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Abstract

We propose and analyse simple deterministic algorithms that can be used to construct machines that have primitiv
capabilities. We demonstrate that locally connected networks of these machines can be used to perform blind classifi
an event-by-event basis, without storing the information of the individual events. We also demonstrate that properly
networks of these machines exhibit behavior that is usually only attributed to quantum systems. We present networks
ulate quantum interference on an event-by-event basis. In particular we show that by using simple geometry and the
capabilities of the machines it is possible to simulate single-photon interference in a Mach–Zehnder interferometer. The
ence pattern generated by the network of deterministic learning machines is in perfect agreement with the quantum t
result for the single-photon Mach–Zehnder interferometer. To illustrate that networks of these machines are indeed c
simulating quantum interference we simulate, event-by-event, a setup involving two chained Mach–Zehnder interfer
and demonstrate that also in this case the simulation results agree with quantum theory.
 2005 Elsevier B.V. All rights reserved.

PACS:02.70.-c; 03.65.-w
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1. Introduction

Computer simulation is widely regarded as complementary to theory and experiment[1]. At present there ar
only a few physical phenomena that cannot be simulated on a computer. One such exception is the do
experiment with single electrons, as carried out by Tonomura and his co-workers[2]. This experiment is carrie
out in such a way that at any given time, only one electron travels from the source to the detector[3]. Only after a
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substantial amount of electrons (approximately 50 000) have been detected an interference pattern emerge[2]. This
interference pattern can be described by quantum theory. We use the term “quantum theory” for the math
formalism that gives us a set of algorithms to compute the probability for observing a particular event[4–6]. Of
course, the quantum-mechanics textbook example[7,8] of a double-slit can be simulated on a computer by solv
the time-dependent Schrödinger equation for a wave packet impinging on the double slit[9,10]. Alternatively, in
order to obtain the observed interference pattern we could simply use random numbers to generate events
to the probability distribution that is obtained by solving the time-independent Schrödinger equation. Howev
is not what we mean when we say that the physical phenomenon cannot be simulated on a computer. T
is that it is not known how to simulate, event-by-event, the experimental observation that the interference
appears only after a considerable number of events have been recorded on the detector. Quantum theor
describe the individual events, e.g., the arrival of a single electron at a particular position on the detectio
[2,4,7,8]. Reconciling the mathematical formalism (that does not describe single events) with the experime
that each observation yields a definite outcome is often referred to as the quantum measurement paradox
central, most fundamental problem in the foundation of quantum theory[4,7,11].

If computer simulation is indeed a third methodology, it should be possible to simulate quantum phen
on an event-by-event basis. In view of the fundamental problem alluded to above, there is little hope that
find a simulation algorithm within the framework of quantum theory. However, if we think of quantum theo
a set of algorithms to compute probability distributions there is nothing that prevents us from stepping out
framework that quantum theory provides. Therefore, we may formulate the physical processes in terms o
messages, and algorithms that process these events and messages. In this paper, we demonstrate that s
ministic, causal and classical processes that have a primitive form of learning capability can be used to
quantum systems, not by solving a wave equation but through event-by-event simulation. In other words, w
that fundamental quantum phenomena such as interference can be simulated by using algorithms that per
time recurrent learning[12]. In this paper, we also show that the same approach can be used for more conve
tasks that require some form of learning[12].

In Section2 we introduce the basic concepts for constructing event-based, deterministic learning m
(DLMs). An essential property of these machines is that they process input event after input event and do
information about individual events. A DLM can discover relations between input events (if there are an
responds by sending its acquired knowledge in the form of another event (carrying a message) through o
output channels. By connecting an output channel to the input channel of another DLM we can build netw
DLMs. As the input of a network receives an event, the corresponding message is routed through the netwo
which it is being processed. At any given time during the processing, there is only one input–output con
in the network that is actually carrying a message. The DLMs process the messages in a sequential ma
communicate with each other by message passing. There is no other form of communication between
DLMs. Although networks of DLMs can be viewed as networks that are capable of unsupervised learnin
have little in common with neural networks[12]. The first DLM described in Section2 is equivalent to a standar
linear adaptive filter[13] but the DLMs that we actually use for our applications do not fall into this clas
algorithms.

In Section3 we generalize the ideas of Section2 and construct a DLM which groupsK-dimensional data in
two classes on an event-by-event basis, i.e. without using memory to store the whole data set. We demon
this DLM is capable of detecting time-dependent trends in the data and of performing a blind classificatio[12].
Effectively, this DLM performs a principal-component analysis[14] on the fly, without explicitly diagonalizing th
covariance matrix.

In Section4 we show how to construct DLM-networks that generate output patterns that are usually tho
as being of quantum mechanical origin. We first build a DLM-network that simulates photons passing thr
polarizer and show that quantum theory describes the output of this deterministic, event-based network.
describe a DLM-network that simulates a beam splitter and use this network to build a Mach–Zehnder
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behavior of these networks.

A summary and outlook is given in Section5.

2. Deterministic learning machines

2.1. Learning points on the real axis

We consider a machine that has one input and two output channels labeled by±1 (seeFig. 1). The internal state
of the machine after processing thenth input event (n = 0,1, . . .) is uniquely defined by the real variablexn. At the
next eventn+1 the machine receives as input a real numberyn+1. For simplicity, but without loss of generality, w
assume thatyn+1 ∈ [−1,1]. The machine responds by sending a message containingyn+1 through one of the two
output channels�n+1 = ±1. The machine selects the output channel�n+1 = +1 or �n+1 = −1 by minimizing
the cost functionC(�n+1) defined by

(1)C(�n+1) = ∣∣yn+1 − xn − (1− α)�n+1|yn+1 − xn|
∣∣,

updates its internal state according to the rule

(2)xn+1 = xn + (1− α)�n+1|yn+1 − xn|,
and sends a message with the input valueyn+1 on the selected output channel�n+1. The parameter 0< α < 1 that
enters Eqs.(1) and (2)controls the decision process. For simplicity we assume thatα is fixed during the operatio
of the machine.

It is easy to see that�n+1 = +1 if xn � yn+1 and�n+1 = −1 if xn > yn+1. Thus, for this particular machin
we have

(3)�n+1 = yn+1 − xn

|yn+1 − xn| .

Hence the update rule(2) can be written as the familiar recursion

(4)xn+1 = αxn + (1− α)yn+1.

Fig. 1.Left: Schematic representation of the machine that responds to the inputyn+1 by passing the input to one of the two output chann
�n+1 = ±1. The value of�n+1 depends on the current state of the machine, encoded in the variablexn, the inputyn+1, and the update rule(2)
in whichα appears as a control parameter.Right: Evolution of the internal variablexn as a function of the number of eventsn. Thick solid line:
yn+1 = −0.5 for n = 1, . . . ,1000 andyn+1 = 0.5 for n = 1001, . . . ,2000; Thin solid line: Random sequence ofyn+1 = ±0.5.
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The solution of Eq.(4) reads

(5)xn = αnx0 + (1− α)

n−1∑
i=0

αn−1−iyi+1,

wherex0 denotes the initial value of the internal variable.
As an illustration of how this machine learns, we consider the most simple example whereyn+1 = y for all

n � 0. Then from Eq.(5) we find that

(6)xn = αnx0 + (1− αn)y.

As 0< α < 1, we conclude that limn→∞ xn = y. Thus the machine “learns” the value of the input variabley. From
Eq. (4) it follows thatxn � y (xn � y) impliesxn+1 � y (xn+1 � y). Hencexn approachesy monotonically (and
�n is the same for alln). Therefore, ifyn = y, the machine always sends the value ofyn through the same outpu
channel.

A distinct feature of this machine is its ability to adapt to changes in the input pattern. We illustrate this im
property by two examples. Letyn = −0.5 for 1� n � 1000 andyn = 0.5 for 1000< n � 2000. During the first
1000 events the machine will learn−0.5. After 1000 events only 0.5 is being presented as input. Then, the mach
“forgets” −0.5 and learns 0.5 as shown in the right panel ofFig. 1. In this simulationα = 0.99. Alternatively,
if yn is a random sequence of±0.5 (each with the same probability) the machine has to learn−0.5 and 0.5
simultaneously. Because of this it cannot “forget” and it ends up oscillating around the mean of the inpu
(zero in this example) as illustrated in the right panel ofFig. 1. Let us now assume that our machine has reached
oscillating state. All input eventsyn = 0.5 give�n = +1 and hence the machine sends 0.5 over the+1 channel.
A second machine attached to this channel only receives 0.5 events and will learn 0.5. This suggests that a netwo
of these machines can be used as an adaptive classifier.

Consider the network of three layers of machines shown in the left panel ofFig. 2. Each machine in the networ
learns the average of the numbers it receives at its input channel and sends the numbers which are sma
or equal) than the number it learned to the−1 (+1) output channel. In our numerical experiments we setα =
0.99. We start with 5000 events of random numbersyn+1 ∈ {−0.75,−0.25,0.25,0.75}, each occurring with equa
probability. Machine 1 learns the average (zero in this example) and sends the negative (positive)yn+1 over the−1
(+1) channel to the input of machine 2 (3). Machine 2 (3) learns−0.50 (0.50), as shown in the top right panel
Fig. 2, and sends−0.75 (0.25) over its−1 output channel and−0.25 (0.75) over its+1 output channel. Machine
4 to 7 learn−0.75,−0.25,0.25 and 0.75, respectively, as shown in the bottom right panel ofFig. 2. Each of these
machines forwards the received input on its+1 (−1) output channel if the initial value of its internal variable
smaller (larger) than the received input value. Let us now assume that after 5000 events the input data se
to yn+1 ∈ {−0.75,−0.25,0.25,0.50}. As can be seen from the right panel ofFig. 2, machines 1, 3 and 7 “forget
the number they learned and replace it by−0.0625, 0.375 and 0.50, respectively. All other machines are unaffe
because they never get 0.50 as input. After another 5000 events we change the set of input values once
time toyn+1 ∈ {−0.60,−0.75,−0.25,0.25,0.50}, i.e. we add one element. Now, machine 1 learns−0.17, machine
2 learns−0.53 and the internal state of machine 3 remains unchanged. Machine 4 can now receive two n
on its input channel, namely−0.75 and−0.60. As a consequence, machine 4 learns−0.675, i.e. the average of th
two possible input numbers. Machine 4 puts−0.60 on its+1 output channel and−0.75 on its−1 output channel
In order for the network to learn all the numbers of the input set, we would have to attach one extra mac
each output channel of machine 4.

2.2. Learning points on a finite interval

For the machine defined by Eqs.(1) and (2), formulating the operation of the machine through the minimiza
of the difference between the input and internal variable may seem a little superfluous and indeed, for this p
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Fig. 2. Left: Diagram of the three-level machine that adaptively classifies the input datayn+1. Right: Evolution of the internal variablesxn

of the machines as a function of the number of eventsn. The machine number is used to label the corresponding line.Top right: First three
machines;Bottom right: Third-level machines.

machine it is. However, this formulation is a convenient starting point for defining machines that can perform
intricate tasks. For instance, let us make an innocent looking change to the update rule(2) by writing

(7)xn+1 = αxn + (1− α)�n+1,

and replace the cost function(1) by the corresponding expression

(8)C(�n+1) = ∣∣yn+1 − αxn − (1− α)�n+1
∣∣.

For�n+1 = +1 we havexn+1 = 1− α(1− xn) and for�n+1 = −1 we havexn+1 = −1+ α(1+ xn). Therefore, if
0< α < 1 and|x0| � 1, the internal variable will always be in the range[−1,1]. At each event the internal variab
either increases by(1− α)(1− xn) (if �n+1 = +1) or decreases by(1− α)(1+ xn) (if �n+1 = −1). In both cases
this change is always nonzero, except ifxn = ±1 which can only occur ifyn+1 = ±1. The ratio of the step sizes
(1− xn)/(1+ xn).

The machine defined by Eqs.(7) and (8)behaves differently from the machine defined by Eqs.(1) and (2). To
see this, it is instructive to consider the case 0� yn+1 = y < 1 for all n � 0 (the case−1 < yn+1 = y < 0 can
be treated in the same manner). For concreteness we assume that−1 < x0 < y. At the first event, minimization
of Eq. (8) yields�1 = +1 andx1 = 1 + α(x0 − 1). In other words, the internal variablex moves towardsy. As
long asxn < y, the machine selects�n+1 = +1, always increasing its internal variablexn. For somen � 1 we
must havexn > y. Then, making another move in the positivex-direction allows for two different decisions. If th
error that results is larger than the error that is obtained by moving in the negative direction the machine de
set�n+1 = −1. Otherwise it makes another move in the positivex-direction (�n+1 = +1). In any case, for som
n > 1 the machine will select� = −1. Note that when this happens, we must havex < y and� = +1.
n+1 n+1 n+2
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Fig. 3.Left: Time evolution of the internal variablexn of the machine defined by Eqs.(7) and (8). The input events arey = −0.25,α = 0.99,
and the initial valuex0 = 0. Forn > 30 the internal variablexn oscillates abouty. Forn > 500 the sequence of increments (�n+1 = +1) and
decrements (�n+1 = −1) of xn repeats itself after 8 events (data not shown). Lines are guides to the eyes.Right: The number of increments o
the internal variable (�n+1 = +1) divided by the total number of events as a function of the value of the input variabley. Bullets: Each data
point is obtained from a simulation of 1000 events with a fixed, randomly chosen value of−1 < y < 1, using the last 500 events to count t
number of�n+1 = +1 events. Solid line:(1+ y)/2.

This implies that after thisnth event (that we denote byn0) the internal variable will oscillate (forever) around t
input valuey. This process is illustrated inFig. 3(left).

For m > n0 we have|xm+1 − y| � (1 − α)max(1 − y,1 + y). Thus, if 0< 1 − α � 1, the amplitude of the
oscillations is small. The machine “learns” the input valuey and the ratio of the increments to decrement
(1 + xm+1)/(1 − xm+1) ≈ (1 + y)/(1 − y). In this stationary regime of oscillating behavior, the number of tim
the machine activates the+1 (−1) channel is given by(1 + y)/2 ((1 − y)/2). The simulation results shown i
Fig. 3(right) confirm the correctness of this analysis. For a fixed (unknown) value of the input variable, the
which the machine defined by the rules(7) and (8)activates one of its output channels is determined by the v
of its internal variable. Therefore, this rate reflects the value that the machine has learned by processing
events. Depending on the application, the message that is sent through the active output channel can conxn+1

or the input valueyn+1 (there is nothing else that can be send). Obviously we can make the learning proces
precise by increasingα < 1. Of course, a larger value ofα also results in slower learning: In general it will ta
more events for the internal variable to reach the value where it starts to oscillate.

2.3. Learning points on a circle

In going from the first to the second example of Section2 we changed the update rule such that the varia
xn is constrained to lie in the interval[−1,1]. We now consider the two-dimensional analogue of the mach
described in Section2.2for which the internal vector(x1,n, x2,n) and input vector(y1,n+1, y2,n+1) represent points
on a circle. This machine receives as input a sequence of anglesφn+1 defined by

(9)cosφn+1 = y1,n+1√
y2

1,n+1 + y2
2,n+1

, sinφn+1 = y2,n+1√
y2

1,n+1 + y2
2,n+1

,

and responds by activating one of the two output channels.
For alln > 0, the update rules are defined by

(10)x1,n+1 = αx1,n + βΘn+1, x2,n+1 = αx2,n + β(1− Θn+1),
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whereΘn+1 = 0,1 and 0< α < 1. In order that the internal vectorxn+1 = (x1,n+1, x2,n+1) stays on the unit circle
we must have

(11)β = −α
[
x1,nΘn+1 + x2,n(1− Θn+1)

] ±
√

1− α2 + α2[x2
1,nΘn+1 + x2

2,n(1− Θn+1)].
Substitution of Eq.(11) in Eq.(10)gives us four different rules:

(12)
x2,n+1 = s

√
1+ α2(x2

2,n − 1), x1,n+1 = αx1,n if Θn+1 = 0,

x1,n+1 = s

√
1+ α2(x2

1,n − 1), x2,n+1 = αx2,n if Θn+1 = 1,

wheres = ±1 takes care of the fact that for each choice ofΘn+1, the machine has to decide between two quadra
The cost function is defined by

(13)C = −(x1,n+1y1,n+1 + x2,n+1y2,n+1).

Obviously, the cost function(13) is nothing but the inner product of the vectorsxn+1 andyn+1. The new interna
state itself is determined by calculating the cost equation(13) for each of the four candidate update rules listed
Eq.(12)and selecting the rule that yields the minimum cost. Note that the minimum of the cost function(13)does
not depend on the length of the vector of input variables(y1,n+1, y2,n+1). From Eq.(12) it follows that if Θn+1 = 0
by the value ofx1,n+1 is obtained by rescaling ofx1,n andx2,n+1 is adjusted such thatx2

1,n+1 + x2
2,n+1 = 1. For

Θn+1 = 1 we interchange the role of the first and second element ofxn+1.
In general the behavior of the machine defined by rules(12) and (13)is difficult to analyze without the use of

computer. However, for a fixed input vectoryn+1 = y it is clear what the machine will try to do: It will minimize th
cost equation(13) by rotating its internal vectorxn+1 to bring it as close as possible toy. However,xn+1 will not
converge to a limiting value but instead it will keep oscillating about the input valuey. An example of a simulation
is given inFig. 4(left). For a fixed input vectoryn+1 = y the machine reaches a stationary state in which its inte
vector oscillates abouty. In this stationary state the output signal consists of a finite sequence of ones and
The machine repeats this sequence over and over again. Obviously, the whole process is deterministic. T
of the approach to the stationary state depend on the initial value of the internal vectorx0, but the stationary stat
itself does not.

Fig. 4.Left: Time evolution of the angle representing the internal vectorxn of the machine defined by Eqs.(12) and (13). The input events are
vectorsyn+1 = (cos 30◦,sin 30◦). The direction of the initial vectorx0 is chosen at random. In this simulationα = 0.99. Forn > 60 the ratio
of the number of increments (Θn+1 = 0) to decrements (Θn+1 = 1) is 1/3, which is(sin 30◦/cos 30◦)2. Data forn < 20 has been omitted t
show the oscillating behavior more clearly. Lines are guides to the eyes.Right: The number of (Θn+1 = 1) events divided by the total numbe
of events as a function of the value of the input variableφ. Bullets: Each data point is obtained from a simulation of 1000 events with a fi
randomly chosen value of 0� φ < 360◦, using the last 500 events to count the number of (Θn+1 = 1) events. Solid line: cos2 φ.
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These observations are of much more general nature than the example given inFig. 4(left) suggests. In fact, a
the applications discussed below amply illustrate, the stationary-state analysis is a very useful tool to pre
behavior of the machines. Assuming that 0< 1− α � 1 and that we have reached the stationary regime in w
the internal vector performs small oscillations about(cosφ,sinφ), a simple calculation shows that

(14)
δφ0 = φ1,n+1 − φ1,n ≈ 1− α2

2

cosφ

sinφ
if Θn+1 = 0,

δφ1 = φ1,n+1 − φ1,n ≈ α2 − 1

2

sinφ

cosφ
if Θn+1 = 1.

In the stationary regime, we haveN0δφ0 ≈ N1δφ1 whereN0 (N1) is the number ofΘn+1 = 0 (Θn+1 = 1) events.
From Eq.(14) it then follows immediately thatN0/(N0 + N1) ≈ sin2 φ andN1/(N0 + N1) ≈ cos2 φ. The results
of this analysis are in excellent agreement with the simulation results shown inFig. 4(right).

The conventional approach to regard the variablesΘn+1 as input is fundamentally different from the approa
adopted in this paper. This can be seen by reformulating the update rules in terms of difference equat
to assume that theΘn+1 = 0,1 are independent, uniform random variables with meanΘ = 〈Θn+1〉. The four
rules(12)can be written as

(15)
x2

1,n+1 = α2x2
1,n + (1− α2)Θn+1,

x2
2,n+1 = α2x2

2,n + (1− α2)(1− Θn+1).

Formally Eq.(15)has the same structure as Eq.(4). Averaging over many realizations of{Θn+1 = 0,1} and taking
the limit n → ∞ we obtain

(16)

〈
x2

1

〉 = lim
n→∞

〈
x2

1,n+1

〉 = Θ,〈
x2

2

〉 = lim
n→∞

〈
x2

2,n+1

〉 = 1− Θ.

In other words, a machine that operates according to the rules(12) and receives as input the random seque
Θn+1 will (on average) approach a state in which the direction of its internal vector gives us an estimateΘ =
〈Θn+1 = 0,1〉. In contrast, a machine that minimizes the cost equation(13)and updates its internal state accord
to Eq. (12) responds on either output channelΘn+1 = 0 or output channelΘn+1 = 1, with a frequency that is
directly related to the difference between the current input angle and the angle defined by the internal vec

2.4. Learning points on aK-dimensional hypersphere

Consider a sequence of events, characterized by vectorsyn+1 = (y1,n+1, y2,n+1, . . . , yK,n+1) for n > 0. The
vectoryn+1 is the input for the machine. The internal state of the machine is described by aK-dimensional unit
vectorxn = (x1,n, x2,n, . . . , xK,n). We define the 2K candidate update rules{j = 1, . . . ,K; sj = ±1} by

(17)
xi,n+1 = sj

√
1+ α2(x2

i,n − 1) if i = j,

xi,n+1 = αxi,n if i 
= j.

Note thatxT
nxn = 1 impliesxT

n+1xn+1 = 1 for each of the 2K update rules. The machine responds to the inputyn+1
by selecting from the 2K possible rules in Eq.(17), the update rule that minimizes the cost

(18)C = −xT
n+1yn+1,

and by sending a message containingyn+1 (or, depending on the application,xn+1) on one of its output channel
Note that the minimum of the cost function(18) does not depend on the length of the vectorsxn+1 or yn+1.
Disregarding the variablessj that merely serve to determine the sign ofxi,n+1 there areK rules. Hence there ca
be as many asK output channels. However, depending on the application, it may be expedient to reduce the
of output channels by arranging them in groups.
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2.5. Communication between events

The machines analyzed in the previous subsections have one input channel that receives input and tw
channels, only one of which sends out data (a message) at a particular event. An obvious generaliza
construct machines that accept, at a given instance, input from one out of two different sources. This is ab
necessary if we want to build machines in which events can communicate or, in physical terms, interact w
other. We now demonstrate that the machines that we introduced above already have the capability to l
interact with each other. Therefore we do not need to add a new feature or rule to the machines.

Consider a machine that has two input channels 0 and 1 and an internal vectorxn with K = 4 components
At the (n + 1)th event, either input channel 0 receives the two-component vectoryn+1 = (y1,n+1, y2,n+1) or input
channel 1 receives the two-component vectoryn+1 = (y3,n+1, y4,n+1).

In the former case the machine transforms this input into the input vectorŷn+1 = (y1,n+1, y2,n+1, x3,n, x4,n)

of four elements by using the current internal vector as a source for the missing elements. Similarly, in th
case the input vector becomesŷn+1 = (x1,n, x2,n, y3,n+1, y4,n+1). Then the machine usesŷn+1 to determine the
cost and selects the update rule according to the procedure described in Section2.4 (with ŷn+1 replacingyn+1).
This machine learns the two-dimensional vectorsyn+1 = (y1,n+1, y2,n+1) andyn+1 = (y3,n+1, y4,n+1) separately,
as if it consists of two separate, independent two-dimensional machines, with the additional crucial feature
internal vector represents a point on a 4-dimensional unit sphere.

It is not difficult to imagine what this machine does in the case that it receives events on only one of t
input channels (say 0). Irrespective of the initial value of the internal vectorx0, the machine will always select th
update rule withj = 1,2 (see Eq.(17)) and the two componentsx3,n andx4,n will vanish exponentially fast with
increasingn (recall that 0< α < 1). Thus, after a few events the internal state of the machine indicates th
machine receives events on only one channel.

If the machine receives input on both channels (but never simultaneously), Eq.(17) implies that the machin
only scales the two components of the internal state that it uses to provide the missing elements for buil
input ŷn+1. Therefore, in the stationary regime, the length of the two-dimensional vector(x1,n, x2,n) ((x3,n, x4,n))

is proportional to the number of events on input channel 0 (1). Furthermore the number ofj = 1,2 (j = 3,4) events
is approximately equal to the number of events on input channel 0 (1). Although this may seem a very ele
form of communication, it is sufficient to construct machines that perform very complicated tasks.

2.6. Summary

The machines described above are simple deterministic machines that make decisions. The machine
to the input event by choosing from all possible alternatives, the internal state that minimizes the error b
the input and the internal state itself. Then the machine sends a message through one of its output chan
message contains information about the decision the machine took while updating its internal state and, d
on the application, also contains other data that the machine can provide. By updating its internal state, the
“learns” about the input it receives and by sending messages through one of its two output channels, it
environment about what it has learned. In the sequel we will call such a machine adeterministic learning machin
(DLM). For a particular choice of the update rule (see Section2.1), the machine performs linear estimation but
the other examples of this section amply demonstrate, minor modifications to this rule and/or cost functio
machines that may behave in a substantially different manner.

3. Application to blind classification

The DLM of Section2.1learns about the input data by moving a point on a line. Obviously, this point sep
two parts of the line. The generalization toK-dimensional space is a(K − 1)-dimensional hyperplane that divide
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the space into two parts. Thus, to interpret two-dimensional data the DLM should learn a line instead of
We represent the line by a segmentLn defined by its mid-pointxn and its directiondn. As the DLM receives an
eventyn+1, i.e. a point in a two-dimensional plane, the DLM updates its internal line segmentLn and sends the
information describingLn through the−1 (+1) channel, depending on whether it lies on the left (right) side of
line. The update procedure consists of two steps. First we define two support pointsv1 andv2 on either side ofxn

along the directiondn by

(19)v1 = xn − dn/2, v2 = xn + dn/2,

and we update the two support points according to

(20)
v̂1 = v1 + (1− α)(yn+1 − v1)‖yn+1 − v1‖,
v̂2 = v2 + (1− α)(yn+1 − v2)‖yn+1 − v2‖,

where 0< α < 1 controls the learning process. Then we compute the new mid-point and direction of th
segment:

(21)xn+1 = (v̂1 + v̂2)/2, dn+1 = (v̂1 − v̂2)/‖v̂1 − v̂2‖.
From Eq.(20) it follows that the support point farthest away fromyn+1 makes the largest move. Therefore, as n
input data is received by the DLM, both the mid-point and the direction of the line segment change. Note
update rule(20) is non-linear in the difference between internal and input vector. Although a linear update ru
works, our numerical experiments (results not shown) indicate that the non-linear rule(20)performs much better.

In generalxn will converge to the mean of the input vectors andv1 andv2 will be pulled most strongly in the
direction of largest variance. ThereforeLn will be (approximately) perpendicular to the largest principal compon
of the covariance matrix of the input data. In other words, the DLM defined above can find the eigenvec
corresponds to the largest eigenvalue of the covariance matrix by processing data points in a sequential m
without actually having to compute the elements of the covariance matrix.

As an illustration of the capabilities of the DLM introduced in this section, let us consider a classificatio
in which we want to blindly group events into two categories. The input datayn+1 = (y1,n+1, y2,n+1) are generated
through a Gaussian random process described by:

(22)y1,n = cos(γ n + s)π + r1, y2,n = sin(γ n + s)π + r2,

wheres is a uniform random bit. The random numbersr1 andr2 are drawn from the normal distributionN(0,1/2).
In our numerical example we takeγ = 1/5000 andα = 0.99. From Eq.(22) it is clear that the input events cons
of points in a plane that are drawn from one of two (s = 0,1) Gaussian distributions, the centers of which rotate w
a period of 10 000 events. The mean of all input data is(0,0) and there is no preferred direction of largest varian
The reason of course is that the center of the Gaussian distributions slowly moves on the unit circle. Clea
kind of classification task can only be performed by permanently updating the estimate of the direction a
is exactly what the DLM does. InFig. 5 we present results of a blind classification experiment that illustrate
operation of the DLM defined by the rules(19)–(21). The DLM processes event-by-event, each time updatin
estimate for the separatrix. For comparison we also show the result obtained by the principal component
[14] using as input the group of 100 most recent data points processed by the DLM. The differences betw
classifiers are rather small so that it is clear that the DLM-based classifier performs very well.

The two-dimensional DLM described above can easily be extended to a DLM that processesK-dimensional
input data. Instead of a line segment the DLM has to learn a segment of a(K − 1)-dimensional hyperplane. Th
can be done by extending the procedure used in the two-dimensional case. The hyperplane segment is
by a mid-pointxn andK − 1 orthonormal directionsdk for k = 1, . . . ,K − 1. We chooseK points{vk} on the
hyperplane defined by{d } andx such that the distance between each pair of points is one. As new inpu
k n
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Fig. 5. Snapshots of the input data and results of a DLM-based classifier defined by Eqs.(19)–(21)(solid line) and a conventional princ
pal-component-based classifier (dashed line)[14]. The data points are random deviates with a normal distribution with variance 1/2 and means
±(cos(2πn/10000),sin(2πn/10000)). Each panel shows the output of the DLM-based classifier after it has processed, point-by-point,
data points shown. The classifier smoothly follows the rotation of the means. In contrast to the event-by-event processing of the D
classifier, the principal-component-based classifier processes the whole set of 100 data points simultaneously.

yn+1 is received by the DLM these points are updated according to (the generalization of) Eq.(20). As in the two-
dimensional case, from the updated points we can calculate the new mid-point and the new directions. H
unlike in the two-dimensional case, these directions do not need to be orthonormal. The orthonormality
restored by using the (modified) Gramm–Schmidt procedure[15].

4. Application to deterministic simulation of quantum interference

4.1. Photon polarization

We demonstrate that the DLM defined by Eqs.(12) and (13)and a passive element that performs a plane rota
are sufficient to perform a deterministic simulation of the quantum theory[6] of photon polarization.

We start by recalling some elementary facts about photon polarization[16,17]. Some optically active materia
like calcite split an incoming beam of light into two spatially separated beams[16,18]. The light intensity of these
beams is related to the angle of polarizationψ of the electromagnetic wave, relative to the orientationφ of the
material[18]. We disregard all imperfections of real experiments and assume that the experimental dat
exact agreement with the wave mechanical theory. Then the intensitiesI0 of beam 0 andI1 of beam 1 are given b
[16,17]

(23)I = cos2(ψ − φ), I = sin2(ψ − φ),
0 1
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respectively. If the incident beam has a random polarization, averaging of Eq.(23)over allψ shows that half of the
light intensity will go to beam 0 and the other half to beam 1.

If the conventional light source is replaced by a source that emits one photon at a time, the photon le
material either in the direction of beam 0 or beam 1, never in both[16]. Collecting photons over a sufficient
long period shows that Eq.(23) still gives the number of photons detected in the direction of beam 0 (1), div
by the total amount of detected photons[16]. Quantum theory[6] describes the polarization in terms of a tw
dimensional (complex-valued) vector and the action of the material is to rotate this vector by an angleφ (set
by the experimentalist)[17]. The probability to observe photons in beam 0 (1) is given by the square of th
(1st) element of the vector[17]. In addition, as the photon leaves the material in beam 0 (1), its polarizationφ

(φ +π/2) [17]. Thus the piece of material can be used to prepare and also determine the polarization of the
and is called a “polarizer”[18].

According to quantum theory[6], the polarizer rotates the vector of polarization amplitudes in the follow
manner[17]:

(24)

(
b0
b1

)
=

(
cosφ sinφ

−sinφ cosφ

)(
a0
a1

)
.

Still according to quantum theory[6], the intensity in beam 0 (1) is given by|b0|2 (|b1|2). An incident beam with
an angle of polarizationψ is described by the vector(a0, a1) = (cosψ,sinψ). From Eq.(24)we obtain(b0, b1) =
(cos(ψ − φ),sin(ψ − φ)) and henceI0 = |b0|2 = cos2(ψ − φ) andI1 = |b1|2 = sin2(ψ − φ), in agreement with
Eq.(23).

We now construct a simple deterministic machine that generates events of which the distribution agre
the probability distributions predicted by quantum theory[6]. The layout of this “polarizer” is shown inFig. 6. The
incoming event (photon) carries an (unknown) angleψn+1. The purpose of the passive elementR(φ) is to perform
a rotation

(25)R(φ) =
(

cosφ −sinφ

sinφ cosφ

)
,

of the input vectoryn+1 = (cosψn+1,sinψn+1) by the angleφ. The resulting vectorzn+1 = (cos(ψn+1 −
φ),sin(ψn+1 − φ)) is sent to the input of a DLM that operates according to Eqs.(12) and (13). If Θn+1 = 0,
the DLM responds by sending the vectorz′

n+1 = (cosφ,sinφ) through the output channel 0. IfΘn+1 = 1, the
DLM responds by sending the vectorz′

n+1 = (cos(φ + π/2),sin(φ + π/2)) through the output channel 1. Clear
this procedure is strictly deterministic. We emphasize that the DLM processes information event by event a
not store the data contained in each event.

In Fig. 6(right) we show simulation results for the machine depicted inFig. 6(left). Each data point represen
the intensity in beam 0 (1), i.e. the number ofΘ = 0 (1) events divided by the total amount of events. The mac
is initialized once by choosing a random direction of the vectorx0. The angle of rotationφ is kept fixed for 1000
events, then a uniform random number is used to select another direction, and this procedure is repe
times. In all these numerical experiments we setα = 0.99. Fig. 6 shows the results for two different numeric
experiments: In the first set of 100 runs, the direction of polarizationψ of the incoming photons is also determin
by means of uniform random numbers. In the second set of 100 runs, the direction of polarization of the in
photons is fixed (ψ = 25◦). FromFig. 6(right) it is clear that quantum theory[6] provides a very good descriptio
of the input–output behavior of the DLM shown inFig. 6(left).

As a second illustration we use the same DLM to simulate an experiment with three polarizers descr
Feynman[16]. The diagram of this experiment is shown inFig. 7 (left). A randomly polarized beam of photon
passes through the first polarizer (without loss of generality we set its angleφ1 equal to zero). Each output chann
is used as input to another polarizer. Both these polarizers are tilted by the same angleφ = φ = φ. According
2 3
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Fig. 6.Left: Diagram of the DLM network that simulates a polarizer on a deterministic, event-by-event basis.Right: Simulation results for the
DLM network shown on the left. Each data point represents the number of events in an output channel accumulated after 1000 inp
After each set of 1000 events, the orientationφ of the polarizer is changed randomly. Open circles: Normalized intensity in output ch
0 for incoming photons with a polarization angleψ = 25◦; Solid line: Result (cos2(ψ − φ)) obtained from quantum theory[6] for incoming
photons with a polarization angleψ = 25◦; Bullets: Normalized intensity in output channel 1 for incoming photons with a random polariz
angleψ ; Dashed line: Result of quantum theory[6] for incoming photons with a random polarization angleψ .

Fig. 7.Left: Schematic representation of an experiment with three polarizers[16]. Right: Simulation results for the network of DLMs show
on the left. Each data point represents the normalized intensity accumulated over 1000 events. After each set of 1000 events, the oφ

of the polarizers 2 and 3 is changed randomly. Bullets: Output channel 0; Crosses: Output channel 1; Open circles: Output chann
squares: Output channel 3. Lines represent the results of quantum theory[6].

to quantum theory[6], the intensity at the output of these four channels is (from top to bottom, seeFig. 7 (left))
2−1 cos2 φ, 2−1 sin2 φ, 2−1 sin2 φ, and 2−1 cos2 φ. The results of our numerical experiments are shown inFig. 7
(right). The simulation procedure is the same as the one used to generate the data ofFig. 6. Also in these numerica
experiments we setα = 0.99. We emphasize once more that the randomness in these discrete-event sim
only enters through the characterization of the photon source and through our procedure of selecting the
of the polarizer for each set of 1000 events. Actually, the latter only serves to counter the possible objec
the apparent quantum mechanical behavior would be caused by monotonically changing the direction o
larizers. As in the previous example, it is clear that quantum theory[6] describes the input–output behavior of t
three-DLM network very well.
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Fig. 8. Left: Diagram of the network of two DLMs that performs a deterministic simulation of a single-photon beam splitter (BS)
event-by-event basis[19]. The solid lines represent the input and output channels of the BS. Dashed lines indicate the flow of dat
the BS.Right: Simulation results for the beam splitter shown on the left. Input channel 0 receives(y1,n+1, y2,n+1) = (cosψ0,sinψ0) with
probabilityp0. Input channel 1 receives(y3,n+1, y4,n+1) = (cosψ1,sinψ1) with probabilityp1 = 1− p0. Each data point represents 10 0
events. After each set of 10 000 events, a uniform random number in the range[0,360] is used to choose the anglesψ0 andψ1. Markers give
the simulation results for the normalized intensity in output channel 0 as a function ofφ = ψ0 − ψ1. Open circles:p0 = 1; Bullets:p0 = 0.5;
Open squares:p0 = 0.25. Lines represent the results of quantum theory[6].

4.2. Beam splitter

We now show that twoK = 4 DLMs and two passive devices that perform a plane rotation by 45◦ are sufficient
to build a network that behaves as if it where a single-photon beam splitter. First we describe the network
we demonstrate that it acts as a beam splitter.

The network shown inFig. 8 has two input channels (0 and 1) and two output channels (0 and 1)
network receives events at one of the two input channels. Each input event carries information in th
of a two-dimensional unit vector. Either input channel 0 receives(y1,n+1, y2,n+1) or input channel 1 receive
(y3,n+1, y4,n+1). The input is fed into the device described in Section2.5. The purpose of this front-end DLM is t
transform the information contained in two-dimensional input vectors (of which only one is present for any
input event), into a four-dimensional unit vector. The four-dimensional internal vector of this device is split in
groups of two-dimensional vectors(̃x1,n+1, x̃4,n+1) and (̃x3,n+1, x̃2,n+1) and each of these two-dimensional ve
tors is rotated by 45◦. Put differently, the four-dimensional vector is rotated once in the(1,4)-plane about 45◦ and
once in the(3,2)-plane about 45◦. The order of the rotations is irrelevant. The resulting four-dimensional ve

is then sent to the input of a secondK = 4 DLM. This back-end DLM sends(x1,n+1, x2,n+1)/

√
x2

1,n+1 + x2
2,n+1

through output channel 0 if it used rulej = 1,2 (see Eq.(17)) to update its internal state. Otherwise it sen

(x3,n+1, x4,n+1)/

√
x2

3,n+1 + x2
4,n+1 through output channel 1.

The operation of the network depicted inFig. 8 can be analyzed analytically if we disregard transient eff
and assume that the information carried by events on channel 0 (1) is given byyn+1 = y = (y1, y2) (y′

n+1 = y′ =
(y3, y4)). We denote byp the number of events on input channel 0 divided by the total number of events. The
number of events on input channel 1 is given by 1− p.

In the stationary regime, the internal state(̃x1,n+1, x̃2,n+1, x̃3,n+1, x̃4,n+1) of the front-end DLM (seeFig. 8)
learns(w1,w2,w3,w4) = (y1

√
p,y2

√
p,y3

√
1− p,y4

√
1− p ). Carrying out the two plane rotations of 4◦

we see that the back-end DLM receives as input the four-dimensional vector(w1 − w4,w3 + w2,w3 − w2,

w1 + w4)/
√

2. In the stationary regime, the internal vector(x1,n+1, x2,n+1, x3,n+1, x4,n+1) of the back-end DLM
oscillates about(w1 − w4,w3 + w2,w3 − w2,w1 + w4)/

√
2. Therefore, in the stationary regime and for fix

two-dimensional vectors on input channels 0 and 1, the input–output relation of the BS network ofFig. 8 can be
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(26)




w1
w2
w3
w4


 BS−→ 1√

2




w1 − w4
w3 + w2
w3 − w2
w1 + w4


 .

Using two complex numbers instead of four real numbers Eq.(26)can also be written as

(27)

(
w1 + iw2
w3 + iw4

)
BS−→ 1√

2

(
w1 − w4 + i(w3 + w2)

w3 − w2 + i(w1 + w4)

)
.

In quantum theory[6] the presence of photons in the input modes 0 or 1 is represented by the prob
amplitudes(a0, a1) [17,20–22]. According to quantum theory[6], the probability amplitudes(b0, b1) of the photons
in the output modes 0 and 1 of a beam splitter are given by[17,20–22]

(28)

(
b0
b1

)
=

(
a0 + ia1
a1 + ia0

)
= 1√

2

(
1 i

i 1

)(
a0
a1

)
.

Identifyinga0 with w1 + iw2 = (y1 + iy2)p anda1 with w3 + iw4 = (y3 + iy4)(1− p) it is clear that by construc
tion, the DLM network inFig. 8 will allow us to simulate a beam splitter, not by calculating the amplitudes(28)
but by a deterministic event-by-event simulation.

In Fig. 8 (right) we present results of discrete-event simulations using the DLM network depicted inFig. 8
(left). Before the simulation starts, the internal vectors of the DLMs are given a random value (on the unit s
Each data point represents 10 000 events. All these simulations were carried out withα = 0.99. For each set o
10 000 events, a uniform random number in the range[0,360] generates two anglesψ0 andψ1. Input channel
0 receives(y1,n+1, y2,n+1) = (cosψ0,sinψ0) with probability p0. Input channel 1 receives(y3,n+1, y4,n+1) =
(cosψ1,sinψ1) with probabilityp1 = 1− p0. Random processes only enter in the procedure to generate the
data. The DLM network processes the events sequentially and deterministically. FromFig. 8 it is clear that the
output of the deterministic DLM-based beam splitter reproduces the probability distributions as obtaine
quantum theory[6].

4.3. Mach–Zehnder interferometer

In quantum physics[6], single-photon experiments with one beam splitter provide direct evidence fo
particle-like behavior of photons[4,20]. The wave mechanical character appears when one performs single-p
interference experiments. In this subsection we construct a DLM network that displays the same interfere
terns as those observed in single-photon Mach–Zehnder interferometer experiments[20].

The schematic layout of the DLM network is shown inFig. 9. Not surprisingly, it is exactly the same as th
of a real Mach–Zehnder interferometer. The BS network described in the previous subsection is used for t
splitters. The phase shift is taken care of by a passive device that performs a plane rotation. Clearly there is
one mapping from each relevant component in the interferometer to a processing unit in the DLM network
that the processing units in the DLM network only communicate with each other through the message (
that propagates through the network.

According to quantum theory[6], the probability amplitudes(b0, b1) of the photons in the output modes 0(N2)

and 1(N3) of the Mach–Zehnder interferometer are given by[17,20–22]

(29)

(
b0
b1

)
= 1

2

(
1 i

i 1

)(
eiφ0 0
0 eiφ1

)(
1 i

i 1

)(
a0
a1

)
.

Note that in a quantum mechanical setting it is impossible to simultaneously measure (N0/(N0 + N1), N1/(N0 +
N1)) and (N2/(N0 + N1), N3/(N0 + N1)): Photon detectors operate by absorbing photons. However, in our d
ministic, event-based simulation there is no such problem.
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Fig. 9. Left: Diagram of a DLM network that simulates a single-photon Mach–Zehnder interferometer on an event-by-event basis[19]. The
DLM network consists of two BS devices (seeFig. 8 (left)) and two passive devices (R(φ0) and R(φ1)) that perform plane rotations b
φ0 and φ1, respectively. There is a one-to-one correspondence between the elements of a physical Mach–Zehnder interferome[18,20]
and the units in the DLM network. The number of eventsNi in channeli = 0, . . . ,3 corresponds to the probability for finding a phot
on the corresponding arm of the interferometer.Right: Simulation results for the DLM-network shown on the left. Input channel 0 rece
(y1,n+1, y2,n+1) = (cosψ0,sinψ0) with probability one. A uniform random number in the range[0,360] is used to choose the angleψ0. Input
channel 1 receives no events. Each data point represents 10 000 events (N0 + N1 = N2 + N3 = 10000). Initially the rotation angleφ0 = 0
and after each set of 10 000 events,φ0 is increased by 10◦. Markers give the simulation results for the normalized intensities as a functi
φ = φ0 − φ1. Open squares:N0/(N0 + N1); Solid squares:N2/(N2 + N3) for φ1 = 0; Open circles:N2/(N2 + N3) for φ1 = 30◦; Bullets:
N2/(N2 + N3) for φ1 = 240◦; Asterisks:N3/(N2 + N3) for φ1 = 0; Solid triangles:N3/(N2 + N3) for φ1 = 300◦. Lines represent the resul
of quantum theory[6].

In Fig. 9 we present a small selection of simulation results for the Mach–Zehnder interferometer bui
DLMs. We assume that input channel 0 receives(y1,n+1, y2,n+1) = (cosψ0,sinψ0) with probability one and tha
input channel 1 receives no events. This corresponds to(a0, a1) = (cosψ0 + i sinψ0,0). We use uniform random
numbers to determineψ0. In all these simulationsα = 0.99. The data points are the simulation results for
normalized intensityNi/(N0 + N1) for i = 0,2,3 as a function ofφ = φ0 − φ1. Lines represent the correspondi
results of quantum theory[6]. FromFig. 9 it is clear that quantum theory provides an excellent description o
deterministic, event-based processing by the DLM network.

The examples presented inFig. 9 do not rule out that there may be settings for the anglesψ0, φ0 andφ1 for
which quantum theory fails to give a good description of the behavior of the DLM network. However ext
series of simulations show that this is not the case. Instead of presenting the results of these simulation
demonstrate that quantum theory[6] also describes the stationary-state input–output behavior of more ext
DLM networks.

As an example we consider the DLM network depicted inFig. 10. Obviously this network maps exactly on
two chained Mach–Zehnder interferometers[19]. Now there are seven parametersp0, ψ0, ψ1, φ0, φ1, φ2, andφ3
that may be varied, so simply plotting selected cases is not the proper procedure to establish that quantu
describes the stationary-state behavior of the DLM network. Therefore we adopt the following strategy. F
set of 10 000 events, we use seven random numbers to fix the parametersp0, ψ0, ψ1, φ0, φ1, φ2, andφ3. Then we
collect the data for these 10 000 events and compare the intensity in output channel 0 (N4) and 1 (N5) with the
corresponding results of quantum theory[6]. The latter is given by

(30)

(
b0
b1

)
= 1

2
√

2

(
1 i

i 1

)(
eiφ2 0
0 eiφ3

)(
1 i

i 1

)(
eiφ0 0
0 eiφ1

)(
1 i

i 1

)(
a0
a1

)
.

For each choice of{p0,ψ0,ψ1, φ0, φ1, φ2, φ3} we compute the differences||b0|2 − N4/(N4 + N5)| and ||b1|2 −
N /(N + N )|. N (N ) is the number of events in output channel 0 (1) of the third beam splitter.N + N =
5 4 5 4 5 0 1
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Fig. 10. Diagram of a DLM network that simulates single-photon propagation through two chained Mach–Zehnder interferomete
event-by-event basis.

N2 +N3 = N4 +N5 is the total number of events (10 000 in this case). InFig. 11we show||b0|2 −N4/(N4 +N5)|
as a function ofp0, ψ0 − ψ1, φ0 − φ1, andφ2 − φ3. In all these simulationsα = 0.99. Once again it is clear tha
quantum theory[6] provides a very good description of a DLM-based simulation of two chained Mach–Ze
interferometers.

4.4. Technical note

All simulations that we presented in this section have been performed forα = 0.99. From the description of th
learning process it is clear thatα controls the rate of learning or, equivalently, the rate at which learned inform
can be forgotten. Furthermore it is evident that the difference between a constant input to a DLM and the
value of its internal variable cannot be smaller than 1− α. In other words,α also limits the precision with which
the internal variable can represent a sequence of constant input values. On the other hand, the number of
to balance the rate at which the DLM can forget a learned input value. The smaller 1− α is, the larger the numbe
of events has to be for the DLM to adapt to changes in the input data.

We use the last example of Section4.3 to illustrate the effect of changingα and the total number of eventsN .
In Fig. 12we show the results of repeating the procedure used to obtain the data shown inFig. 11but instead of
α = 0.99 andN = 10 000 events per data point, we usedα = 0.9999 andN = 1 000 000 event per data point. A
expected, the difference between the simulation data and the results of quantum theory decreases if 1−α decreases
andN increases accordingly. ComparingFig. 11 with Fig. 12 it is clear that the decrease of this difference
roughly proportional to the inverse of the square root of the number of events. Note that each data point inFig. 11
is generated without the use of random processes.

4.5. Stochastic learning machines

In the stationary regime, the sequence of messages that a DLM (network) generates is strictly determin
some applications, e.g., for quantum physics[6], it may be desirable to randomize these sequences. A mar
modification turns a DLM into a stochastic learning machine (SLM). Here the termstochasticdoes not refer to the
learning process but to the method that is used to select the output channel that will carry the outgoing me

In the stationary regime the components of the internal vector represent the probability amplitudes. Co
the (sums of) squares of these amplitudes with a uniform random number 0< r < 1 gives the probability for
sending the message over the corresponding output channel. For instance, in the case of the beam s
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Fig. 11. Absolute value of the difference between the normalized intensityN4/(N4 + N5) in output channel 0 of the event-based DL
simulation and the result of quantum theory[6] for the system of two chained Mach–Zehnder interferometers shown inFig. 10 [19]. Input
channel 0 receives(y1,n+1, y2,n+1) = (cosψ0,sinψ0) with probabilityp0. Input channel 1 receives(y3,n+1, y4,n+1) = (cosψ1,sinψ1) with
probability 1−p0. For each event a uniform random number in the range[0,360] determinesψ0 or ψ1. Each data point represents a simulat
of 10 000 events (N0 + N1 = N2 + N3 = N4 + N5 = 10000).Top-left: Difference as a function ofp0; Top-right: Difference as a function o
ψ0 − ψ1; Bottom-left: Difference as a function ofφ0 − φ1; Bottom-right: Difference as a function ofφ2 − φ3.

(seeFig. 8) we replace the back-end DLM by a SLM. This SLM will send a message over output chann
x2

1,n+1 + x2
2,n+1 � r . Otherwise it will activate output channel 1. Although the learning process of this modifie

network is still deterministic, in the stationary regime the output messages are randomly distributed over
output channels. Of course, the distribution of output messages is the same as that of the original DLM-ne

Replacing DLMs by SLMs in a DLM-network changes the order in which messages are being proces
the network but leaves the content of the messages intact. Therefore, in the stationary regime, the distri
messages over the outputs of the SLM-network is essentially the same as that of the original DLM networ

As an illustration of the use of SLMs, we replace the two back-end DLMs in the Mach–Zehnder interfer
network (seeFig. 9(left)) by their “randomized” version and repeat the procedure that generates the data oFig. 9
(right). The results of these simulations are shown inFig. 13. Not unexpectedly, the randomness in the out
channel selection is reflected by a (small) increase of the scatter on the data points. In this simulation, th
channels 0 and 1 of each beam splitter are activated in a random manner and the functional dependence ofN0/(N0+
N1), N1/(N0+N1), N2/(N2+N3) = N2/(N0+N1) andN3/(N2+N3) onφ is still in full agreement with quantum
theory[6]. In other words, this SLM-network performs a genuine, event-by-event simulation of the ideal (p
detectors, etc.) version of both the single-photon beam splitter and Mach–Zehnder interferometer experim
Grangier et al.[20].
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Fig. 12. Same asFig. 11except thatα = 0.9999 (instead ofα = 0.99) and that the 1 000 000 events (instead of 10 000) per data point
processed by the DLM network depicted inFig. 10.

Fig. 13. Simulation results for a Mach–Zehnder interferometer built from SLMs instead of DLMs. Each beam splitter sends message
output channels 0 and 1 in a random manner. The simulation procedure and annotations are exactly the same as inFig. 9.

5. Discussion

We have proposed a new procedure to construct deterministic algorithms that have primitive learning c
ties. We have used these algorithms to build deterministic learning machines (DLMs). A DLM learns by pro
event after event but does not store the data contained in an individual event. Connecting the input of a DL
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output of another DLM yields a locally connected network of DLMs. A DLM within the network locally proce
the information contained in an event and responds by sending a message that may be used as input fo
DLM. A distinct feature of a DLM network is that at any given time, only one event (message) is propa
through the network. The DLMs process messages in a sequential manner and only communicate with e
by message passing.

We have demonstrated that DLM networks can discover relationships between successive events (see3)
and that certain classes of DLM networks exhibit behavior that is usually only attributed to quantum syst
Section4, we have presented DLM networks that simulate quantum interference on an event-by-event bas
specifically, we map each physical part of the real Mach–Zehnder interferometer onto a DLM and the m
(phase shifts in this case) are carried by photons. No ingredient other than simple geometry is used to sp
update rules of the DLMs.

As the network processes event after event, the network generates output events that build an interferen
that is described by the quantum theory[6] of the single-photon beam splitter and Mach–Zehnder interferom
To illustrate that DLM networks are indeed capable of simulating quantum interference on an event-by-eve
we also simulate an experiment involving three beam splitters (i.e. two chained Mach–Zehnder interfero
and demonstrate that quantum theory[6] also describes the behavior of this network.

We emphasize that our approach is not a proposal for another interpretation of quantum mechanics.
proach is not an extension of quantum theory in any sense, on the contrary. The probability distributions of q
theory appear as the result of a deterministic, causal learning process, and not vice versa (see Section4) [11]. Our
results suggest that quantum mechanical behavior may originate from an underlying deterministic process[23,24].
Indeed, it is somewhat ironic that in order to mimic the apparent randomness with which events are observ
periments, we have to explicitly randomize the output of the DLMs to mask the underlying deterministic pro
(see Section4.5).

At this point it may be worthwhile to recall what a DLM actually does. In a simple physical picture, a
is a device (e.g., beam splitter, polarizer) that exchanges information with the particles that pass throug
DLM tries to do this in an effective manner. It learns by comparing the message carried by an event with pre
based on the knowledge acquired by the DLM during the processing of previous events. Effectively this com
amounts to a minimization of the squared error (see Section2). Schrödinger used exactly the same principle
derive his famous equation[25] but called this approach “unverständlich” in a subsequent publication[26].

The results presented in Section4 suggest that we may have discovered a systematic procedure to construc
rithms that simulate quantum phenomena using deterministic, local, and event-by-event-based processe
using concepts such as wave fields or particle-wave duality. In fact, elsewhere we show that the approa
duced in this paper can be employed to perform event-based simulations of a universal quantum compute[27,28].
As it has been shown that the time evolution of the wave function of a quantum system can be simulat
quantum computer[22,29], it should be possible, at least in principle, to compute the real-time dynamics of
systems through event-by-event simulation using DLM networks.

Acknowledgements

We are grateful to Professors M. Imada, S. Miyashita, and M. Suzuki for many useful comments on the
ples of the simulation method described in this paper.

References

[1] D.P. Landau, K. Binder, A Guide to Monte Carlo Simulation in Statistical Physics, Cambridge University Press, Cambridge, 200
[2] A. Tonomura, The Quantum World Unveiled by Electron Waves, World Scientific, Singapore, 1998.



K. De Raedt et al. / Computer Physics Communications 171 (2005) 19–39 39

al
)
t find

utational

h–Zehnder

pplication

J. Comp.
[3] In this paper we disregard limitations of real experiments such as detector efficiency, imperfection of the source, biprism, etc.
[4] D. Home, Conceptual Foundations of Quantum Physics, Plenum Press, New York, 1997.
[5] N.G. Van Kampen, Physica A 153 (1988) 97.
[6] We make a distinction between quantum theory and quantum physics. We use the termquantum theorywhen we refer to the mathematic

formalism, i.e. the postulates of quantum mechanics (with or without the wave function collapse postulate)[8] and the rules (algorithms
to compute the wave function. The termquantum physicsis used for microscopic, experimentally observable phenomena that do no
an explanation within the mathematical framework of classical mechanics.

[7] R.P. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, vol. 3, Addison-Wesley, Reading MA, 1996.
[8] L.E. Ballentine, Quantum Mechanics: A Modern Development, World Scientific, Singapore, 2003.
[9] H. De Raedt, Computer simulation of quantum phenomena in nano-scale devices, in: D. Stauffer (Ed.), Annual Reviews of Comp

Physics IV, World Scientific, 1996, p. 107.
[10] A large collection of video’s of such simulations can be found athttp://www.compphys.org/quantummechanics.
[11] R. Penrose, The Emperor’s New Mind, Oxford University Press, Oxford, 1990.
[12] S. Haykin, Neutral Networks, Prentice-Hall, New Jersey, 1999.
[13] S. Haykin, Adaptive Filter Theory, Prentice-Hall, New Jersey, 1986.
[14] K.V. Mardia, J.T. Kent, J.M. Bibby, Multivariate Analysis, Academic Press, London, 1982.
[15] G.H. Golub, C.F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, MD, 1996.
[16] R.P. Feynman, Int. J. Theor. Phys. 21 (1982) 467.
[17] G. Baym, Lectures on Quantum Mechanics, W.A. Benjamin, Reading, MA, 1974.
[18] M. Born, E. Wolf, Principles of Optics, Pergamon, Oxford, 1964.
[19] Sample Fortran and Java programs and interactive programs that perform event-based simulations of a beam splitter, one Mac

interferometer, and two chained Mach–Zehnder interferometers can be found athttp://www.compphys.net/dlm.
[20] P. Grangier, R. Roger, A. Aspect, Europhys. Lett. 1 (1986) 173.
[21] J.G. Rarity, P.R. Tapster, Phil. Trans. Roy. Soc. London A 355 (1997) 2267.
[22] M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[23] G. ’t Hooft, Determinism beneath quantum mechanics, quant-ph/0212095.
[24] G. ’t Hooft, Quantum mechanics and determinism, hep-th/0105105.
[25] E. Schrödinger, Ann. Phys. 79 (1926) 361.
[26] E. Schrödinger, Ann. Phys. 79 (1926) 491.
[27] H. De Raedt, K. De Raedt, and K. Michielsen, New method to simulate quantum interference using deterministic processes and a

to event-based simulation of quantum computation, J. Phys. Soc. Jpn., in press.
[28] K. Michielsen, K. De Raedt, and H. De Raedt, Simulation of Quantum Computation: A deterministic event-based approach,

Theor. Nanoscience, in press.
[29] C. Zalka, Proc. Roy. Soc. London A 454 (1998) 313.

http://www.compphys.org/quantummechanics
http://www.compphys.net/dlm

	Deterministic event-based simulation of quantum phenomena
	Introduction
	Deterministic learning machines
	Learning points on the real axis
	Learning points on a finite interval
	Learning points on a circle
	Learning points on a K-dimensional hypersphere
	Communication between events
	Summary

	Application to blind classification
	Application to deterministic simulation of quantum interference
	Photon polarization
	Beam splitter
	Mach-Zehnder interferometer
	Technical note
	Stochastic learning machines

	Discussion
	Acknowledgements
	References


