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a b s t r a c t

Many experiments can be interpreted in terms of random processes operating according to some inter-
nal protocols. When experiments are costly or cannot be repeated only one or a few finite samples are
available. In this paper we study data generated by pseudo-random computer experiments operating ac-
cording to particular internal protocols. We show that the standard statistical analysis performed on a
sample, containing 105 data points or more, may sometimes be highly misleading and statistical errors
largely underestimated. Our results confirm in a dramatic way the dangers of standard asymptotic sta-
tistical inference if a sample is not homogeneous. We demonstrate that analyzing various subdivisions
of samples by multiple chi-square tests and chi-square frequency graphs is very effective in detecting
sample inhomogeneity. Therefore to assure correctness of the statistical inference the above mentioned
chi-square tests andother non-parametric sample homogeneity tests should be incorporated in any statis-
tical analysis of experimental data. If such tests are not performed the reported conclusions and estimates
of the errors cannot be trusted.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Outcomes of experiments or surveys in various domains of science are usually interpreted as observed values of one or more random
variables obeying some, in general, multivariate probability distribution. Gathered data are often assumed to be simple random samples.
A random sample is simple if it is homogeneous and all trials are independent.

The dangers of statistical inference based on finite samples are well known to statisticians but many experimentalists seem to be
unaware of them. Let us cite here [1]: ‘‘incorrect assumptions of ‘simple’ random sampling can invalidate statistical inference’’.

Computer packages for statistical analysis produce descriptive statistics and outcomes of various significance tests. However these
packages cannot replace statistical thinking and mistaken conclusions are often drawn in a variety of studies because the researchers do
not appreciate the significance of the assumptions about the probability distribution underlying a model and for other reasons [2].

Particular caution is needed in the case where only one large sample of data is available and we want to make a sound statistical
inference based on it, as in for example, the data obtained in the experiments of Christensen et al. [3] and Giustina et al. [4]. One may not
simply assume that the experimental data are ‘simple’ random samples without verifying it.

Many experimentalists believe, when a sample size is 104 or larger, that a sample average and a sample mean error give reliable
information about studied statistical population even if a studied sample is not a perfect simple random sample. In this paper we show that
such belief is unjustified and a careful study of sample homogeneity is always necessary. Some experimental devices, operating according
to specific internal protocols may produce strange, but legitimate, outcomes which usually would be considered as outliers and rejected.

In order to explore possible anomalies in large finite samples, we study several pseudo-random computer experiments generating time
series of discrete data according to different internal protocols. We use the term ‘‘internal’’ to indicate that the details of the protocol are
inaccessible to any person analyzing the data, as in real-life applications. We demonstrate that standard statistical inference of one or a
few of large samples (containing as much as 107 data points) generated by some of these protocols in terms of standard errors and various
confidence intervals can be highly misleading.
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By subdividing our samples into 100 bins (each bin containing 105 data items) and by performing 4950 chi-square bin-to-bin
compatibility tests we demonstrate that samples produced by some of our computer experiments are not homogeneous, explaining the
invalid conclusion based on the performed significance tests. For the sampleswhich are homogeneousweobtain close to perfect agreement
with a corresponding probabilistic model.

In our paper we not only demonstrate the dramatic consequences of sample inhomogeneity but we suggest which preliminary
supplementary statistical tests of the data should be performed in order to assure a sound statistical inference. These tests detected the
anomalies in our computer generated samples without making use of any knowledge about a particular protocol.

2. Standard statistical inferences

Let us assume that A can take k different values: a1, a2, . . . , ak. In a long run of the experiment we obtain a random sample S =

{x1, x2, . . . , xN} of sizeN which according to standard samplingmethods is interpreted as an observation of amultivariate randomvariable
{A1, A2, . . . , AN} where Ai are independent and identically distributed random variables (i.i.d.): Ai ∼ D.

The empirical frequency distributions of various outcomes fi = #(xj = ai)/N are found and believed to approach the probabilities
provided by the theory. Furthermore the probability distribution of the variable Ā =

1
N

N
i=1 Ai is, due to the central limit theorem (CLT),

believed to be well approximated by a normal distribution N(µĀ, σ
2
Ā ) with µĀ = µA and σĀ = σA/

√
N where µA and σA are the mean

and the standard deviation of the random variable A. In spite of the fact that CLT is valid when N tends to infinity it is often assumed that
already for N ≥ 30 the normal distribution provides a reasonable approximation and that the unknown variance σ 2

A can be replaced by a
value of its unbiased estimator s2:

s2 =

N
i=1

(xi − x̄)2

N − 1
. (1)

A sample mean x̄ is considered as a good estimate of ⟨A⟩ = µA and a standard error of the mean SEM = s/
√
N as a good estimate of

σĀ = σA/
√
N .

As N increases the confidence in the validity of the approximation by a normal distribution is increasing and the errors become smaller
and smaller. The most exact probabilistic statement, if the normal-distribution approximation is valid, can be expressed in terms of the
confidence intervals Iα:

Iα =


x̄ − zα/2s/

√
N, x̄ + zα/2s/

√
N


(2)

saying that the probability that the interval Iα covers the unknown value µA is (1 − α).
If the asymptotic normality of the distribution is not assumed, the Chebyshev’s inequality can be used and the confidence interval (2)

is replaced by

Ic =


x̄ − cs/

√
N, x̄ + cs/

√
N


(3)

and the probability that the interval Ic covers the unknown value µA is (1 −
1
c2 ).

Of course the estimation of SEM = s/
√
N is valid if the variables Ai are independent and identically distributed random variables (i.i.d.):

Ai ∼ D. But this has to be carefully checked and not taken for granted. The Chebychev’s inequality for the finite samples is valid under the
supplementary assumptions [5,6].

3. Experiments and invisible internal protocols

Let us imagine a following experiment. A signal is entering a measuring device (considered to be a black box) and from time to time
some discrete outcomes are produced and a sample S is obtained. If the outcomes seem to be randomly distributed we could assume a
following probabilistic model:

• a signal is described by a probability distribution p1(m)

• a state of the device at the moment of a measurement is described by a probability distribution p2(n)
• the output of the device is one of discrete values A(m, n).

If this simple probabilistic model is assumed then the expectation value:

⟨A⟩ =

m,n

A(m, n)p1(m)p2(n). (4)

The probability distribution p(A(m, n) = a) and the standard deviation σA are easily found and compared with experimental data.
As we mentioned above we do not know how our device produces successive outcomes. Therefore we perform several Monte Carlo

simulations using various possible internal protocols and we compare the properties of the finite samples generated by these protocols.
We define three different protocols:

Protocol 1 = (N1, 1,m):

• generate one value of n and one value ofm using p1(m) and p2(n)
• evaluate A(m, n) and output this value
• repeat the process N1 times in order to create a sample of size N = N1.
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Table 1
Statistical inference based on a single runs and on the collection of 100 runs.

Protocol ⟨A⟩S / ⟨A⟩ SEM 99.9% CI 99% CI (Cheb.) ⟨A⟩S / ⟨A⟩ 100 runs

1 0.9887 0.4491 × 10−2
[0.9740, 1.0034] [0.9438, 1.0336] 0.9997 ± 0.4346 × 10−3

2 0.8527 0.4923 × 10−2
[0.8365, 0.8689] [0.8035, 0.9019] 0.9833 ± 0.1127 × 10−1

3 0.9236 0.3941 × 10−2
[0.9106, 0.9366] [0.8842, 0.9630] 0.9994 ± 0.6493 × 10−2

Protocol 2 = (N1,N2,m):

• generate one value of n and N2 > 1 values ofm using p1(m) and p2(n)
• evaluate A(m, n) and output the values for the N2 different values ofm
• repeat the process N1 times in order to create a sample of a size N = N1 N2.

Protocol 3 = (N1,N2, n):

• generate one value ofm and N2 > 1 values of n using p1(m) and p2(n)
• evaluate A(m, n) and output the values for the N2 different values of n
• repeat the process N1 times in order to create a sample of a size N = N1 N2.

From the created finite samples we compute the frequency distributions, sample means and a sample standard deviations. In the limit
when both N1 and N2 tend to infinity one might expect that estimates of proportions and averages should be consistent for all different
protocols.

However, we find significant differences between our large samples. These are due to the differences between p1(m) and p2(n),
asymmetric sampling of n and m and the asymmetry of the function A (m, n) in one of our two models.

4. Models and Monte Carlo simulation

We perform several Monte Carlo simulations based on two different models.
Model 1

We choose A(m, n) = ((m + n + 1) mod 3) + 1 where m and n are random variables taking values 0, 1, or 2 and 0 or 1, respectively.
The probability distributions are defined as

p1(m) : p1(0) = 1/8, p1(1) = 1/2 and p1(2) = 3/8 (5)

p2(n) : p2(0) = 1/4 and p2(1) = 3/4. (6)

This device produces three outcomes 1, 2 or 3 distributed as p(A = 1) = 15/32, p(A = 2) = 10/32 and p(A = 3) = 7/32. From (1) we
find that the expectation value ⟨A⟩ = 1.75.
Model 2

We choose A(m, n) = (m + 2n)2 where m = 40, 80, or 100 and n = 100 or 500. The probabilities p1(m) and p2(n) have the same
values and are assigned in the same order as in (5) and (6).

This device produces 6 outcomes denoted by a corresponding couple (m, n) : (40, 100) = 57600, (40, 500) = 1081600, (80, 100) =

78400, (80, 500) = 1166400, (100, 100) = 90000 and (100, 500) = 1210 000.
Corresponding probability distribution is defined as p(40, 100) = 1/32, p(40, 500) = 3/32, p(80, 100) = 1/8, p(80, 500) = 3/8,

p(100, 100) = 9/32, p(490000) = 9/32 and the theoretical expectation value calculated using (4) is ⟨A⟩ = 899150.
It is convenient to use normalized averages ⟨A⟩S / ⟨A⟩, where ⟨A⟩S is a sample average and ⟨A⟩ is a theoretical expectation value found

using the probabilistic model (4). Using the three different protocols described above, 100 large samples of the same size were generated
for each protocol. The output of our computer program contains among others (see Appendix for a representative output):

• for the runs labeled 1, 25, 50, 75 and 100: standard errors of the mean (SEM) and SEM calculated using 5, 10, 100 bins.
• ⟨A⟩S / ⟨A⟩ and corresponding SEM obtained by using all the data from 100 runs.
• the averages and the maximum values of χ2 and the smallest P-values obtained from 99 × 50 chi-square cross-comparison of all 100

runs produced by each of the protocols
• for each protocol, a histogram of the χ2 values obtained from 99 × 50 chi-square tests.

5. Experimental results and data analysis

We created samples containing 104 and 105 data items by choosing N1 = 4 or 40 and N2 = 250, 2500 and 25000 or vice versa. By
repeating the computer experiments 100 times, we generated large random samples containing 106 or 107 outcomes subdivided into 100
bins. We have checked that our conclusions did not depend on the particular random number generator used and that they did not change
when we repeated the experiments.

First we want to test the hypothesis H0: ⟨A⟩S / ⟨A⟩ ≥ 1 using the data generated in a run 25 by our 3 protocols for N1 = 4,N2 = 2500
and the model 1.

In Table 1, 99% CI (Cheb.) is the confidence interval based on the Chebyshev’s inequality. As in [7] we use (3) with c = 10. The 99% CI
(Cheb.) corresponds to 10 standard deviations confidence interval. To find 99.9% CI we use (2) with zα/2 = 3.29.

Since the averages shown in Table 1 were calculated using 104 data points and the confidence intervals for the different protocols do
not overlap one might conclude that three samples were drawn from different statistical populations.
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Table 2
Testing H0: ⟨A⟩S / ⟨A⟩ ≤ 1 using model 2 and 4 runs produced by the protocol 3.

Run 1 2 3 4 100 runs

⟨A⟩S / ⟨A⟩ 0.3928 0.1304 × 10+1 0.1304 × 10+1 0.1303 × 10+1 0.9727
SEM 0.1665 × 10−2 0.1396 × 10−3 0.1395 × 10−3 0.1397 × 10−3 0.2851 × 10−1

1 − ⟨A⟩S / ⟨A⟩ +364 SEM −2177 SEM −2236 SEM −2168 SEM +0.95 SEM

Table 3
Comparison of observed frequencies for model 2 and (N1 = 4,N2 = 25000).

(m, n) (40, 100) (40, 500) (80, 100) (80, 500) (100, 100) (100, 500)

p1(m) p1(n) 0.03125 0.09375 0.125 0.375 0.09375 0.28125
Protocol 1 0.03127 0.09371 0.1252 0.3749 0.09363 0.2813
Protocol 3 0.0265 0.0984 0.1063 0.3936 0.07964 0.2955

The data of protocol 1 are in concert with hypothesis H0 but one can with great confidence reject H0 based on the data of protocols 2
and 3. Obviously, this conclusionwould be incorrect as the averages obtained from 100 independent runs are consistent with the expected
theoretical value of ⟨A⟩S / ⟨A⟩ = 1.

Analyzing in the samemanner the results for runs 1, 50, 75 and 100, as we did for the run 25, we find that all the 5 CIs cover the correct
value ⟨A⟩S / ⟨A⟩ = 1 in the case of the protocol 1, in contrast to 2 out of 5 CIs for the protocols 2 and 3. Using the 99.9% CI, we expect that
only 1 out of 1000 cases may not include the correct value. Using the 99% CI (Cheb.), we expect that 1 out of 100 intervals may not include
the correct value.

Therefore, based on the data of one long experimental run only, the use of the CLT or Chebyshev’s inequality and related confidence
intervals does not guarantee the correctness of the statistical inference and a more detailed analysis is required.

Let us present now another example showing an even more dramatic breakdown of standard statistical inference if used to test
hypothesis H0: ⟨A⟩S / ⟨A⟩ ≤ 1. We consider the data of 4 runs generated by model 2 and protocol 3 with N1 = 4,N2 = 25000, each
containing 105 data.

Once again the use of confidence intervals may lead to incorrect conclusions. From Chebyshev‘s inequality, the probability of observing
a 2000 SEM deviation from zero is 0.25×10−6. Therefore, if only runs 1–4were available one would with great confidence conclude using
the runs 2–4 that 1 − ⟨A⟩S / ⟨A⟩ was negative and reject the null hypothesis H0. The run 1 would be considered as an outlier.

The calculation of SEM = s/
√
N assumes the independence of sampling distributions. If these distributions are not independent the

SEM might be larger. For example if X and Y are independent random variables and var(X) = var(Y ) then var(X + Y ) = 2 var(X) but if
X = Y then var(2X) = 4 var(X). Even if we replaced the SEM by s, the data in the columns 2–4 would show at least a 6 standard deviation
violation of the tested inequality.

Being more cautious, one could divide the runs into 5, 10 and 100 bins and estimate the SEM using the binned data and then check the
consistency of successive bins by using a series of chi-square tests. For run 1 we obtain SEM = 0.1057 using 10 bins and SEM = 0.04836
when using 100 bins. Moreover, the chi-square tests for 5 and 10 bins of the run 1 show large bin-to bin variability yielding a minimal
P-value = 0 (meaning that the numerical value is smaller 10−300), providing additional justification for the rejection of the run 1. Repeating
the same analysis for the runs 2–4 the bin-to-bin consistency of the data produced by these runs is confirmed.

Since the value of ⟨A⟩S / ⟨A⟩ obtained by averaging the data of 100 runs (column 5 of Table 2) does not allow to reject H0 the preceding
statistical inference based on only four long runs was highly misleading.

6. Empirical frequencies

One might expect that in spite of the run-to-run variability, the empirical frequency distributions of outcomes averaged over all
100 runs (i.e. obtained from samples of size 107) should be consistent, for all protocols, with the theoretical predictions. However, this
expectation is not supported by the data. As the standard errorÙσÛp1−Ûp2 of the difference of twoproportion estimators is smaller than (2n)−0.5

((2n)−0.5
= 0.002 for n = 107), we might detect differences of more than 9ÙσÛp1−Ûp2 between the observed frequencies.

In particular for model 2 and (N1 = 4,N2 = 25000), the observed frequencies for the protocol 1 and 3 together with the theoretical
predictions from (4–6) for model 2 are displayed in Table 3.

From Table 3 it is clear that the data produced using the protocol 3 deviate significantly from the multinomial distribution. Note the
close-to-perfect agreement between the data of protocol 1 and the theoretical model.

7. Chi-square tests and histograms

The statistical inference based on individual runs of both models operating according to the protocol 1 is consistent with the
probabilistic model (4–6). In contrast, the statistical inference based on data created according to protocols 2 and 3 turned out to be
unreliable, indicating that the large data sets produced by these protocols are not ‘simple’ random samples. Therefore, to make reliable
inferences, it is necessary to test the homogeneity of the samples in more systematic way. A simple, effective procedure is to make chi-
square compatibility tests between pairs of bins from various partitions of the samples.

In particular, we concentrate on the analysis of the data obtained in 100 repetitions of our simulation experiments treating individual
runs as the bins of large samples containing 106 or 107 data points. To compare these bins wemake 99×50 = 4950 chi-square tests using
the statistics:

χ2
=

k
i=1

(Ri − Si)2

Ri + Si
(7)
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Table 4
Minimum P-values from 4950 chi-square tests probing the sample homogeneity. An entry ‘‘0’’ indicates that the
minimum P-value is smaller than 10−300 .

(25000, 4) (2500, 40) (4, 25000) (4, 2500)

Protocol 1 0.8537 × 10−3 0.3038 × 10−3 0.1970 × 10−3 0.1029 × 10−2

Protocol 2 0.2319 × 10−13 0.8788 × 10−110 0 0
Protocol 3 0.1417 × 10−12 0.5400 × 10−160 0 0

Fig. 1. Relative frequency f (χ2(k))/max f (χ2(k)) of observing χ2(k), versus χ2(k)/maxχ2(k) as obtained for protocols k = 1, 2, 3, (N1 = 4,N2 = 2500) andmodel 2 and
100 repetitions of the experiment. Note that the values ofmaxχ2(k)may vary significantlywith the protocol k: we havemaxχ2(1) = 0.2045×102,maxχ2(2) = 0.2×105 ,
and max χ2(2) = 0.12 × 105 .

Fig. 2. Relative frequency of χ2(k) versus χ2(k) for protocols k = 1, 2, 3 as obtained for protocols k = 1, 2, 3, (N1 = 4,N2 = 2500) and model 2 and 100 repetitions of the
experiment.

where Ri and Si are counts of the same outcomes in the compared bins and k = 3 and k = 6 for model 1 and model 2 respectively. The χ2

statistics has respectively ν = 2 and ν = 5 degrees of freedom for model 1 and 2. Since the differences of cell frequencies are large we do
not need to use the continuity correction. In essence, this chi-square test tells us whether the counts of various outcomes in the different
bins of our large samples are similar.

If the samples are produced according to amultinomial distribution, all trials are identical and independent andχ2 obeys approximately
the chi-square distribution. However, if the experiment producing the outcomes is not multinomial, χ2 not necessarily obeys the chi-
square probability distribution and the calculated P-value = P(χ2

≥ χ2(observed)) should be used with great care.
Nevertheless, the chi-square tests (7) may detect significant differences between the bins. The P-value is calculated as P-value =

Q (χ2(observed)/2, ν/2), where Q (a, x) is the incomplete gamma function. In Table 4 we display theminimum P-values obtained in 4950
chi-square tests performed on the samples created by model 2 using the three different protocols and for various choices of N1 and N2.

The minimum P-value in Table 4 is the value corresponding to the largest χ2 (observed) in 4950 comparisons. For the protocols 2 and
3 the probability P of observing at least one so large value χ2 (observed), in 4950 chi-square comparison tests, can be very conservatively
estimated using the Bonferroni correction: P ∼ 4950 × (min P-value). We see that if we multiply the rows 3 and 4 by 4950 the entries
remain still negligible.

It then follows thatwe have no reasons to doubt the homogeneity of the samples generated by using the protocol 1. The samples created
by the protocols 2 and 3 are not homogeneous. It can be clearly seen from histograms of all 4950 observed values of χ2 displayed in Figs. 1
and 2.
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8. Discussion

Wesimulated several pseudo-randomcomputer experiments producing 3 or 6 different discrete outcomes.Wegenerated large samples
of sizes 104–107 and observed a dramatic breakdown of standard statistical inference. This breakdown was due to the fact that some
sampleswere not homogeneous.Wedemonstrated this by using various partitions of the samples, bin-to-bin chi-square tests andobserved
χ2 frequency histograms.

In general, these bin-to-bin chi-square tests are easy to implement, see [8], easy to use and, as shown in the present paper, allows
detecting anomalies in experimental or computer generated samples very effectively. Therefore, we suggest that this should be the first
test for homogeneity of the data sample. The procedure is straightforward. Suppose that the data set S consists ofN items and that a unique
label 1, . . . , I has been assigned to each item. In practice such an assignment can always be made. The number k defines the number of
different bins and should be much smaller than the total number items N . The next step is to partition the whole data set into a number
M of smaller sets s1, . . . , sM . The numberM should be chosen such that N/M is large compared to the number of different bins I such that
for each set s1, . . . , sM the number of items per bin is a reasonably large number, not just zero or one. The final step is then to compute
χ according to Eq. (7) with (Ri,Si) being all possible pairs (sj, sj′) with 1 ≤ j < j′ ≤ M . The procedure just sketched uses fragments of the
data sets to perform the test but it some cases, one may want to test if the distribution of items complies with a given distribution. In such
a case, one can use the same procedure to compare the (Ri,Si) where the former are taken from the data set and the latter is taken from
data generated according to the given distribution, see [8] for more details.

Once the anomalies are detected one has at disposal several non-parametric comparison tests (see for example, [9,10]) and several
specific tests invented to study time series of data (see for example, [11]) which can be used to obtain more detailed information about
experimental data.

Summarizing: as the deviations from homogeneity can invalidate the statistical inference homogeneity tests should become a standard part
of statistical analysis of any large sample of experimental data in any domain of science.

Appendix. Representative results of the computer simulation
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