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Abstract

We propose and analyse simple deterministic algorithms that can be used to construct machines that have primitive learning
capabilities. We demonstrate that locally connected networks of these machines can be used to perform blind classification on
an event-by-event basis, without storing the information of the individual events. We also demonstrate that properly designed
networks of these machines exhibit behavior that is usually only attributed to quantum systems. We present networks that sim-
ulate quantum interference on an event-by-event basis. In particular we show that by using simple geometry and the learning
capabilities of the machines it is possible to simulate single-photon interference in a Mach—Zehnder interferometer. The interfer-
ence pattern generated by the network of deterministic learning machines is in perfect agreement with the quantum theoretical
result for the single-photon Mach—Zehnder interferometer. To illustrate that networks of these machines are indeed capable of
simulating quantum interference we simulate, event-by-event, a setup involving two chained Mach—Zehnder interferometers,
and demonstrate that also in this case the simulation results agree with quantum theory.
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1. Introduction

Computer simulation is widely regarded as complementary to theory and expefirhefst present there are
only a few physical phenomena that cannot be simulated on a computer. One such exception is the double-slit
experiment with single electrons, as carried out by Tonomura and his co-w@2kef$his experiment is carried
out in such a way that at any given time, only one electron travels from the source to the d8le@aiy after a
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substantial amount of electrons (approximately 50 000) have been detected an interference patterfimidmges
interference pattern can be described by quantum theory. We use the term “quantum theory” for the mathematical
formalism that gives us a set of algorithms to compute the probability for observing a particulaf4ev@noOf

course, the quantum-mechanics textbook exafmp8} of a double-slit can be simulated on a computer by solving

the time-dependent Schrédinger equation for a wave packet impinging on the douf@el8lit Alternatively, in

order to obtain the observed interference pattern we could simply use random numbers to generate events accordin
to the probability distribution that is obtained by solving the time-independent Schrédinger equation. However, that
is not what we mean when we say that the physical phenomenon cannot be simulated on a computer. The point
is that it is not known how to simulate, event-by-event, the experimental observation that the interference pattern
appears only after a considerable number of events have been recorded on the detector. Quantum theory does nc
describe the individual events, e.g., the arrival of a single electron at a particular position on the detection screen
[2,4,7,8] Reconciling the mathematical formalism (that does not describe single events) with the experimental fact
that each observation yields a definite outcome is often referred to as the quantum measurement paradox and is th
central, most fundamental problem in the foundation of quantum tHégfyl 1]

If computer simulation is indeed a third methodology, it should be possible to simulate quantum phenomena
on an event-by-event basis. In view of the fundamental problem alluded to above, there is little hope that we can
find a simulation algorithm within the framework of quantum theory. However, if we think of quantum theory as
a set of algorithms to compute probability distributions there is nothing that prevents us from stepping outside the
framework that quantum theory provides. Therefore, we may formulate the physical processes in terms of events,
messages, and algorithms that process these events and messages. In this paper, we demonstrate that simple de
ministic, causal and classical processes that have a primitive form of learning capability can be used to simulate
guantum systems, not by solving a wave equation but through event-by-event simulation. In other words, we show
that fundamental quantum phenomena such as interference can be simulated by using algorithms that perform real
time recurrent learninfL2]. In this paper, we also show that the same approach can be used for more conventional
tasks that require some form of learnifig].

In Section2 we introduce the basic concepts for constructing event-based, deterministic learning machines
(DLMs). An essential property of these machines is that they process input event after input event and do not store
information about individual events. A DLM can discover relations between input events (if there are any) and
responds by sending its acquired knowledge in the form of another event (carrying a message) through one of its
output channels. By connecting an output channel to the input channel of another DLM we can build networks of
DLMs. As the input of a network receives an event, the corresponding message is routed through the network during
which it is being processed. At any given time during the processing, there is only one input—output connection
in the network that is actually carrying a message. The DLMs process the messages in a sequential manner anc
communicate with each other by message passing. There is no other form of communication between different
DLMs. Although networks of DLMs can be viewed as networks that are capable of unsupervised learning, they
have little in common with neural networks2]. The first DLM described in Sectichis equivalent to a standard
linear adaptive filtef13] but the DLMs that we actually use for our applications do not fall into this class of
algorithms.

In Section3 we generalize the ideas of Sectidrand construct a DLM which groups -dimensional data in
two classes on an event-by-event basis, i.e. without using memory to store the whole data set. We demonstrate tha
this DLM is capable of detecting time-dependent trends in the data and of performing a blind classifiction
Effectively, this DLM performs a principal-component analyjdié] on the fly, without explicitly diagonalizing the
covariance matrix.

In Section4 we show how to construct DLM-networks that generate output patterns that are usually thought of
as being of quantum mechanical origin. We first build a DLM-network that simulates photons passing through a
polarizer and show that quantum theory describes the output of this deterministic, event-based network. Then we
describe a DLM-network that simulates a beam splitter and use this network to build a Mach—Zehnder interfer-
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ometer and two chained Mach—Zehnder interferometers. We demonstrate that quantum theory also describes the
behavior of these networks.
A summary and outlook is given in Sectién

2. Deterministic learning machines
2.1. Learning points on the real axis

We consider a machine that has one input and two output channels labelddd(bgeFig. 1). The internal state
of the machine after processing thih input eventg =0, 1, .. .) is uniquely defined by the real variabig. At the
next event: + 1 the machine receives as input a real numhes. For simplicity, but without loss of generality, we
assume tha, 1 € [—1, 1]. The machine responds by sending a message contaipninghrough one of the two
output channelg\, ;1 = +1. The machine selects the output chantigl ;1 = +1 or A, 11 = —1 by minimizing
the cost functiorC (A, +1) defined by

C(An+1) = [yn+1 = X0 — (L= @) Apgalynr1 — xall, @)
updates its internal state according to the rule
Xn41 = Xn + (L= ) Apia|yn+1 — Xal, (2)

and sends a message with the input valug on the selected output channg} 1. The parameter & « < 1 that
enters Eqs(1) and (2)controls the decision process. For simplicity we assumecthisfixed during the operation
of the machine.
Itis easy to see that,, ;1 = +1 if x, < y,4+1 @andA, 11 = —1 if x, > y,+1. Thus, for this particular machine
we have
Yn+1 — Xn

Appy= L= 3)
[Yn+1 — Xl

Hence the update rul@) can be written as the familiar recursion

Xn41=0aXxp + a- 05))771+1- (4)
1
yn+l
An+l =-1 p—>—o
yn+1 -
——  {x.0f :
yn+l
Ar1+l = +1

500 1000 1500 2000
n

Fig. 1. Left Schematic representation of the machine that responds to theyinputby passing the input to one of the two output channels
Ap+1 ==£1. The value oA, 4 1 depends on the current state of the machine, encoded in the vasialihe inputy, 1, and the update rulg)

in which o appears as a control paramefight Evolution of the internal variable, as a function of the number of evemtsThick solid line:
Yn+1=—05forn=1,...,1000 andy, 1 = 0.5 forn =1001 ..., 2000; Thin solid line: Random sequenceyyf 1 = 4-0.5.
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The solution of Eq(4) reads

n—1
xp=a"xg+ (1—a) Za”flf"y,q_l, (5)
i=0
wherexg denotes the initial value of the internal variable.
As an illustration of how this machine learns, we consider the most simple example where: y for all
n > 0. Then from Eq(5) we find that

xn=a"xo+ (1—a")y. (6)

As 0 < o < 1, we conclude that lim., » x, = y. Thus the machine “learns” the value of the input variablErom
Eq. (4) it follows thatx, <y (x, > y) impliesx,,11 <y (x,+1 > y). Hencex, approaches monotonically (and
A, is the same for alt). Therefore, ify, = y, the machine always sends the valug pthrough the same output
channel.

A distinct feature of this machine is its ability to adapt to changes in the input pattern. We illustrate this important
property by two examples. Let, = —0.5 for 1 < n < 1000 andy, = 0.5 for 1000< n < 2000. During the first
1000 events the machine will leasr0.5. After 1000 events only.8 is being presented as input. Then, the machine
“forgets” —0.5 and learns & as shown in the right panel &ig. 1 In this simulatione = 0.99. Alternatively,
if y, is a random sequence &f0.5 (each with the same probability) the machine has to leadrd and 05
simultaneously. Because of this it cannot “forget” and it ends up oscillating around the mean of the input values
(zero in this example) as illustrated in the right pandtigf. 1 Let us now assume that our machine has reached this
oscillating state. All input eventg, = 0.5 give A, = +1 and hence the machine sends 6ver the+1 channel.
A second machine attached to this channel only receiesvients and will learn.8. This suggests that a network
of these machines can be used as an adaptive classifier.

Consider the network of three layers of machines shown in the left pafé a2 Each machine in the network
learns the average of the numbers it receives at its input channel and sends the numbers which are smaller (large
or equal) than the number it learned to thé& (41) output channel. In our numerical experiments wedset
0.99. We start with 5000 events of random numbgrs; € {—0.75, —0.25, 0.25, 0.75}, each occurring with equal
probability. Machine 1 learns the average (zero in this example) and sends the negative (pgsitieeer the—1
(4+1) channel to the input of machine 2 (3). Machine 2 (3) lear850 (0.50), as shown in the top right panel of
Fig. 2 and sends-0.75 (0.25) over its-1 output channel and0.25 (0.75) over its+ 1 output channel. Machines
4to 7 learn—0.75, —0.25, 0.25 and 0.75, respectively, as shown in the bottom right panieigpf2. Each of these
machines forwards the received input on-#% (—1) output channel if the initial value of its internal variable is
smaller (larger) than the received input value. Let us now assume that after 5000 events the input data set change:
to y,+1 € {—0.75, —0.25,0.25, 0.50}. As can be seen from the right panelfa§. 2 machines 1, 3 and 7 “forget”
the number they learned and replace ith§.0625, 0.375 and 0.50, respectively. All other machines are unaffected
because they never get 0.50 as input. After another 5000 events we change the set of input values once more, thi
timetoy,+1 € {—0.60, —0.75, —0.25, 0.25, 0.50}, i.e. we add one element. Now, machine 1 learsl7, machine
2 learns—0.53 and the internal state of machine 3 remains unchanged. Machine 4 can now receive two numbers
on its input channel, namely0.75 and—0.60. As a consequence, machine 4 lear@675, i.e. the average of the
two possible input numbers. Machine 4 pet8.60 on its+1 output channel and0.75 on its—1 output channel.
In order for the network to learn all the numbers of the input set, we would have to attach one extra machine to
each output channel of machine 4.

2.2. Learning points on a finite interval

For the machine defined by Eq4) and (2) formulating the operation of the machine through the minimization
of the difference between the input and internal variable may seem a little superfluous and indeed, for this particular
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Fig. 2. Left Diagram of the three-level machine that adaptively classifies the inputydata Right Evolution of the internal variables,
of the machines as a function of the number of event§he machine number is used to label the corresponding To right First three
machinesBottom right Third-level machines.

machine it is. However, this formulation is a convenient starting point for defining machines that can perform more
intricate tasks. For instance, let us make an innocent looking change to the updé2® bylariting

Xny1=0Xy + (=) Ay, (7)

and replace the cost functigh) by the corresponding expression

C(Apt1) = |ynt1 — axy — (L— ) Appal. (8)

ForA,+1=+1we havex,;1 =1—a(1l—x,) and forA, ;1 = —1 we havex,, 11 = —1+ «(1+ x,). Therefore, if

0 <« < 1and|xg| < 1, the internal variable will always be in the rangel, 1]. At each event the internal variable
either increases bl — o) (1 — x,,) (if A,+1=+1) or decreases b{l — «)(1+ x,,) (if A,+1 = —1). In both cases
this change is always nonzero, except,if= +1 which can only occur i1 = £1. The ratio of the step sizes is
(L =2xn)/(1+xp).

The machine defined by Eq&) and (8)behaves differently from the machine defined by Ed@sand (2) To
see this, it is instructive to consider the cas€ §,+1 =y < 1 for alln > 0 (the case-1 < y,11 =y < 0 can
be treated in the same manner). For concreteness we assumelthaty < y. At the first event, minimization
of Eq. (8) yields A1 = +1 andx; = 1 + a(xp — 1). In other words, the internal variablemoves towards. As
long asx, < y, the machine selects, ;1 = +1, always increasing its internal variablg. For somen > 1 we
must havex, > y. Then, making another move in the positivlirection allows for two different decisions. If the
error that results is larger than the error that is obtained by moving in the negative direction the machine decides to
setA, 1 = —1. Otherwise it makes another move in the positivéirection (A,,.1 = +1). In any case, for some
n > 1 the machine will selech, 1 = —1. Note that when this happens, we must hgve; < y andA, 12 = +1.
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Fig. 3.Left Time evolution of the internal variableg, of the machine defined by Eq&’) and (8) The input events are = —0.25, « = 0.99,
and the initial valuexg = 0. Forn > 30 the internal variable, oscillates about. Forn > 500 the sequence of increments, (1 = +1) and
decrements4,,+1 = —1) of x,, repeats itself after 8 events (data not shown). Lines are guides to théxéylelsThe number of increments of
the internal variable4, 1 = +1) divided by the total number of events as a function of the value of the input vasiaBlellets: Each data
point is obtained from a simulation of 1000 events with a fixed, randomly chosen valug efy < 1, using the last 500 events to count the
number ofA,, 1 = +1 events. Solid line(1 + y)/2.

This implies that after thisth event (that we denote ) the internal variable will oscillate (forever) around the
input valuey. This process is illustrated frig. 3 (left).

Form > ng we have|x,+1 — y| < (1—a)max1— y,1+ y). Thus, if 0< 1 — o « 1, the amplitude of the
oscillations is small. The machine “learns” the input valuand the ratio of the increments to decrements is
L+ xm4+1)/(L— xmy1) = (L + y) /(1 — y). In this stationary regime of oscillating behavior, the number of times
the machine activates thel (—1) channel is given byl + y)/2 ((1 — y)/2). The simulation results shown in
Fig. 3(right) confirm the correctness of this analysis. For a fixed (unknown) value of the input variable, the rate at
which the machine defined by the rul@y and (8)activates one of its output channels is determined by the value
of its internal variable. Therefore, this rate reflects the value that the machine has learned by processing the input
events. Depending on the application, the message that is sent through the active output channel can.contain
or the input valuey, ;1 (there is nothing else that can be send). Obviously we can make the learning process more
precise by increasing < 1. Of course, a larger value af also results in slower learning: In general it will take
more events for the internal variable to reach the value where it starts to oscillate.

2.3. Learning points on a circle

In going from the first to the second example of Secowe changed the update rule such that the variable
X, is constrained to lie in the interval-1, 1]. We now consider the two-dimensional analogue of the machines
described in Sectio®.2for which the internal vectofx1 ,, x2,,) and input vectoly1 ,+1, y2.,+1) represent points
on a circle. This machine receives as input a sequence of apgleslefined by

Y1in+1 Y2.n+1 (9)

[ 2 2 [ 2 2
Yin+1 T Y2 nt1 Yint1 T Y2 nt1

and responds by activating one of the two output channels.
For alln > 0, the update rules are defined by

COSpy+1 = Sin¢n+l =

X1n+l=0X1p, + lg@nJrl, X2 ptl1=0Xx2, + B — @n+l), (10)
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where®,;1=0,1 and O< « < 1. In order that the internal vect®), 11 = (x1,,+1, x2,,+1) Stays on the unit circle
we must have

B=—a[x1,Oni1+x2,(1— Opy1)] £ \/ 1—a?+a?x2, 0,145 ,(1— Opp1)]. (11)

Substitution of Eq(11) in Eq. (10) gives us four different rules:

2 .
Xon+1=s,/1+ 052()‘32’” -1, Xipt1=0ax1, if @pp1=0,

2 .
Xip+1=s,/1+ az(xl,n -1, Xopt1=0ax2, if Opp1=1,

wheres = +1 takes care of the fact that for each choicéxf 1, the machine has to decide between two quadrants.
The cost function is defined by

(12)

C= _(xl,n+1y1,n+l + x2,n+1y2,n+l)- (13)

Obviously, the cost functiofiL3) is nothing but the inner product of the vecters 1 andy, 1. The new internal
state itself is determined by calculating the cost equatl@for each of the four candidate update rules listed in
Eq.(12)and selecting the rule that yields the minimum cost. Note that the minimum of the cost fufi@)atoes
not depend on the length of the vector of input varialfles, 1, y2,,+1). From Eq.(12)it follows thatif ®, 41 =0
by the value ofx1 ,1 is obtained by rescaling ofi , andxz 41 is adjusted such thatan + xinﬂ =1. For
®,+1 =1 we interchange the role of the first and second elemextof.

In general the behavior of the machine defined by r(d€3 and (13)s difficult to analyze without the use of a
computer. However, for a fixed input vectgyr, 1 =y it is clear what the machine will try to do: It will minimize the
cost equatior{13) by rotating its internal vectax,, 1 to bring it as close as possible yoHoweverx, 1 will not
converge to a limiting value but instead it will keep oscillating about the input wald@ example of a simulation
is given inFig. 4 (left). For a fixed input vectoy, 11 = y the machine reaches a stationary state in which its internal
vector oscillates abouwt. In this stationary state the output signal consists of a finite sequence of ones and zeros.
The machine repeats this sequence over and over again. Obviously, the whole process is deterministic. The detail:
of the approach to the stationary state depend on the initial value of the internal xgdbat the stationary state
itself does not.
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g 38
3
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< 34t
32 02 r
30 A e
28 L 1 L L 1 L 1 0 L fl 1 L 1 L L
20 30 40 50 60 70 80 90 100 0 50 100 150 200 250 300 350
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Fig. 4.Left Time evolution of the angle representing the internal vexfoof the machine defined by Eg4.2) and (13) The input events are
vectorsy, 1 = (cos 30, sin 30°). The direction of the initial vectoxg is chosen at random. In this simulatian= 0.99. Forn > 60 the ratio

of the number of increment®), , 1 = 0) to decrements#,, .1 = 1) is 1/3, which is(sin30°/ cos 30)2. Data forn < 20 has been omitted to
show the oscillating behavior more clearly. Lines are guides to the Bygist The number of @, 1 = 1) events divided by the total number

of events as a function of the value of the input variapl@ullets: Each data point is obtained from a simulation of 1000 events with a fixed,
randomly chosen value ofQ ¢ < 36(°, using the last 500 events to count the numbe®f(; = 1) events. Solid line: CcGsh.
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These observations are of much more general nature than the example digndiieft) suggests. In fact, as
the applications discussed below amply illustrate, the stationary-state analysis is a very useful tool to predict the
behavior of the machines. Assuming that@ — o <« 1 and that we have reached the stationary regime in which
the internal vector performs small oscillations ab@ase, sing), a simple calculation shows that

1—a?co _
800 =1n+1 — P10 = 5 % if @,11=0,

a?—1sing . (14)
8¢l = ¢1,n+1 - ¢’l,n ~ 2 @ if @n+l =1

In the stationary regime, we hawyd¢o ~ N15¢1 whereNg (N1) is the number 09,1 =0 (©,,+1 = 1) events.
From Eq.(14) it then follows immediately thaVo/(No + N1) & sir? ¢ and N1/(No + N1) ~ cos ¢. The results
of this analysis are in excellent agreement with the simulation results shdvig.ia (right).

The conventional approach to regard the variablgs; as input is fundamentally different from the approach
adopted in this paper. This can be seen by reformulating the update rules in terms of difference equations and
to assume that the®, 1 = 0,1 are independent, uniform random variables with méaga- (©,,1). The four
rules(12) can be written as

2 2.2 2
X1 =% X1, + Q- a9Op41,

x%,n—l—l = a2x22,n +@1- a2)(1 - @11+1)~
Formally Eq.(15) has the same structure as ). Averaging over many realizations (#,,.1 = 0, 1} and taking

the limitn — oo we obtain
(xi) = Jim (x, 1) =6.
n—od i
<x§) = nll_)moo(xinJrl) =1-06.
In other words, a machine that operates according to the (LUBsand receives as input the random sequence
®,+1 will (on average) approach a state in which the direction of its internal vector gives us an estirgate of
(®,4+1 =0, 1). In contrast, a machine that minimizes the cost equdfi@hand updates its internal state according

to Eq. (12) responds on either output chanr#},1 = 0 or output channeb, 1 = 1, with a frequency that is
directly related to the difference between the current input angle and the angle defined by the internal vector.

(15)

(16)

2.4. Learning points on & -dimensional hypersphere

Consider a sequence of events, characterized by vegtqis= (y1.n+1, Y2.n+1, - - - » Yk.n+1) for n > 0. The
vectory, ;1 is the input for the machine. The internal state of the machine is described&bglimensional unit
Vectorx, = (X1, X2, - . ., Xk,»). We define the X candidate update ruldg =1, ..., K;s; = +1} by

Xintl =S5 1+a2(xfn -1 ifi=}, 17)

Xin+l = 0Xjp if i #£j.
Note thatx[x, = 1 impIiestlan =1 for each of the X update rules. The machine responds to the igput
by selecting from the B possible rules in Eq17), the update rule that minimizes the cost

C= _XI+1Yn+1a (18)

and by sending a message containpg; (or, depending on the applicatiox, 1) on one of its output channels.

Note that the minimum of the cost functiq8) does not depend on the length of the vectgrs; or y,41.
Disregarding the variables that merely serve to determine the signgf ;1 there areX rules. Hence there can

be as many a& output channels. However, depending on the application, it may be expedient to reduce the number
of output channels by arranging them in groups.
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2.5. Communication between events

The machines analyzed in the previous subsections have one input channel that receives input and two output
channels, only one of which sends out data (a message) at a particular event. An obvious generalization is to
construct machines that accept, at a given instance, input from one out of two different sources. This is absolutely
necessary if we want to build machines in which events can communicate or, in physical terms, interact with each
other. We now demonstrate that the machines that we introduced above already have the capability to let events
interact with each other. Therefore we do not need to add a new feature or rule to the machines.

Consider a machine that has two input channels 0 and 1 and an internal xeetith K = 4 components.

At the (n + D)th event, either input channel O receives the two-component V@eior= (y1,,+1, ¥2,,+1) OF input
channel 1 receives the two-component vegiorn = (3441, Yan+1)-

In the former case the machine transforms this input into the input vggtar= (y1.,+1, ¥2.n+1, X3.1> X4.)
of four elements by using the current internal vector as a source for the missing elements. Similarly, in the latter
case the input vector becom@s.1 = (x1., X2,n, ¥3.n+1, Yan+1). Then the machine usgg.1 to determine the
cost and selects the update rule according to the procedure described in Setfigith ¥,.1 replacingy,+1).

This machine learns the two-dimensional vecifs: = (y1.n+1, Y2.n+1) andy,+1 = (y3.n+1, Yan+1) Separately,
as if it consists of two separate, independent two-dimensional machines, with the additional crucial feature that the
internal vector represents a point on a 4-dimensional unit sphere.

It is not difficult to imagine what this machine does in the case that it receives events on only one of the two
input channels (say 0). Irrespective of the initial value of the internal vegtdhe machine will always select the
update rule withj =1, 2 (see Eq(17)) and the two componenis, , andxgs, , will vanish exponentially fast with
increasing: (recall that O< o < 1). Thus, after a few events the internal state of the machine indicates that the
machine receives events on only one channel.

If the machine receives input on both channels (but never simultaneously)1 Bgmplies that the machine
only scales the two components of the internal state that it uses to provide the missing elements for building the
inputy,+1. Therefore, in the stationary regime, the length of the two-dimensional veatrxz ) ((x3., xa.n))
is proportional to the number of events on input channel 0 (1). Furthermore the numberloP (j = 3, 4) events
is approximately equal to the number of events on input channel 0 (1). Although this may seem a very elementary
form of communication, it is sufficient to construct machines that perform very complicated tasks.

2.6. Summary

The machines described above are simple deterministic machines that make decisions. The machine respond:
to the input event by choosing from all possible alternatives, the internal state that minimizes the error between
the input and the internal state itself. Then the machine sends a message through one of its output channels. The
message contains information about the decision the machine took while updating its internal state and, depending
on the application, also contains other data that the machine can provide. By updating its internal state, the machine
“learns” about the input it receives and by sending messages through one of its two output channels, it tells its
environment about what it has learned. In the sequel we will call such a macteteraninistic learning machine
(DLM). For a particular choice of the update rule (see Sec@d) the machine performs linear estimation but as
the other examples of this section amply demonstrate, minor modifications to this rule and/or cost function yield
machines that may behave in a substantially different manner.

3. Application to blind classification

The DLM of Section2.1learns about the input data by moving a point on a line. Obviously, this point separates
two parts of the line. The generalizationkadimensional space is@& — 1)-dimensional hyperplane that divides
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the space into two parts. Thus, to interpret two-dimensional data the DLM should learn a line instead of a point.
We represent the line by a segmdnt defined by its mid-poink,, and its directiord,,. As the DLM receives an
eventy, 1, i.e. a point in a two-dimensional plane, the DLM updates its internal line segimeand sends the
information describind.,, through the-1 (+1) channel, depending on whether it lies on the left (right) side of the
line. The update procedure consists of two steps. First we define two supportyacemdv, on either side ok,

along the directiom, by

Vi=Xy, —0n/2,  Vo=X,+0dy/2, (19)
and we update the two support points according to
V1i=V1+ Q=) Ynt1 —VDYnt+1—Val,

Vo=Vo+ (1 =) Yntr1 — V2 IYnt1 — Vall,

where O< o < 1 controls the learning process. Then we compute the new mid-point and direction of the line
segment:

(20)

Xnt1= (U1 4+ V2)/2, dug1= (U1 —V2)/[1V1 — V2. (21)

From Eq.(20) it follows that the support point farthest away from,; makes the largest move. Therefore, as new
input data is received by the DLM, both the mid-point and the direction of the line segment change. Note that the
update rulg20)is non-linear in the difference between internal and input vector. Although a linear update rule also
works, our numerical experiments (results not shown) indicate that the non-lineé20yperforms much better.

In generalx, will converge to the mean of the input vectors andandv; will be pulled most strongly in the
direction of largest variance. Therefdig will be (approximately) perpendicular to the largest principal component
of the covariance matrix of the input data. In other words, the DLM defined above can find the eigenvector that
corresponds to the largest eigenvalue of the covariance matrix by processing data points in a sequential manner, i.e
without actually having to compute the elements of the covariance matrix.

As an illustration of the capabilities of the DLM introduced in this section, let us consider a classification task
in which we want to blindly group events into two categories. The inputyata= (y1,,+1, y2..+1) are generated
through a Gaussian random process described by:

Y10 =COSyn + s)mw +r1, Y2.n =SiN(yn +s)m +r2, (22)

wheres is a uniform random bit. The random numbeyandr, are drawn from the normal distributiovi(0, 1/2).
In our numerical example we take= 1/5000 andx = 0.99. From Eq(22) it is clear that the input events consist
of points in a plane that are drawn from one of twe<0, 1) Gaussian distributions, the centers of which rotate with
a period of 10 000 events. The mean of all input dat®,9) and there is no preferred direction of largest variance.
The reason of course is that the center of the Gaussian distributions slowly moves on the unit circle. Clearly, this
kind of classification task can only be performed by permanently updating the estimate of the direction and that
is exactly what the DLM does. IRig. 5we present results of a blind classification experiment that illustrates the
operation of the DLM defined by the rul¢$9)—(21) The DLM processes event-by-event, each time updating its
estimate for the separatrix. For comparison we also show the result obtained by the principal component analysis
[14] using as input the group of 100 most recent data points processed by the DLM. The differences between both
classifiers are rather small so that it is clear that the DLM-based classifier performs very well.

The two-dimensional DLM described above can easily be extended to a DLM that pro&esternsional
input data. Instead of a line segment the DLM has to learn a segmentkbf-al)-dimensional hyperplane. This
can be done by extending the procedure used in the two-dimensional case. The hyperplane segment is describe
by a mid-pointx,, and K — 1 orthonormal directiond; for k =1,..., K — 1. We choose points{v} on the
hyperplane defined bjd;} andx, such that the distance between each pair of points is one. As new input data
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Fig. 5. Snapshots of the input data and results of a DLM-based classifier defined bil ®g$21)(solid line) and a conventional princi-
pal-component-based classifier (dashed ljié). The data points are random deviates with a normal distribution with varigt2cerfd means
+(co927n/10000, sin(27rn/10000). Each panel shows the output of the DLM-based classifier after it has processed, point-by-point, the 100
data points shown. The classifier smoothly follows the rotation of the means. In contrast to the event-by-event processing of the DLM-based
classifier, the principal-component-based classifier processes the whole set of 100 data points simultaneously.

Ya+1 is received by the DLM these points are updated according to (the generalization (#pE@s in the two-
dimensional case, from the updated points we can calculate the new mid-point and the new directions. However,
unlike in the two-dimensional case, these directions do not need to be orthonormal. The orthonormality is then
restored by using the (modified) Gramm-Schmidt procefiLse

4. Application to deterministic simulation of quantum interference
4.1. Photon polarization

We demonstrate that the DLM defined by E(i) and (13and a passive element that performs a plane rotation
are sufficient to perform a deterministic simulation of the quantum thgdrgf photon polarization.

We start by recalling some elementary facts about photon polariZdtoh7] Some optically active materials
like calcite split an incoming beam of light into two spatially separated bga6&8] The light intensity of these
beams is related to the angle of polarizatigrof the electromagnetic wave, relative to the orientatoof the
material[18]. We disregard all imperfections of real experiments and assume that the experimental data are in
exact agreement with the wave mechanical theory. Then the intengitédeam 0 and; of beam 1 are given by
[16,17]

lo=coS(Y —¢), I =sirt@y —¢), (23)
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respectively. If the incident beam has a random polarization, averaging @&aver ally» shows that half of the
light intensity will go to beam 0 and the other half to beam 1.

If the conventional light source is replaced by a source that emits one photon at a time, the photon leaves the
material either in the direction of beam 0 or beam 1, never in fidh Collecting photons over a sufficiently
long period shows that E@23) still gives the number of photons detected in the direction of beam 0 (1), divided
by the total amount of detected photdd$]. Quantum theory6] describes the polarization in terms of a two-
dimensional (complex-valued) vector and the action of the material is to rotate this vector by arp gsgle
by the experimentalisfjl7]. The probability to observe photons in beam 0 (1) is given by the square of the Oth
(1st) element of the vectgt 7]. In addition, as the photon leaves the material in beam 0 (1), its polarizatipn is
(¢ +m/2)[17]. Thus the piece of material can be used to prepare and also determine the polarization of the photons
and is called a “polarizenf18].

According to quantum theor}f], the polarizer rotates the vector of polarization amplitudes in the following
mannef17]:

(Zi)z(—cgisfcp i::lﬁ) (Zi) (24)

Still according to quantum theof$], the intensity in beam 0 (1) is given |2 (|b1]2). An incident beam with
an angle of polarizatiog is described by the vectadug, a1) = (cosy, siny). From Eq.(24) we obtain(bg, b1) =
(cosy — @), sin(¥ — ¢)) and hencdg = |bg|2 = cof(Y — ¢) and Iy = |b1|% = sirP(y — ¢), in agreement with
Eq.(23).

We now construct a simple deterministic machine that generates events of which the distribution agrees with
the probability distributions predicted by quantum thef@ly The layout of this “polarizer” is shown iRig. 6. The
incoming event (photon) carries an (unknown) angle 1. The purpose of the passive elem@&tt) is to perform
a rotation

__(cosp —sing
R(¢)_<sin¢ cos¢>)’ (25)

of the input vectory,,1 = (cosy,+1, Siny,+1) by the angle¢. The resulting vector, 1 = (coOS¥,+1 —

@), sin(y,+1 — ¢)) is sent to the input of a DLM that operates according to Ef8) and (13) If ®,+1 =0,

the DLM responds by sending the veciz{;lr+l = (cos¢, sing) through the output channel 0. #,,1 = 1, the

DLM responds by sending the vecty, , = (CoS¢ + 7/2), Sin(¢ + 7/2)) through the output channel 1. Clearly

this procedure is strictly deterministic. We emphasize that the DLM processes information event by event and does
not store the data contained in each event.

In Fig. 6 (right) we show simulation results for the machine depictellig 6 (left). Each data point represents
the intensity in beam 0 (1), i.e. the number®@ 0 (1) events divided by the total amount of events. The machine
is initialized once by choosing a random direction of the vertoThe angle of rotatiow is kept fixed for 1000
events, then a uniform random number is used to select another direction, and this procedure is repeated 10C
times. In all these numerical experiments we get 0.99. Fig. 6 shows the results for two different numerical
experiments: In the first set of 100 runs, the direction of polarizatiaf the incoming photons is also determined
by means of uniform random numbers. In the second set of 100 runs, the direction of polarization of the incoming
photons is fixedy{ = 25°). FromFig. 6 (right) it is clear that quantum theof§] provides a very good description
of the input—output behavior of the DLM shownfiig. 6 (left).

As a second illustration we use the same DLM to simulate an experiment with three polarizers described by
Feynman16]. The diagram of this experiment is shownFhiyg. 7 (left). A randomly polarized beam of photons
passes through the first polarizer (without loss of generality we set its @apgigual to zero). Each output channel
is used as input to another polarizer. Both these polarizers are tilted by the sameaagte = ¢. According
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Fig. 6. Left Diagram of the DLM network that simulates a polarizer on a deterministic, event-by-eventRigsis Simulation results for the

DLM network shown on the left. Each data point represents the number of events in an output channel accumulated after 1000 input events.
After each set of 1000 events, the orientatipof the polarizer is changed randomly. Open circles: Normalized intensity in output channel

0 for incoming photons with a polarization angle= 25°; Solid line: Result (co&z/f — ¢)) obtained from quantum theof@] for incoming

photons with a polarization angle = 25°; Bullets: Normalized intensity in output channel 1 for incoming photons with a random polarization
angley; Dashed line: Result of quantum thed8} for incoming photons with a random polarization angle
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Fig. 7. Left Schematic representation of an experiment with three polafizéisRight Simulation results for the network of DLMs shown

on the left. Each data point represents the normalized intensity accumulated over 1000 events. After each set of 1000 events, theorientation
of the polarizers 2 and 3 is changed randomly. Bullets: Output channel 0; Crosses: Output channel 1; Open circles: Output channel 2; Open
squares: Output channel 3. Lines represent the results of quantum fkory

to quantum theory6], the intensity at the output of these four channels is (from top to bottonFige& (left))
271cog ¢, 27 1sirP ¢, 27 1sirt ¢, and 21 cof ¢. The results of our numerical experiments are showfiin 7

(right). The simulation procedure is the same as the one used to generate theHilgité. #fIso in these numerical
experiments we set = 0.99. We emphasize once more that the randomness in these discrete-event simulations
only enters through the characterization of the photon source and through our procedure of selecting the direction
of the polarizer for each set of 1000 events. Actually, the latter only serves to counter the possible objection that
the apparent quantum mechanical behavior would be caused by monotonically changing the direction of the po-
larizers. As in the previous example, it is clear that quantum thigdrgtescribes the input—output behavior of the
three-DLM network very well.
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Fig. 8. Left Diagram of the network of two DLMs that performs a deterministic simulation of a single-photon beam splitter (BS) on an
event-by-event basid9]. The solid lines represent the input and output channels of the BS. Dashed lines indicate the flow of data within
the BS.Right Simulation results for the beam splitter shown on the left. Input channel O redgivgs.1, y2,,+1) = (COSYg, Sinyg) with
probability pg. Input channel 1 receivess 11, y4.,+1) = (COSYr1, Sinyq) with probability p1 = 1 — pg. Each data point represents 10 000
events. After each set of 10 000 events, a uniform random number in the[@3§€)] is used to choose the angl¢g andy1. Markers give

the simulation results for the normalized intensity in output channel 0 as a functibe-afg — ¥1. Open circlespg = 1; Bullets: pg = 0.5;

Open squaresyg = 0.25. Lines represent the results of quantum théé}y

4.2. Beam splitter

We now show that tw& = 4 DLMs and two passive devices that perform a plane rotation bya#dbsufficient
to build a network that behaves as if it where a single-photon beam splitter. First we describe the network and then
we demonstrate that it acts as a beam splitter.

The network shown irFig. 8 has two input channels (0 and 1) and two output channels (0 and 1). The
network receives events at one of the two input channels. Each input event carries information in the form
of a two-dimensional unit vector. Either input channel O receias,+1, y2.,+1) or input channel 1 receives
(¥3.n+1, Yan+1)- The input is fed into the device described in Sec2dh The purpose of this front-end DLM is to
transform the information contained in two-dimensional input vectors (of which only one is present for any given
input event), into a four-dimensional unit vector. The four-dimensional internal vector of this device is split into two
groups of two-dimensional vectots1 ,+1, X4,,+1) and (x3,+1, X2,,+1) and each of these two-dimensional vec-
tors is rotated by 45 Put differently, the four-dimensional vector is rotated once in(1hd)-plane about 45and
once in the(3, 2)-plane about 45 The order of the rotations is irrelevant. The resulting four-dimensional vector

is then sent to the input of a secofid= 4 DLM. This back-end DLM send(s»cl,nﬂ,xz,n+1)/,/xin+l + X301

through output channel O if it used rule= 1,2 (see Eq(17)) to update its internal state. Otherwise it sends
(X3,n41: X4,0+1)/1/X5 11 + X4 ,,1 through output channel 1.

The operation of the network depictedkig. 8 can be analyzed analytically if we disregard transient effects
and assume that the information carried by events on channel 0 (1) is givenby¥y = (y1,y2) (V41 =Y =
(y3, y4)). We denote by the number of events on input channel 0 divided by the total number of events. Then, the
number of events on input channel 1 is given by p.

In the stationary regime, the internal st&#& ,+1, X2 n+1, X3.n+1, X4.,+1) Of the front-end DLM (sed-ig. 8)
learns (w1, wa, w3, wa) = (y1/P. y2./P, ¥3v/1— p, ya/1— p). Carrying out the two plane rotations of 45
we see that the back-end DLM receives as input the four-dimensional vaetor wa, w3 + w2, w3z — wo,
w1 + wa)/~/2. In the stationary regime, the internal VeCt®f ,,+1, X2.n+1, X3.n+1, Xa.n+1) Of the back-end DLM
oscillates aboutwi — ws, w3 + wo, w3 — w2, w1 + w4)/+/2. Therefore, in the stationary regime and for fixed
two-dimensional vectors on input channels 0 and 1, the input—output relation of the BS netWagk ®tan be
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written as
w1 w1 — w4
1
w2 | B Z | watwa | (26)
w3 ﬁ w3 — w
w4 w1+ wyg
Using two complex numbers instead of four real numberg#g).can also be written as
. l _ .
wit+iwz) BS 2 (wi W4+{(w3+w2) ' 27)
w3+ iwg ﬁ w3 — w2 + i (w1 + wa)

In quantum theonyj6] the presence of photons in the input modes 0 or 1 is represented by the probability
amplitudegao, a1) [17,20—22] According to quantum theof$], the probability amplitude@g, b1) of the photons
in the output modes 0 and 1 of a beam splitter are givefi By20—-22]

bo\ [(ao+iax _i 1 i ao
()= (i) =0 ) () @)

Identifying ag with wy + iwo = (y1 + iy2) p andag with wz +iwg = (y3+iy4)(1— p) itis clear that by construc-
tion, the DLM network inFig. 8 will allow us to simulate a beam splitter, not by calculating the amplit{@8}
but by a deterministic event-by-event simulation.

In Fig. 8 (right) we present results of discrete-event simulations using the DLM network depictéd.if
(left). Before the simulation starts, the internal vectors of the DLMs are given a random value (on the unit sphere).
Each data point represents 10000 events. All these simulations were carried out=w@t99. For each set of
10000 events, a uniform random number in the rafly860] generates two anglegy and yr1. Input channel
0 receives(y1,n+1, y2.n+1) = (COSY, Sinyg) with probability po. Input channel 1 receive§z ;i +1, yan+1) =
(cosyr1, sinyrq) with probability p1 = 1 — pg. Random processes only enter in the procedure to generate the input
data. The DLM network processes the events sequentially and deterministically.Figo8it is clear that the
output of the deterministic DLM-based beam splitter reproduces the probability distributions as obtained from
quantum theory6].

4.3. Mach-Zehnder interferometer

In quantum physicg6], single-photon experiments with one beam splitter provide direct evidence for the
particle-like behavior of photorig,20]. The wave mechanical character appears when one performs single-particle
interference experiments. In this subsection we construct a DLM network that displays the same interference pat-
terns as those observed in single-photon Mach—Zehnder interferometer expefitients

The schematic layout of the DLM network is shownRig. 9. Not surprisingly, it is exactly the same as that
of a real Mach—Zehnder interferometer. The BS network described in the previous subsection is used for the beam
splitters. The phase shift is taken care of by a passive device that performs a plane rotation. Clearly there is a one-to-
one mapping from each relevant component in the interferometer to a processing unit in the DLM network. Recall
that the processing units in the DLM network only communicate with each other through the message (photon)
that propagates through the network.

According to quantum theoffs], the probability amplitude&o, b1) of the photons in the output modeg8-)
and 1(N3) of the Mach—Zehnder interferometer are giver{by,20-22]

() -3(* D& S D(=). 2

Note that in a quantum mechanical setting it is impossible to simultaneously meagu(&/¢ + N1), N1/(No +
N1)) and (N2/(No + N1), N3/(Ng + N1)): Photon detectors operate by absorbing photons. However, in our deter-
ministic, event-based simulation there is no such problem.



34 K. De Raedt et al. / Computer Physics Communications 171 (2005) 19-39

0 50 100 150 200 250 300 350

o [degrees]

Fig. 9. Left Diagram of a DLM network that simulates a single-photon Mach—Zehnder interferometer on an event-by-evdhohakie
DLM network consists of two BS devices (s€@. 8 (left)) and two passive deviceRR(¢g) and R(¢1)) that perform plane rotations by
¢o and ¢1, respectively. There is a one-to-one correspondence between the elements of a physical Mach—Zehnder inteffe3@dkter
and the units in the DLM network. The number of evensin channeli =0,..., 3 corresponds to the probability for finding a photon
on the corresponding arm of the interferomeRight Simulation results for the DLM-network shown on the left. Input channel O receives
(Y1,n+1> Y2,n+1) = (COSYrg, Sinyrg) with probability one. A uniform random number in the rarfi@e360 is used to choose the anglg. Input
channel 1 receives no events. Each data point represents 10 000 eNgrtsM; = N> + N3 = 10000). Initially the rotation angleg = 0

and after each set of 10 000 evengg,is increased by 10 Markers give the simulation results for the normalized intensities as a function of
¢ = ¢ — ¢1. Open squareNg/(Ng + N1); Solid squaresN,/(No + N3) for ¢1 = 0; Open circlesN, /(N + N3) for ¢1 = 30°; Bullets:

N2 /(N2 + N3) for ¢1 = 24Q; Asterisks:N3/(N2 + N3) for ¢1 = 0; Solid trianglesN3/ (N2 + N3) for ¢ = 300°. Lines represent the results

of quantum theory6].

In Fig. 9 we present a small selection of simulation results for the Mach—Zehnder interferometer built from
DLMs. We assume that input channel O recei¢gs,+1, y2.,+1) = (COSyro, Siny) with probability one and that
input channel 1 receives no events. This correspondgot@) = (CoSyg + i Sinyg, 0). We use uniform random
numbers to determingyg. In all these simulations = 0.99. The data points are the simulation results for the
normalized intensitw; /(No + N1) for i =0, 2, 3 as a function o = ¢o — ¢1. Lines represent the corresponding
results of quantum theof]. FromFig. 9it is clear that quantum theory provides an excellent description of the
deterministic, event-based processing by the DLM network.

The examples presented fig. 9 do not rule out that there may be settings for the angigspo and ¢, for
which guantum theory fails to give a good description of the behavior of the DLM network. However extensive
series of simulations show that this is not the case. Instead of presenting the results of these simulations we will
demonstrate that quantum thed8} also describes the stationary-state input—output behavior of more extended
DLM networks.

As an example we consider the DLM network depictedrig. 10 Obviously this network maps exactly onto
two chained Mach—Zehnder interferometgt8]. Now there are seven parametes Yo, V1, do, ¢1, ¢2, andes
that may be varied, so simply plotting selected cases is not the proper procedure to establish that quantum theory
describes the stationary-state behavior of the DLM network. Therefore we adopt the following strategy. For each
set of 10 000 events, we use seven random numbers to fix the parapgteées ¥1, $o, ¢1, ¢2, andgps. Then we
collect the data for these 10000 events and compare the intensity in output chaniglahd 1 (Vs) with the
corresponding results of quantum the@@y. The latter is given by

()= D 206 )¢ D(®) -

For each choice ofpo, Vo, V1, o, P1, ¢2, $3} we compute the differencesho|? — Na/(N4 + Ns)| and||b1|? —
Ns/(N4 + Ns)|. Na (Ns) is the number of events in output channel 0 (1) of the third beam splitet N1 =
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Fig. 10. Diagram of a DLM network that simulates single-photon propagation through two chained Mach—Zehnder interferometers on an
event-by-event basis.

N>+ N3 = N4+ Ns is the total number of events (10 000 in this caserin 11we show||bo|? — Na/(N4+ Ns)|

as a function ofpg, ¥o — V1, ¢o — ¢1, andg2 — ¢3. In all these simulations = 0.99. Once again it is clear that
quantum theory6] provides a very good description of a DLM-based simulation of two chained Mach—Zehnder
interferometers.

4.4. Technical note

All simulations that we presented in this section have been performed=£d0.99. From the description of the
learning process it is clear thatcontrols the rate of learning or, equivalently, the rate at which learned information
can be forgotten. Furthermore it is evident that the difference between a constant input to a DLM and the learned
value of its internal variable cannot be smaller than &. In other wordsg also limits the precision with which
the internal variable can represent a sequence of constant input values. On the other hand, the number of events he
to balance the rate at which the DLM can forget a learned input value. The smallerid, the larger the number
of events has to be for the DLM to adapt to changes in the input data.

We use the last example of SectidrB to illustrate the effect of changing and the total number of evenié.

In Fig. 12we show the results of repeating the procedure used to obtain the data shieignif but instead of

a =0.99 andN = 10000 events per data point, we usee: 0.9999 andV = 1000000 event per data point. As
expected, the difference between the simulation data and the results of quantum theory decreaseeifreases
and N increases accordingly. Comparifigg. 11 with Fig. 12it is clear that the decrease of this difference is
roughly proportional to the inverse of the square root of the number of events. Note that each datafgiritin

is generated without the use of random processes.

4.5. Stochastic learning machines

In the stationary regime, the sequence of messages that a DLM (network) generates is strictly deterministic. For
some applications, e.g., for quantum phyg&}s it may be desirable to randomize these sequences. A marginal
modification turns a DLM into a stochastic learning machine (SLM). Here thestraihastiadoes not refer to the
learning process but to the method that is used to select the output channel that will carry the outgoing message.

In the stationary regime the components of the internal vector represent the probability amplitudes. Comparing
the (sums of) squares of these amplitudes with a uniform random number @ 1 gives the probability for
sending the message over the corresponding output channel. For instance, in the case of the beam splitter BS
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Fig. 11. Absolute value of the difference between the normalized inten&jffN4 + Ns) in output channel O of the event-based DLM
simulation and the result of quantum thed6j for the system of two chained Mach—Zehnder interferometers showiginl0 [19] Input
channel O receive§1 ,+1. ¥2,,+1) = (COSYg, Sinyrg) with probability pg. Input channel 1 receivess ;1. y4,,4+1) = (COSYr1, Sinyr1) with
probability 1— pg. For each event a uniform random number in the rd8g860] determines) or 1. Each data point represents a simulation
of 10000 eventsNg + N1 = No + N3 = N4 + N5 = 10000).Top-left Difference as a function ofg; Top-right Difference as a function of
Yo — ¥1; Bottom-left Difference as a function afg — ¢1; Bottom-right Difference as a function g, — ¢3.

(seeFig. 8) we replace the back-end DLM by a SLM. This SLM will send a message over output channel O if
x2 . 1+x3,,, <r.Otherwise it will activate output channel 1. Although the learning process of this modified BS
network is still deterministic, in the stationary regime the output messages are randomly distributed over the two
output channels. Of course, the distribution of output messages is the same as that of the original DLM-network.
Replacing DLMs by SLMs in a DLM-network changes the order in which messages are being processed by
the network but leaves the content of the messages intact. Therefore, in the stationary regime, the distribution of
messages over the outputs of the SLM-network is essentially the same as that of the original DLM network.
As an illustration of the use of SLMs, we replace the two back-end DLMs in the Mach—Zehnder interferometer
network (sed-ig. 9 (left)) by their “randomized” version and repeat the procedure that generates the Baja%f
(right). The results of these simulations are showirig. 13 Not unexpectedly, the randomness in the output
channel selection is reflected by a (small) increase of the scatter on the data points. In this simulation, the output
channels 0 and 1 of each beam splitter are activated in arandom manner and the functional depend¢Ee-of
N1), N1/(No+ N1), N2/(N2+ N3) = N2/(No+ N1) andN3/(N2+ N3) ong is still in full agreement with quantum
theory[6]. In other words, this SLM-network performs a genuine, event-by-event simulation of the ideal (perfect
detectors, etc.) version of both the single-photon beam splitter and Mach—Zehnder interferometer experiments by
Grangier et al[20].
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Fig. 12. Same abig. 11except thatx = 0.9999 (instead ofr = 0.99) and that the 1000 000 events (instead of 10000) per data point were
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Fig. 13. Simulation results for a Mach—Zehnder interferometer built from SLMs instead of DLMs. Each beam splitter sends messages over its
output channels 0 and 1 in a random manner. The simulation procedure and annotations are exactly the Sagé.as in

5. Discussion

We have proposed a new procedure to construct deterministic algorithms that have primitive learning capabili-
ties. We have used these algorithms to build deterministic learning machines (DLMs). A DLM learns by processing
event after event but does not store the data contained in an individual event. Connecting the input of a DLM to the
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output of another DLM yields a locally connected network of DLMs. A DLM within the network locally processes

the information contained in an event and responds by sending a message that may be used as input for anothe
DLM. A distinct feature of a DLM network is that at any given time, only one event (message) is propagating
through the network. The DLMs process messages in a sequential manner and only communicate with each othet
by message passing.

We have demonstrated that DLM networks can discover relationships between successive events (s& Section
and that certain classes of DLM networks exhibit behavior that is usually only attributed to quantum systems. In
Sectiond, we have presented DLM networks that simulate quantum interference on an event-by-event basis. More
specifically, we map each physical part of the real Mach—Zehnder interferometer onto a DLM and the messages
(phase shifts in this case) are carried by photons. No ingredient other than simple geometry is used to specify the
update rules of the DLMs.

As the network processes event after event, the network generates output events that build an interference patter
that is described by the quantum the@8y of the single-photon beam splitter and Mach—Zehnder interferometer.

To illustrate that DLM networks are indeed capable of simulating quantum interference on an event-by-event basis
we also simulate an experiment involving three beam splitters (i.e. two chained Mach—Zehnder interferometers)
and demonstrate that quantum thefiflyalso describes the behavior of this network.

We emphasize that our approach is not a proposal for another interpretation of quantum mechanics. Our ap-
proach is not an extension of quantum theory in any sense, on the contrary. The probability distributions of quantum
theory appear as the result of a deterministic, causal learning process, and not vice versa (sed) $ELtidur
results suggest that quantum mechanical behavior may originate from an underlying deterministiqp8o24ks
Indeed, it is somewhat ironic that in order to mimic the apparent randomness with which events are observed in ex-
periments, we have to explicitly randomize the output of the DLMs to mask the underlying deterministic processes
(see Sectiod.5).

At this point it may be worthwhile to recall what a DLM actually does. In a simple physical picture, a DLM
is a device (e.g., beam splitter, polarizer) that exchanges information with the particles that pass through it. The
DLM tries to do this in an effective manner. It learns by comparing the message carried by an event with predictions
based on the knowledge acquired by the DLM during the processing of previous events. Effectively this comparison
amounts to a minimization of the squared error (see Se@jio8chrédinger used exactly the same principle to
derive his famous equatid@5] but called this approach “unversténdlich” in a subsequent publici&in

The results presented in Sectibauggest that we may have discovered a systematic procedure to construct algo-
rithms that simulate quantum phenomena using deterministic, local, and event-by-event-based processes, withou
using concepts such as wave fields or particle-wave duality. In fact, elsewhere we show that the approach intro-
duced in this paper can be employed to perform event-based simulations of a universal quantum ¢amp8ier
As it has been shown that the time evolution of the wave function of a quantum system can be simulated on a
quantum computg2,29] it should be possible, at least in principle, to compute the real-time dynamics of these
systems through event-by-event simulation using DLM networks.
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