, each
pair produced by the source generates a triple of signals �S1 =±1� S2 =
±1� S3 =±1�. Note that the pair �S1 =±1� S2 =±1� expected from this
experiment is the same as the one that would be expected if one performs
the experiment shown in Figure 3.
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fix the notation, we put the vectors a, b and c into the
xz-plane.
A Stern-Gerlach device of which the magnetic field

makes an angle � with respect to the z-axis (by our con-
vention the axis of spin quantization) transforms the spin
part of state vector v↑� ↑
+ v↓� ↓
 into w↑� ↑
+w↓� ↓

where (

w↑

w↓

)
=
(

cos�/2 sin �/2

− sin �/2 cos�/2

)(
v↑

v↓

)
(102)

Hence, after the particle passes through a Stern-Gerlach
magnet the eigenstates of the spin read

� ↑u
 = cos
�u
2
� ↑
+ sin

�u
2
� ↓
 (103)

� ↓u
 = − sin
�u
2
� ↑
+ cos

�u
2
� ↓
 (104)

where u= a�b� c and �u characterizes the direction of the
field in the Stern-Gerlach magnet Mu.

As an example, we calculate the probability that
detectors D+1 and D+1�1 fire. This can only happen
if the Stern-Gerlach magnet Mb with orientation b directs
the particle to the Stern-Gerlach magnet Mc. We assign
the value S2 =+1 (S2 =−1) to the path in which the parti-
cle has its spin (anti-)parallel to b . According to quantum
theory, when the particles follow the paths corresponding
to �S1 =+1� S2 =+1� S3 =+1� (see Fig. 4), the state vec-
tor of the two spins reads

��S1 =+1� S2 =+1� S3 =+1�

= 1√
2
� ↑a↑c
�↑a↑c � ↑a↑b
�↑a↑b ��� ↑↓
− � ↓↑
�

= 1√
2
cos

�c −�b
2

sin
�b −�a

2
� ↑a↑c
 (105)

It is not difficult to see that in general,

��S1� S2� S3�

=�S1S3

�1+S1S2�sba+S2�1−S1S2�cba

2
√
2

�1+S2S3�ccb+S2�1−S2S3�scb
2

(106)

where suu′ = sin��u − �u′�/2 and cuu′ = cos��u − �u′�/2.
Therefore, the probability to observe the triple �S1� S2� S3�
is given by

P�S1� S2� S3�

= 1−S1S2 cos��b−�a�−S1S3 cos��b−�a�cos��c−�b�+S2S3 cos��c−�b�

8

(107)

From Eq. (64) and Eq. (107) it follows that

E
�3�
12 = − cos��b −�a�

E
�3�
13 = − cos��b −�a� cos��c −�b�

E
�3�
23 = cos��c −�b� (108)

which in essence, are the same expressions as Eq. (98).
As in the case of flux tunneling, we see that E�3�

12 = E�2�

but E�3�
23 =− �E�2� and E

�3�
13 �= �E�2�, where E�2�, �E�2� and �E�2�

are calculated for the original EPRB thought experiment
(see previous subsection). As expected from the general
theory of Section 4, the expressions Eq. (108) always sat-
isfy the EBBI Eq. (67). As a consistency check, we also
compute the two-variable correlations using the formalism
of Section 4.2. For a quantum system of two spin-1/2 par-
ticles in the singlet state, the probability to observe the
triple �S1� S2� S3� is given by

P�3��S1� S2� S3�

= Tr��2�M�S1�a�M�S2�b�M�S3� c�M�S2�b�M�S1�a�

= 1−a ·bS1S2−a ·bb · cS1S3+b · cS2S3
8

(109)

from which Eq. (108) can be obtained if the vectors a,
b and c are chosen to lie in the xz-plane. Recall (see
Section 4.2) that the spin-1/2 operators that measure S2
and S3 do not necessarily commute.
For completeness, we discuss an extended EPRB

experiment23 that could be used to check the violation of
the CHSH inequality. The diagram of the experiment is
presented in Figure 5 and is a logical extension of Figure 4.
According to quantum theory (see Section 4.2), the proba-
bility to observe the quadruple �S1� S2� S3� S4� is given by

P�4��S1� S2� S3� S4�

= Tr��2�M�S1�a�M�S4�d�M�S2�b�M�S3� c�

×M�S2�b�M�S4�d�M�S1�a� (110)

disposing of the folklore that quantum theory cannot yield
a joint probability distribution for all possible measure-
ments if, as in this example, non commuting operators are

y

x

z
d

D–1, 4

D+1, 4

a

d

D–1, 1

D+1, 1

S

c

D–1,3

D+1, 3

b

c

D–1, 2

D+1, 2

M ′c

Mb

M ′d

Mc

Ma

Md

Fig. 5. Same as Figure 4 except that the detectors at the left are replaced
by two Stern-Gerlach magnets and four detectors. The two additional
Stern-Gerlach magnets Md and Md are both assumed to be identical,
d being the direction of their magnetic fields. If detectors D+1�1 or D−1�1

fire, we set S1 = +1, whereas if D+1�4 or D−1�4 fire we set S1 = −1.
If detectors D+1�1 or D+1�4 fire, we set S4 = +1, whereas if D−1�1 or
D−1�4 fire we set S4 =−1. Similarly, If detectors D+1�2 or D−1�2 fire, we
set S2 =+1, whereas if D+1�3 or D−1�3 fire we set S2 =−1. If detectors
D+1�2 or D+1�3 fire, we set S3 =+1, whereas if D−1�2 or D−1�3 fire we set
S3 =−1. In this idealized experiment, each pair produced by the source
generates a quadruples of signals �S1 =±1� S2 =±1� S3 =±1� S4 =±1�.
Note that the pair �S1 =±1� S2 =±1� expected from this experiment is
the same as the one that would be expected if one performs the experi-
ment shown in Figure 3.
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involved (see Section 4.2). From Eq. (110), it is straight-
forward to compute all two-particle correlations. For a
quantum system of two spin-1/2 particles in the singlet
state we find E

�4�
12 = −a ·b, E�4�

13 = −�a ·b��b · c�, E�4�
14 =

a ·d, E�4�
23 = b ·c, E�4�

24 =−�a ·b��a ·d�, and E
�4�
34 =−�a ·b�

�a ·d��b · c�. As expected from the general theory, CHSH
inequalities such as

�E�4�
12 −E

�4�
13 +E

�4�
24 +E

�4�
34 � ≤ 2 (111)

cannot be violated for the EPRB experiment depicted in
Figure 5.

7. APPARENT VIOLATIONS OF EXTENDED
BOOLE-BELL INEQUALITIES IN ACTUAL
EXPERIMENTS

After these rather lengthy explanations, it is desirable to
illustrate the major aspects using actual experiments as
an example. We present three distinctly different but logi-
cally related possibilities of violating Boole-Bell inequal-
ities. The first example is a simple, realistic every-day
experiment involving doctors who perform allergy tests on
patients. The second example shows how an innocent look-
ing modification of Bell’s model of the EPRB experiment
can lead to violations of the EBBI while obeying the same
local realism criteria as Bell’s model. The third example
relates to EPRB experiments as they are performed in the
laboratory and is of a different nature than the first two.
It deals with space-time by attaching special importance
to the time synchronization of the two-particle measure-
ments. Together these examples represent an infinitude of
possibilities to explain apparent violations of Boole-Bell
inequalities in an Einstein local way.

7.1. Games with Symptoms and Patients:
From Boole to Bell

As already mentioned, the early definitions of probability
by Boole were related to a one-to-one correspondence that
Boole established between actual experiments and ideal-
izations of them through elements of logic with two pos-
sible outcomes. His view gave the concept of probability
precision in its relation to sets of experiments and this pre-
cision is expressed by Boole’s discussion of probabilities
as related to possible experience. These discussions can be
best explained by an example that has its origins in the
works of Boole and relates to the work of Bell inasmuch
as it can be used as a counterexample to Bell’s conclusions
related to non-locality.35

Consider an allergy to alcohol that strikes persons in dif-
ferent ways depending on circumstances such as place of
birth and place of diagnosis etc.. Assume that we deal with
patients that are born in Austria (subscript a), in Brazil
(subscript b) and in Canada (subscript c). Assume further
that doctors are gathering information about the allergy

in the three cities Lille, Lyon and Paris, all in France.
The doctors are careful and perform the investigations
on randomly chosen but identical dates. The patients are
denoted by the symbol Al

o�n� where o= a�b� c depending
on the birthplace of the patient, l = 1�2�3 depending on
where the doctor gathered information, l designating Lille,
2 Lyon and 3 Paris respectively, and n = 1�2�3� � � � �N
denotes just a given random day of the examination. Note
that eventually the doctors could also label with the time
and date of observation, the type of weather or any other
label that the doctors think to be relevant for the outcome
of their observations.
The doctors perform the same alcohol allergy test on the

persons visiting their office. The test consists of serving
the persons a glass of wine diluted with water from the tap.
When a person is allergic he or she gets a pimply red rash
that disappears within one hour after drinking the diluted
glass of wine. When the person shows an allergic reaction
the doctor assigns a value Al

o�n� = +1 to the person and
otherwise Al

o�n�=−1.
Assume that on even days the tap water contains no

additives in Lille, iron in Lyon and chlorine in Paris. On
odd days the tap water contains fluorine and iron in Lille,
chlorine and fluorine in Lyon and fluorine and iron in
Paris. This information is not known to the doctors per-
forming the examinations, hence they assume that they are
performing identical allergy tests. Also not known to the
doctors is that persons born in Austria are allergic to alco-
hol, not allergic to chlorine or iron, and also not allergic if
alcohol and fluorine are present at the same time. Persons
born in Brazil are allergic to alcohol, not allergic to fluo-
rine or chlorine, and also not allergic if alcohol and iron
are both present. Persons born in Canada are allergic to
fluorine only. In Table I, we list the results of all possible
examinations.
The first variation of this investigation of the alcohol

allergy is performed as follows. The doctor in Lille exam-
ines only patients of type a, the doctor in Lyon only of
type b and the doctor in Paris only of type c. On any given
day of examination (of precisely one patient for each doc-
tor and day) they write down their diagnosis and then, after

Table I. The absence or presence of the additives fluorine (F), chlorine
(Cl), and iron (Fe) in tap water of Lille (l = 1), Lyon (l = 2), and Paris
(l = 3), are indicated by–or X, respectively. The results of the allergy
tests of patients born in Austria, (Al

a), Brasil (A
l
b), and Canada (Al

c) are
indicated by +1 (allergic) and −1 (not allergic), respectively.

Even days Odd days

l 1 2 3 1 2 3

F — — — X X X
Cl — — X — X —
Fe — X — X — X

Al
a +1 +1 +1 −1 −1 −1

Al
b +1 −1 +1 −1 +1 −1

Al
c −1 −1 −1 +1 +1 +1
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many exams, concatenate the results and form the follow-
ing sum of pair-products of exam outcomes at a given date
described by n:


�w�n� = A1
a�w�n�A

2
b�w�n�+A1

a�w�n�A
3
c�w�n�

+A2
b�w�n�A

3
c�w�n� (112)

where the variable w denotes the fact that a glass of wine
diluted with water from the tap was served to make the
allergy test. Boole noted now that


�w�n�≥−1 (113)

which can be found by inserting all possible values for the
patient outcomes summed in Eq. (112). For the average
(denoted by �·
) over all examinations we have then also:


�w�= �
�w�n�
 = 1
N

N∑
n=1


�w�n�≥−1 (114)

This equation gives conditions for the product averages
and therefore for the frequencies of the concurrence of cer-
tain values of A1

a�w�n��A
2
b�w�n� etc. These latter frequen-

cies must therefore obey these conditions. Thus we obtain
rules or non-trivial inequalities for the frequencies of con-
currence of the patients symptoms. Boole calls these rules
“conditions of possible experience.” In case of a violation,
Boole states that then the “evidence is contradictory.”
As mentioned earlier, in the opinion of the authors, the

term “possible experience” introduced by Boole is some-
what of a misnomer. The experimental outcomes have been
determined from an experimental procedure in a scientific
way and are therefore possible. What may not be possible
is the one-to-one correspondence of Boole’s logical ele-
ments or variables to the experimental outcomes that the
scientist or statistician has chosen.
In this first example, we may indeed regard the var-

ious Al
o�w�n� = ±1 with given indices as the elements

of Boole’s logic to which the actual experiments can be
mapped. As shown by Boole, this is a sufficient condition
for the inequality of Eq. (114) to be valid. We may in this
case also omit all the indices except for those designating
the birth place and still will obtain a valid equation that
never can be violated:

�Aa�w�Ab�w�
+�Aa�w�Ac�w�
+�Ab�w�Ac�w�
 ≥ −1
(115)

The reason is simply that three arbitrary dichotomic vari-
ables i.e., variables that assume only two values (±1 in our
case) must always fulfill Eq. (115) no matter what their
logical connection to experiments is because we deduce
the three products of Eq. (115) from sequences of each
three measurement outcomes. Note that Eq. (115) contains
six factors with each birthplace appearing twice and rep-
resenting then the identical result. We will now discuss
a slightly modified experiment that is much more general
and contains six measurement results for the six factors.

In this second variation of the investigation, we let only
two doctors, one in Lille and one in Lyon perform the
examinations. The doctor in Lille examines randomly all
patients of types a and b and the one in Lyon all of type
b and c each one patient at a randomly chosen date. The
doctors are convinced that neither the date of examina-
tion nor the location (Lille or Lyon) has any influence and
therefore denote the patients only by their place of birth.
After a lengthy period of examination they find


�w� = �Aa�w�Ab�w�
+�Aa�w�Ac�w�

+�Ab�w�Ac�w�
 = −3 (116)

They further notice that the single outcomes of
Aa�w��Ab�w� and Ac�w� are randomly equal to ±1. This
latter fact completely baffles them. How can the single
outcomes be entirely random while the products are not
random at all and how can a Boole inequality be violated
hinting that we are not dealing with a possible experience?
After lengthy discussions they conclude that there must be
some influence at a distance going on and the outcomes
depend on the exams in both Lille and Lyon such that a
single outcome manifests itself randomly in one city and
that the outcome in the other city is then always of oppo-
site sign.
However, there are also other ways that remove the

cyclicity, ways that do not need to take recourse to influ-
ences at a distance. In this example, although not known to
the doctors beforehand, we have a time and a city depen-
dence of the allergy as described above. Obviously for
measurements on random dates we have the outcome that
Aa�w��Ab�w� and Ac�w� are randomly equal to ±1 while
at the same time 
�w�n�=−3 and therefore 
�w�=−3.
We need no deviation from conventional thinking to arrive
at this result because now, in order to deal with Boole’s
elements of logic, we need to add the coordinates of the
cities to obtain 
�w�= �A1

a�w�A
2
b�w�
+�A1

a�w�A
2
c�w�
+�A1

b�w�A
2
c�w�
 ≥ −3 and the inequality is of the trivial

kind because the cyclicity is removed. The date index does
not matter for the products since both signs are reversed on
even and odd days leaving the products unchanged. Includ-
ing the city labels the doctors realize that A1

b�w�n� =−A2
b�w�n�, totally against their expectations. Contacting

the water delivering company can however resolve this
mystery.
We note that in connection with EPR experiments and

questions relating to interpretations of quantum mechan-
ics, Eq. (114) is of the Bell-type. It is often claimed that
a violation of such inequalities implies that either realism
or Einstein locality should be abandoned. As we saw in
our counterexample which is both Einstein local and real-
istic in the common sense of the word, it is the one to one
correspondence of the variables to the logical elements of
Boole that matters when we determine a possible experi-
ence, but not necessarily the choice between realism and
Einstein locality.
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Realism plays a role in the arguments of Bell and fol-
lowers because they introduce a variable � representing an
element of reality and then write


��� = �Aa���Ab���
+�Aa���Ac���

+�Ab���Ac���
 ≥ −1 (117)

Because no � exists that would lead to a violation except
a � that depends on the index pairs (a, b), (a, c) and (b, c)
the simplistic conclusion is that either elements of reality
do not exist or they are non-local. The mistake here is that
Bell and followers insist from the start that the same ele-
ment of reality occurs for the three different experiments
with three different setting pairs. This assumption implies
the existence of the combinatorial-topological cyclicity
that in turn implies the validity of a non-trivial inequal-
ity but has no physical basis. Why should the elements of
reality not all be different? Why should they, for example
not include the time of measurement? There is furthermore
no reason why there should be no parameter of the equip-
ment involved. Thus the equipment could involve time and
setting dependent parameters such as �a�t���b�t���c�t�
and the functions A might depend on these parameters as
well.8�13�17�50�51

We note that although this example violates the Bell-
type inequality Eq. (114) it does not violate the CHSH
inequality.

7.2. Factorizable Model

The models that we consider in this subsection do not
pretend to account for the correlations of two spin-1/2 par-
ticles in the singlet state but provide further illustrations
of the ideas presented above.
Imagine the standard EPRB setup with a source emit-

ting two particles carrying the variables ��� r� and ��� r ′�,
where 0 ≤ � ≤ 2� and −1 ≤ r� r ′ ≤ 1, see Figure 6.
The source imposes some relation between the variables
r and r ′, as explained later. One particle flies to a station
with the detector in orientation a and the other particle
flies to another station with the detector in orientation b.

D–1

D+1
b

D–1

D+1 a
(ϕ,r ′)(ϕ,r )

S

Fig. 6. Schematic diagram of a factorizable model for the EPRB exper-
iment. The properties of the particle going to the left (right) are rep-
resented by an angle � and a number −1 ≤ r ≤ +1 (−1 ≤ r ′ ≤ +1).
The source S emits these particles with a random, uniformly distributed
angle � and with �r� r ′� distributed according to the density ��r� r ′� (see
text). Based on the setting a (b) and ��� r� (��� r ′�) the gray cylinders
direct the particles to one of the detectors D±1 where they generate a
“click” depending on the choice of ��r� r ′�. This locally causal, factor-
izable model can violate the Bell inequalities �E�2��a� b�±E�2��a� c�� ≤
1−E�2��b� c�.

The detection process and the correlation between the
events in both stations are defined by the probabilities

P�1��S �a�r�=��S�cos��−a�−r��

P �1��S ′ �b�r ′�=��S ′�cos��−b�−r ′��

P �2��S�S ′ �ab�= 1
2�

∫ 2�

0
d�
∫ +1

−1
dr
∫ +1

−1
dr ′P�1��S �a�r�

×P�1��S ′ �b�r ′���r�r ′� (118)

respectively. Here ��·� is the unit step function and
��r� r ′� is a probability density.
We consider three choices for ��r� r ′�, namely

��r� r ′�= 1/4, ��r� r ′�= ��r−r ′�/2, and ��r� r ′�= ��r+
r ′�/2. These three models are local realist, hidden variable
models.5 For any of these three choices, we have

P�1��+1 � a�� =
∫ +1

−1
dr
∫ +1

−1
dr ′P�1��S � a�r���r� r ′�

=
∫ +1

−1
dr
∫ +1

−1
dr ′P�1��S � a�r ′���r� r ′�

= cos2
a−�

2
(119)

hence all three models reproduce Malus law for the single-
particle probabilities.
For ��r� r ′�= 1/4 we find

E�2��a� b�= 1
2
cos�a−b� (120)

while for ��r� r ′�= ��r− r ′�/2 we have

E�2��a� b�= 1− 4
�

∣∣∣∣ sin a−b

2

∣∣∣∣ (121)

It follows that �E�2��a� b�± E�2��a� c�� ≤ 1± E�2��b� c�,
with the E�2�’s given by Eq. (120) or Eq. (121), is always
satisfied, independent of the choice of a, b, and c. If we
write f �2��S� S ′�= P�2��S� S ′ � ab�, f̂ �2��S� S ′�= P�2��S� S ′ �
ac�, and f̃ �2��S� S ′�= P�2��S� S ′ � bc� (see Eq. (49)), it fol-
lows from Section 3.4 that there exists a common proba-
bility distribution for all possible experiments and hence
the EBBI cannot be violated.
However, for ��r� r ′�= ��r+ r ′�/2 we have

E�2��a� b�= 4
�

∣∣∣∣ cos a−b

2

∣∣∣∣−1 (122)

If we substitute expression Eq. (122) in �E�2��a� b�±
E�2��a� c�� ≤ 1± E�2��b� c�, we find that this inequality
may be violated (e.g., for b = a+2� and c = a+�).
This is not a surprise: If ��r� r ′�= ��r+ r ′�/2 then

P�2��S� S ′ � ab� = 1
4�

∫ 2�

0
d�
∫ +1

−1
drP �1��S � a��+r��

×P�1��S ′ � b��−r��� (123)
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cannot be brought in the form

P�2��S� S ′ � ab� =
∫

d�P�1��S � a��P �1��S ′ � b�� (124)

for all possible values of a and b, hence the derivation
of the Bell inequality stops here. Although Eq. (123) has
the same factorizable structure as the local hidden vari-
able models considered by Bell, the fact that it cannot be
brought into the form Eq. (124) illustrates, once again,
the importance of having the common label “�” appear
in all factors for the derivation of the Bell inequality to
hold true.
To relate the model to actual experiments, one needs

to relate ��� r� to some elements of reality. Bell assumes
identical triples of elements of reality for the left and right
going particles but in fact, this assumption lacks a phys-
ical, let alone a logical, basis. By considering ��r� r ′� =
��r + r ′�/2, we avoid this assumption and find violations
of the EBBI. It is of interest to note that if we substitute
Eq. (122) into the CHSH inequality5�41

−2 ≤ E�2��a� b�−E�2��a� c�+E�2��d� b�+E�2��d� c�≤ 2
(125)

we find that it is always satisfied.
Summarizing: The local realist model with ��r� r ′� =

��r + r ′�/2 provides an example of a factorizable model
that violates the Bell inequality but satisfies the CHSH
inequality. Nevertheless, we have constructed a local real-
ist, factorizable model that violates the EBBI. Hence nei-
ther local realism nor factorability are necessary conditions
for the EBBI to hold.

7.3. EPR-Bohm Experiments and Measurement
Time Synchronization

To the best of our knowledge, all real EPRB experiments
that have been performed up to date employ an operational
procedure to decide whether the two detection events cor-
respond to either the observation of one two-particle sys-
tem or (exclusive) to the observation of two single-particle
systems. In EPRB experiments, this decision is taken on
the basis of coincidence in time.52–60 The set of data that is
collected in these real laboratory experiments can be writ-
ten as

��2� = ��d1���d2��� � �= 1� � � � �M	

= ��S1��� t1���a1��� S2��� t2���a2���

� �= 1� � � � �M	 (126)

where di�� = �Si��� ti���ai��� and Si�� =±1 is a dichotomic
variable that indicates which of the two detectors in station
i= 1�2 detected the particle (photon, proton,� � �), ti�� is the
time at which the detector in station i= 1�2 fired, and ai��
denotes a vector of numbers that specifies the instrument
settings at station i = 1�2. For instance, in the experiment

of Weihs et al.57 the ai��’s may contain the rotations of
the photon polarization induced by the electro-optic mod-
ulators. In Eq. (126) (first line), we have made explicit
that the data is collected in pairs, each pair consisting of
several variables, some of which are not dichotomic. The
second line of Eq. (126) gives another view of the same
data, namely as 6-tuples of real-valued numbers. Recalling
that the dichotomic character of the variables was essential
for the derivation of the Boole inequalities, it is unlikely
that similar inequalities hold for the raw data Eq. (126),
for an exception see Ref. [61]. Therefore, if the desire is
to make contact with the Boole inequalities, some further
processing of the data is required.
It is quite natural to identify coincidences by compar-

ing the time differences �t1��− t2���� = 1� � � � �M	 with a
time window W and this is indeed what is being done
in EPRB experiments.52–60 Note however that the aim of
these experiments is to use a value of W that is as small as
technically feasible whereas the time differences become
irrelevant in the limit W →� only. Furthermore, to obtain
a data set that consists of pairs only, the events are selected
such that a1�� = a1 and a2�� = a2 where �a1�a2� is one
particular pair of instrument settings. Accordingly, the
reduced data set becomes

�′�2��a1�a2�= ��S1��� S2��� � a1�� = a1�a2�� = a2�

�t1��− t2��� ≤W� �= 1� � � � �M	 (127)

We are now in the position to apply the results of
the earlier sections. Let us consider the case where there
are three pairs originating from experiments with different
instrument settings, namely �a1�a2� = �a�b�, �a1�a2� =
�a� c�, and �a1�a2� = �b� c�. The three pairs of instru-
ment settings yield the data sets ��2� =�′�2��a�b�, ���2� =
�′�2��a� c�, and ���2� = �′�2��b� c� but, as we have seen
several times, there are no Boole inequalities Eq. (13) for
the corresponding pair correlations unless we make the
hypotheses that there is an underlying process of triples
that gives rise to the data. Should we therefore find that the
pair correlations violate the Boole inequalities Eq. (13), the
only logically valid conclusion is that the named hypothe-
sis is false.
We have shown in a series of papers45�46�50�51�62 that

it is possible to construct models, that is algorithms, that
are locally causal in Einstein’s sense, generate the data
set Eq. (126) and reproduce exactly the correlation that is
characteristic for a quantum system in the singlet state.
These algorithms can be viewed as concrete realizations
of Fine’s synchronization model.8 According to Bell’s the-
orem, such models do not exist. This apparent paradox is
resolved by the work presented in this paper: There exists
no Bell inequality for triples of pairs, there are only EBBI
for pairs extracted from triples.
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8. SUMMARY AND CONCLUSIONS

The central result of this paper is that the necessary condi-
tions and the proof of the inequalities of Boole for n-tuples
of two-valued data (see Section 2) can be generalized to
real non negative functions of two-valued variables (see
Section 3) and to quantum theory of two-valued dynam-
ical variables (see Section 4). The resulting inequalities,
that we refer to as extended Boole-Bell inequalities (EBBI)
for reasons explained in the Introduction and in Section 3,
have the same form as those of Boole and Bell. Equally
central is the fact that these EBBI express arithmetic rela-
tions between numbers that can never be violated by a
mathematically correct treatment of the problem: These
inequalities derive from the rules of arithmetic and the non
negativity of some functions only. A violation of these
inequalities is at odds with the commonly accepted rules
of arithmetic or, in the case of quantum theory, with the
commonly accepted postulates of quantum theory.
Applied to specific examples, the main conclusions of

the present work are:
• In the original Einstein-Podolsky-Rosen-Bohm (EPRB)
thought experiment, one collects the three data sets ��2� =
��S1��� S2��� � � = 1� � � � �M	, ���2� = ���S1��� �S2��� � i =
1� � � � �M	, and ���2� = �� �S1��� �S2��� � �= 1� � � � �M	. From
these data sets, one extracts the correlations F �2�, �F �2�, and
�F �2�. Then, Bell and followers assume that it is legitimate
to substitute F �2� for F �3�

ij , �F �2� for F �3�
ik , and �F �2� for F �3�

jk

into the Boole inequalities �F �3�
ij ± F

�3�
ik � ≤ 1± F

�3�
jk for

�i� j� k�= �1�2�3�� �3�1�2�� �2�3�1�, which does hold for
triples �S1��� S2��� S3���, but not necessarily for pairs of
two-valued data. Therefore, if it then turns out that a data
set leads to a violation of Boole’s inequalities, the only
conclusion that one can draw is that the data set does
not satisfy the conditions necessary to prove the Boole
inequalities, namely that three data sets of pairs can be
extracted from a single data set of triples (see Section 2).
• A violation of the EBBI cannot be attributed to influ-
ences at a distance. The only possible way that a viola-
tion could arise is if grouping is performed in pairs (see
Section 7.1).
• In the original EPRB thought experiment, one can mea-
sure pairs of data only, making it de-facto impossible to
use Boole’s inequalities properly. This obstacle is removed
in the extended EPRB thought experiment discussed in
Section 6.3. In this extended EPRB experiment, one can
measure both pairs and triples and consequently, it is
impossible for the data to violate Boole’s inequalities. This
statement is generally true: It does not depend on whether
the internal dynamics of the apparatuses induces some cor-
relations among different triples or that there are influences
at a distance. The fact that this experiment yields triples of
two-valued numbers is sufficient to guarantee that Boole’s
inequalities cannot be violated.
• The rigorous quantum theoretical treatment of a
quantum flux tunneling problem (see Section 5) and the

EPR-Bohm experiment (see Section 6) provide explicit
examples that quantum theory can never give rise to vio-
lations of the EBBI.
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