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We describe an event-based approach to simulate the propagation of an electromagnetic plane wave
through dielectric media. The basic building block is a deterministic learning machine that is able
to simulate a plane interface. We show that a network of two of such machines can simulate the
propagation of light through a plane parallel plate. With properly chosen parameters this setup can be
used as a beam splitter. The modularity of the simulation method is illustrated by constructing a Mach–
Zehnder interferometer from plane parallel plates, the whole system reproducing the results of wave
theory. A generalization of the event-based model of the plane parallel plate is also used to simulate a
periodically stratified medium.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Maxwell’s theory of electrodynamics forms the basis of the
understanding of the properties of light [1]. The Maxwell equa-
tions describe the evolution of electromagnetic fields in space and
time [1]. They apply to a wide range of different physical situa-
tions and play an important role in a large number of engineering
applications. Maxwell’s theory describes physical phenomena in
terms of waves of electromagnetic radiation, yielding a simple ex-
planation for the observation of interference phenomena. For many
applications, computer simulation methods are required to solve
Maxwell’s equations, the work horse being the finite-difference
time-domain (FDTD) method [2].

In this paper, we present an alternative to the FDTD method.
In contrast to a wave-based description, our approach uses parti-
cles (photons) that interact with matter. The simulation proceeds
event-by-event, that is particle-by-particle. There is no direct com-
munication/interaction between different particles: Indirect com-
munication takes place via the interaction with matter, an interac-
tion that is modeled by means of a deterministic learning machine
(DLM) [3–5]. As we show in the paper, our approach is modular
and yields the same stationary-state results as those obtained from
Maxwell’s theory.

In Section 2, we introduce the simulation approach and explain
how it can be used to describe the reflection properties of a single
interface, including interference effects (Section 3). The modular-
ity of our approach is illustrated by combining two or more DLMs
to describe a homogeneous dielectric film (Section 4) and a multi-
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layer (Section 5). Finally, we show that the basic building blocks
can be re-used without modification to simulate more complex
optical devices such as a Mach–Zehnder interferometer (MZI) (Sec-
tion 6).

2. Reflection and refraction at an interface

2.1. Wave theory

In classical electrodynamics the laws of reflection and refraction
are derived from Maxwell’s theory. In case of a plane wave incident
on an interface between two homogeneous isotropic media with
different optical properties, there is in general a transmitted wave
and a reflected wave. The angle of incidence and the refractive in-
dices of both media determine the direction of the transmitted and
reflected part. Fig. 1 shows a schematic picture in the plane of in-
cidence. The relation between the angle of the incident ray θi and
that of the reflected ray θr is determined by the law of reflection,

θr = θi . (1)

The direction of the transmitted wave is determined by the law of
refraction,

sin θi

sin θt
= n2

n1
, (2)

where θt is the angle of the transmitted ray, n1 is the refractive
index of the first and n2 is that of the second medium (see Fig. 1).

For lossless, perfectly transparent media, the wave amplitudes
are given by the Fresnel formulae [1]:

T‖ = 2n1 cos θi

n2 cos θi + n1 cos θt
A‖, (3)
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Fig. 1. Reflection and refraction of light at a plane interface in the plane of inci-
dence. The angle of refraction θt is determined by the angle of incidence θi and the
refractive indices of both media n1 and n2 (Eq. (2)). The angle of reflection θr is
equal to the angle of incidence θi .

T⊥ = 2n1 cos θi

n1 cos θi + n2 cos θt
A⊥, (4)

R‖ = n2 cos θi − n1 cos θt

n2 cos θi + n1 cos θt
A‖, (5)

R⊥ = n1 cos θi − n1 cos θt

n1 cos θi + n2 cos θt
A⊥. (6)

The components of the electric field vector of the incident electro-
magnetic field parallel and perpendicular to the plane of incidence
are denoted by A‖ and A⊥ , respectively. T‖ and T⊥ are the ampli-
tudes of the transmitted wave and R‖ and R⊥ are the amplitudes
of the reflected wave.

The reflectivity R and the transmissivity T are given by

R = |R|2
|A|2 , (7)

and

T = n2

n1

cos θt

cos θi

|T |2
|A|2 . (8)

Eqs. (7) and (8) are both valid for the parallel as well as for the
perpendicular part and both components can be treated separately.
Combining Eqs. (3) to (8) and simplifying the expressions gives [1]

R‖ = tan2(θi − θt)

tan2(θi + θt)
, (9)

R⊥ = sin2(θi − θt)

sin2(θi + θt)
, (10)

T‖ = sin2θi sin2θt

sin2(θi + θt) cos2(θi − θt)
, (11)

T⊥ = sin2θi sin2θt

sin2(θi + θt)
. (12)

2.2. Event-based simulation

We simulate the behavior of reflection and transmission at
an interface by using an event-by-event, particle-only approach
[3–5]. Clearly, in an event-based model of refraction and reflection
at a dielectric, lossless interface, there can be no loss of parti-
cles: An incident particle must either bounce back from or pass
through the interface. If such a model is to reproduce the results of
Maxwell’s theory, the boundary conditions on the wave amplitudes
in Maxwell’s theory must translate into a rule that determines how
a particle bounces back or crosses the interface. In this section, we
specify these rules.

We call an event the arrival of a single photon at the interface.
This photon carries a message that can be interpreted as phase

Fig. 2. Reflection and refraction of light at a plane interface in the plane of incidence.
There are two input ports (0 and 1) and two output ports (0 and 1). The angles are
chosen such that the direction of a refracted outgoing photon coincides with the
direction of a reflected photon of the opposite input port and vice versa, allowing
for interference to occur.

or time-of-flight information. As events occur one at a time only,
there is no communication between individual photons, but the
exchange and the processing of information takes place within the
apparatus that describes the interface. An incoming photon will
either be reflected or transmitted, depending on the state of the
processing unit.

For later use, in addition to the input port and two output ports
as depicted in Fig. 1, we add an additional input port that captures
light incident from the opposite direction in such a way that the
direction of a refracted outgoing particle coincides with the direc-
tion of a reflected particle of the opposite input port and vice versa
(see Fig. 2).

The processing unit in this case is a DLM [3–5] that takes mes-
sages from two input ports and sends out messages on either of
two possible output ports depending on the internal state. The in-
ternal state is updated with each message that the DLM receives,
i.e. it learns from the events that it processes.

The deterministic learning machine consists of three stages
(see Fig. 3): The first stage receives an input from the nth
event, in this case the phase information φ of the photon and
the angle of polarization � , for practical reasons encoded as
a four-dimensional vector yn = ((yn)0,‖, (yn)1,‖, (yn)0,⊥, (yn)1,⊥),
with (yn)0,‖ = cos(φ) cos(�), (yn)1,‖ = sin(φ) cos(�), (yn)0,⊥ =
cos(φ) sin(�), and (yn)1,⊥ = sin(φ) sin(�). Upon arrival of a pho-
ton at one of its two input ports, the DLM stores the message in
its internal register Yk with k = 0 or k = 1 if the input was on port
0 or 1, respectively. There is also an internal vector x = (x0, x1)
with xi ∈ [0,1], i = {0,1} and x0 + x1 = 1. This vector is updated
for each event received on port k according to

(xn+1)i = α(xn)i + (1− α)δi,k, (13)

where 0 < α < 1 is a parameter that determines the speed of
learning. Since (xn)0 + (xn)1 = 1 for all n, we can interpret (xn)k
as (an estimate of) the frequency for the occurrence of an event
on port k.

The second stage processes the information stored in the regis-
ters Y0, Y1 and x according to the rule

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(Y0)0,‖
√
x0

(Y0)1,‖
√
x0

(Y1)0,‖
√
x1

(Y1)1,‖
√
x1

(Y0)0,⊥
√
x0

(Y0)1,⊥
√
x0

(Y1)0,⊥
√
x1

(Y1)1,⊥
√
x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r‖(Y0)0,‖
√
x0 + t‖(Y1)0,‖

√
x1

r‖(Y0)1,‖
√
x0 + t‖(Y1)1,‖

√
x1

t‖(Y0)0,‖
√
x0 − r‖(Y1)0,‖

√
x1

t‖(Y0)1,‖
√
x0 − r‖(Y1)1,‖

√
x1

r⊥(Y0)0,⊥
√
x0 + t⊥(Y1)0,⊥

√
x1

r⊥(Y0)1,⊥
√
x0 + t⊥(Y1)1,⊥

√
x1

t⊥(Y0)0,⊥
√
x0 − r⊥(Y1)0,⊥

√
x1

t⊥(Y0)1,⊥
√
x0 − r⊥(Y1)1,⊥

√
x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)
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Fig. 3. Schematic diagram of a DLM that performs an event-based simulation of a
plane interface. There are two input ports and two output ports. The first stage
(DLM) updates the internal registers Y0, Y1 and x according to the input y. The
second stage (T) processes the information stored in these registers according to a
specific rule (Eq. (14)) and the third stage (O) prepares the outgoing message and
sends it through one of the output ports.

with

r‖ = √
R‖, (15)

t‖ = √
T‖, (16)

r⊥ = √
R⊥, (17)

t⊥ = √
T⊥. (18)

Here we have omitted the event label n.
The third stage of the DLM prepares the messages

wn =

⎛
⎜⎜⎜⎝

t‖(Y0)0,‖
√
x0 − r‖(Y1)0,‖

√
x1

t‖(Y0)1,‖
√
x0 − r‖(Y1)1,‖

√
x1

t⊥(Y0)0,⊥
√
x0 − r⊥(Y1)0,⊥

√
x1

t⊥(Y0)1,⊥
√
x0 − r⊥(Y1)1,⊥

√
x1

⎞
⎟⎟⎟⎠ , (19)

and

w′
n =

⎛
⎜⎜⎜⎝

r‖(Y0)0,‖
√
x0 + t‖(Y1)0,‖

√
x1

r‖(Y0)1,‖
√
x0 + t‖(Y1)1,‖

√
x1

r⊥(Y0)0,⊥
√
x0 + t⊥(Y1)0,⊥

√
x1

r⊥(Y0)1,⊥
√
x0 + t⊥(Y1)1,⊥

√
x1

⎞
⎟⎟⎟⎠ , (20)

and generates a uniform random number 0 < r < 1. If ‖wn‖ > r,
the final stage sends zn = wn/‖wn‖ through port 0. Otherwise it
sends z′

n = w′
n/‖w′

n‖ through port 1.
From the above construction of the DLM, it is clear that the

connection between Maxwell’s wave description and the event-
based, particle-like simulation model enters through Eqs. (15)–
(18), where the expressions in the left-hand sides of the latter are
given by Eqs. (9)–(12).

2.3. Simulation results

As a first validation of the simulation model, we simulate a sin-
gle interface with our event-based method. The initial values of
the registers Y0, Y1 and x are chosen randomly, but properly nor-
malized. For each point in Fig. 4, 100000 events were simulated
by sending messages on port 0 with a randomly chosen but fixed
phase. The parameters were set to α = 0.99, n1 = 1, and n2 = 1.52.
At the end we count, how many events we have detected on out-
put port 0, i.e. the fraction of reflected particles. This normalized
intensity corresponds to the reflectivity R.

2.4. Discussion

We have shown that the reflectivity of a single interface can
be simulated by our event-based approach. The simulation re-
sults are in excellent agreement with the theoretical predictions of

Fig. 4. Reflectivity R of a plane interface between homogeneous dielectric media
with refractive indices n1 = 1 and n2 = 1.52 as a function of the angle of inci-
dence θi . Triangles: polarization angle � = 0; Squares: � = π/4; Circles: � =
π/2. Each marker represents a simulation of 100000 events with α = 0.99. The
simulation data are in very good agreement with the wave theoretical predictions
(solid lines).

Maxwell’s wave theory. Features such as the polarization depen-
dence or reflection at the Brewster angle are faithfully reproduced.
However, this good agreement does not show yet that our model
correctly simulates interference phenomena. Such a demonstration
is given in Section 3.

3. Interference effects at an interface

In Section 2, we dealt with the case of input on a single input
port only. Here we consider the case where particles can arrive,
one-by-one, on both sides of the interface, that is on both input
ports.

3.1. Wave theory

According to Maxwell’s theory, if particles enter on input port 0
with a probability of p0, carrying a phase φ0 and on input port 1
with probability 1− p0 and phase φ1 the amplitudes on the output
ports are given by

(
b0
b1

)
=

(
r{‖,⊥} t{‖,⊥}
t{‖,⊥} −r{‖,⊥}

)( √
p0e

iφ0

√
1− p0e

iφ1

)
, (21)

with r{‖,⊥} and t{‖,⊥} given by Eqs. (15) to (18). For S-polarization,
i.e. the ⊥-component (� = π/2), the normalized intensity on out-
put port 0 or the reflectivity R⊥ is given by

|b0,⊥|2 = sin2(θi − θt)

sin2(θi + θt)
p0 + sin2θi sin2θt

sin2(θi + θt)
(1 − p0)

− 2
sin(θi − θt)

√
sin2θi sin2θt cos(φ0 − φ1)

sin2(θi + θt)

× √
p0(1− p0). (22)

For P-polarization (� = 0), the corresponding expression reads

|b0,‖|2 = tan2(θi − θt)

tan2(θi + θt)
p0 + sin2θi sin2θt

sin2(θi + θt) cos2(θi − θt)
(1− p0)

+ 2
tan(θi − θt)

√
sin2θi sin2θt cos(φ0 − φ1)

tan(θi + θt) sin(θi + θt) cos(θi − θt)

× √
p0(1− p0). (23)
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Fig. 5. Single interface between a n1 = 1 and a n2 = 1.52 dielectric with input from both sides. Single photons arrive on port 0 with probability p0, carrying a phase φ0

and on port 1 with probability 1 − p0 and phase φ1. At any time there is at most one single photon in the system. Each marker represents a simulation of 100000 events
with α = 0.98. The phase difference φ0 − φ1 is generated from randomly chosen values of φ0 and φ1 (which are then fixed for 100000 events). Solid circles: polarization
angle � = 0; Open circles: � = π/2. (a): p0 = 1/2, θi = 0; (b): p0 = 1/2, θi = π/4; (c): p0 = 1/4, θi = 0; (c): p0 = 1/4, θi = π/4. The simulation results are in excellent
agreement with the theoretical expressions derived from wave theory (Eqs. (22) and (23)), shown here as solid lines.

3.2. Simulation results

In Fig. 5 we compare the event-based simulation results to the
wave theoretical predictions Eqs. (22) and (23). In these simula-
tions, we send, one-by-one, photons with phase φ0 on port 0 with
probability p0 and photons with phase φ1 on port 1 with probabil-
ity 1− p0. Of course, the results depend on the incident angle θi .

3.3. Discussion

Our event-based simulation results are in excellent agreement
with the wave theoretical description. For a single interface and a
single input port there are no interference effects and the results
are in agreement with wave theory, independent of the parame-
ter α. However, in the case of two input ports where interference
can occur, the value of α is important: The wave theoretical pre-
dictions can only be reproduced by the event-based simulation if
α is close to one [3–5].

4. Light propagation through a homogeneous dielectric film
(plane-parallel plate)

A homogeneous dielectric film between two homogeneous me-
dia can be regarded as two plane parallel interfaces. Fig. 6 shows
a schematic picture of the system.

Fig. 6. Homogeneous dielectric film built from two plane parallel interfaces. The
film thickness is denoted by h. For a plate surrounded by air the refractive indices
n1 = n3 = 1 and θ1 = θ3.

4.1. Wave theory

According to Maxwell’s theory, the reflectivity and transmissiv-
ity of the film are given by [1]

R = r212 + r223 + 2r12r23 cos2β

1+ r212r
2
23 + 2r12r23 cos2β

, (24)

and

T = n3 cos θ3

n1 cos θ1

t212t
2
23

1+ r212r
2
23 + 2r12r23 cos2β

, (25)
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with

r12 = n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
, (26)

t12 = 2n1 cos θ1

n1 cos θ1 + n2 cos θ2
, (27)

for a S-polarized wave (� = π/2) and

r12 = n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
, (28)

t12 = 2n1 cos θ1

n2 cos θ1 + n1 cos θ2
, (29)

for a P-polarized wave (� = 0), describing the process at the in-
terface from medium 1 to medium 2 and analogous expressions
for r23 and t23. The variable β is determined by

β = 2π

λ0
n2h cos θ2, (30)

with λ0 being the wavelength of the incident wave and h denoting
the thickness of the film.

4.2. Event-based simulation

We simulate a homogeneous dielectric film by connecting two
DLMs, one for each interface and each working as described in
Section 2. For each interface, we use the appropriate expressions
for r and t as given by Eqs. (15)–(18) and Eqs. (9)–(12), that is
we do not use the expressions from Maxwell’s theory for the film
(Eqs. (24)–(30)). We recover the results of Maxwell’s theory by the
event-based simulation without solving the wave equation for the
film. This modularity allows us to re-use the DLM model of an
interface for simulating films, multilayers, etc.

We assume that the path of the particles is as depicted in Fig. 7.
The incident particle is either reflected or refracted as it hits the
first interface. In case of reflection it leaves the system on the front
side of the film. If it is refracted, the particle refracted from the
first interface acts as the incident particle of the second interface.
While traveling from the first to the second interface it acquires
a phase shift exp(iΦ), with Φ = β (Eq. (30)), depending on the
width of the film. Hitting the second interface there are again two
options; either the particle is refracted and leaves the system on
the back side of the film or it is reflected towards the first interface
again, but this time entering the other input port after acquiring
another phase shift on the way. Subsequently, a refraction leads to
an exit on the front side of the film and on reflection the particle
is sent back to the first input port of the second interface. This
continues until eventually, the particle leaves on the front or the
back side of the film. The arrangement of the two DLMs is depicted
in Fig. 8. This setup corresponds to the behavior described and
shown in Fig. 7.

4.3. Simulation results

With the setup of Fig. 8, we simulate the behavior of homoge-
neous dielectric films. The first analysis considers a plate of thick-
ness h = n2λ0/4 (quarter-wave plate) under normal incidence for
various values of refractive indices. The results for 100000 events
and α = 0.99, together with the results of Maxwell’s theory, can
be found in Fig. 9. The values of the reflectivity predicted by wave
theory (Eq. 24) are reproduced with high precision by the event-
based simulation. Fig. 10 shows the reflectivity under normal inci-
dence of various plates surrounded by air (n1 = n3 = 1) depending
on the thickness of the plate. Again, the agreement with wave the-
ory is very good. The variation with the incident angle for different
polarizations is shown in Fig. 11. The wave theoretical predictions

Fig. 7. A homogeneous dielectric film built from two plane parallel interfaces. Upon
incidence on either of the two interfaces a photon can either be reflected or re-
fracted. This can continue until it leaves on any side of the film. Due to the trans-
lational invariance when dealing with plane waves, corresponding translated paths
can be regarded as superimposed.

Fig. 8. Arrangement of two DLMs simulating a homogeneous dielectric film. The
output on port 0 of the second DLM is fed back into the input port 1 of the first
machine. The symbol Φ denotes a phase shift that a message acquires when travel-
ling that specific path.

Fig. 9. Simulation results of the reflectivity R of a quarter-wave plate, built from
two plane parallel interfaces, for normal incidence and for various choices of re-
fractive indices n1, n2 and n3. Symbols represent simulation results with α = 0.99
and 100000 events per data point. Solid squares: n1 = n3 = 1; Solid circles: n1 = 1
and n3 = 1.45; Triangles: n1 = 1 and n3 = 1.8; Open squares: n1 = n3 = 1.45; Open
circles: n1 = n3 = 1.8; The solid lines are the wave theoretical predictions (Eq. (24)).

are all reproduced by the event-based simulation, including fea-
tures like zero reflectivity under the Brewster angle for P-polarized
(� = 0) light.

4.4. Application: beam splitter

Having shown that the event-based model of the homogeneous
dielectric film works as expected, we now illustrate the modularity
of the simulation approach by building a 50/50-beam splitter. The
setup is shown in Fig. 12. The incident angles are fixed to 45◦ , the
width h of the plate is set to h = λ0/4n2 and the refractive index
n2 of the plate is set to n2 = 1.86, such that we get a 50/50-beam
splitter for � = π/2 (see Eq. (24)).
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Fig. 10. Simulation results of the reflectivity R of a homogeneous dielectric film
for normal incidence (θi = 0) in air (n1 = n3 = 1) as a function of its thickness h for
various values of n2. Solid circles: n2 = 3; Solid squares: n2 = 2; Triangles: n2 = 1.7;
Open circles: n2 = 1; Diamonds: n2 = 1.5; Open squares: n2 = 1.4; Open triangles:
n2 = 1.2. The parameter α = 0.99 and 100000 events were processed for each set
of parameters. The simulation results (markers) are in very good agreement with
the wave theoretical expressions (solid lines, Eq. (24)).

Fig. 11. Simulation data of the reflectivity R of a quarter wave plate as a function of
the angle of incidence θi for different polarizations � . Triangles: polarization angle
� = 0; Squares: � = π/4; Circles: � = π/2. The parameter α = 0.99 and 100000
events were processed for each data point. The simulation results (markers) are in
very good agreement with the wave theoretical expressions (solid lines, Eq. (24)).

Fig. 12. Beam splitter built from two plane parallel interfaces. The incident angle is
set to 45◦ , the width to h = λ0/4n2, i.e. to an optical path length of a quarter wave
and the refractive index n2 is set to n2 = 1.86, so that we get a 50/50-beam splitter
(n1 = n3 = 1, � = π/2). There are two input ports and two output ports. Due to the
translational invariance of plane waves, parallel paths (indicated by dotted lines) can
be matched. This is also true for paths emerging from multiple reflections within
the plate (not shown here, compare Fig. 7).

Fig. 13. Simulation results for a 50/50-beam splitter built from two plane inter-
faces. The parameter α = 0.98 and 100000 events have been processed for each
data point. The phases φ0 and φ1 were drawn from uniform random distributions.
We measured the normalized intensity N0/(N0 + N1), with N0 and N1 being the
number of events on the corresponding output port. Depending on the probability
p0 of an event entering on input port 0, we get different results which agree very
well with the wave theoretical predictions (solid lines). Triangles: p0 = 1; Circles:
p0 = 0.5; Squares: p0 = 0.25.

The incident particles on both input ports hit the beam splitter
such that the direction of the transmitted particle from one port
coincides with the direction of the reflected particle from the other
input port. Due to the translational invariance of plane waves, par-
allel paths can be overlayed, as in the case of the plane parallel
plate.

Next, we consider an experiment where we send, one-by-one,
particles carrying the phase information φ0 (φ1) to input port 0
(1). The probability for a message to arrive on port 0 is p0 and
with probability of 1 − p0 a message arrives on port 1. According
to wave theory, the amplitudes b0 and b1 on the output ports 0
and 1 are given by [1](
b0
b1

)
=

(
t r
r t

)( √
p0e

iφ0

√
1− p0e

iφ1

)
, (31)

with r and t given by

r = r12 + r23e
2iβ

1+ r12r23e2iβ
, (32)

and

t = t12t23e
iβ

1+ r12r23e2iβ
. (33)

The definitions of r12 and t12 are given in Eqs. (26) and (27),
r23 and t23 are defined analogously.

Depending on the phase difference φ0 − φ1 the probability for
a particle to exit on the output port 0 is given by

|b0|2 = 1

2
+ √

p0(1− p0) sin(φ0 − φ1). (34)

We have run the single-event simulation with α = 0.98 and
N0 + N1 = 100000 events for each value of the phase difference,
where N0 and N1 denote the number of events on the output
port 0 and 1, respectively. We determined the normalized intensity
N0/(N0 + N1) detected on output port 0. The results for various
values of p0 are shown in Fig. 13. The event-based simulation is in
very good agreement with the behavior predicted by wave theory.

4.5. Discussion

We have shown that we can use an event-based simulation ap-
proach to describe the behavior of a homogeneous dielectric film.
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With the proper choice of parameters we can use this as a beam
splitter. This beam splitter can be used as building block for optics
experiments like the Mach–Zehnder interferometer (see Section 6).

5. Light propagation through a periodic multilayer

5.1. Wave theory

A periodic multilayer consists of a succession of homogeneous
layers of alternating refractive indices, n2 and n3, and thicknesses,
h2 and h3, between two homogeneous media with refractive in-
dices n1 and n4 (see Fig. 14). For quarter wave layers (n2h2 =
n3h3 = λ0/4) at normal incidence the reflectivity for a total of N
interfaces is given by [1]

RN =
(
1− (n4n1

)(n2n3
)N−1

1+ (
n4
n1

)(
n2
n3

)N−1

)2

, if N is odd, (35)

i.e., if the stack ends on n3 → n4, and

RN =
(
1− (n2n1

)(n2n4
)(n2n3

)N−2

1+ (
n2
n1

)(
n2
n4

)(
n2
n3

)N−2

)2

, if N is even, (36)

i.e., if the stack ends on n2 → n4.

5.2. Event-based simulation

The method for simulating a plate consisting of two interfaces
(Section 4) can be generalized to the case of a multilayer. In this

Fig. 14. Scheme of a periodic multilayer. It consists of a stack of layers with alter-
nating refractive indices, n2 and n3, and thicknesses, h2 and h3 between two media
with refractive indices n1 and n4. Drawn here are only three periods, but the num-
ber of periods can be chosen arbitrarily. It is also possible to end with the transition
from n2 to n4 skipping the last layer with refractive index n3.

case we concatenate N DLMs, each one simulating the behavior
of a single interface. The schematic diagram of the DLM network
is depicted in Fig. 15. A message, that is sent into the network
can propagate back and forth through any DLM, until eventually
it leaves the network through port 0 of the first DLM or port 1
of the last DLM. This corresponds to multiple transmissions and
reflections of a photon within the multilayer, until eventually it
exits on the front or the back side.

5.3. Simulation results

We study the case of a periodic multilayer. The sequence of
refractive indices along the stack is n1,n2,n3,n2,n3, . . . ,n2, (n3),
n4 (Fig. 14). Fig. 16 shows the reflectivity (normalized intensity
on output port 0) depending on the number of interfaces. An-
other analysis shows the reflectivity depending on the ratio n2/n3
(Fig. 17).

5.4. Discussion

We have shown that the approach introduced in Section 2 can
be generalized to multilayers by concatenating multiple DLMs. The
basic building block is a DLM simulating a plane interface between
two homogeneous dielectric media. A network of multiple DLMs
can be used to form more complex structures. We studied the
case of a periodic multilayer and found excellent agreement of the
event-based simulation results with the wave theoretical descrip-
tion.

6. Event-based simulation of a Mach–Zehnder interferometer

6.1. Wave theory

The Mach–Zehnder interferometer is a device that is sensitive
to relative phase shifts [1]. The schematic setup is depicted in
Fig. 18. At any time, there is at most a single photon traveling
through the system. After passing the first beam splitter the pho-
ton gets an additional phase shift depending on the path that it
follows. It passes the second beam splitter and is detected on one
of the output ports. According to wave theory the amplitudes of
the photons (b0,b1) in the output ports 0 (N2) and 1 (N3) are
given by(
b0
b1

)
= 1

2

(
1 i
i 1

)(
eiψ0 0

0 eiψ1

)(
1 i
i 1

)(
a0
a1

)
, (37)

with (a0,a1) being the amplitudes in the input ports and ψ0, ψ1

describing the additional phase rotations in the specific arm of the
interferometer.

Fig. 15. Network of DLMs for the simulation of a periodic multilayer. Here, only a single period (n1 → n2 → n3 → n4) with 3 interfaces is shown, but in principle it can be
generalized to arbitrarily many periods. The first DLM on the left simulates a plane interface between media with refractive indices n1 and n2. The second DLM describes
the transition from n2 to n3 and the third DLM simulates the interface between media with refractive indices n3 and n4. By inserting more DLMs before the rightmost one,
it is possible to build any multilayer. For our simulation, we chose a periodic setup with alternating layers with reflective indices n2 and n3.
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Fig. 16. Reflectivity R of a periodic multilayer as a function of the number of in-
terfaces N . Closed circles: Event-based simulation data. Open circles: Wave theory
(Eqs. (35) and (36)). The parameters were chosen to resemble an experiment with
quarter wave films of zinc sulphide and cryolite at normal incidence [1]: n1 = 1,
n2 = 2.3, n3 = 1.35, n4 = 1.52, n2h2 = n3h3 = λ0/4, θi = 0. The simulation was car-
ried out with α = 0.998 and 1000000 events per data point. The results of our
event-based approach agree very well with the predictions of wave theory.

Fig. 17. Reflectivity R of a periodic multilayer depending on the ratio n2/n3 of the
refractive indices for N = 5 (solid circles) and N = 6 (open circles) interfaces. Data
points are simulation results as obtained with α = 0.99 and 100000 events for each
point. Solid lines are results derived from wave theory (Eqs. (35) and (36)). Model
parameters are: n1 = 1, n2 = 2, n4 = 1.52, n2h2 = n3h3 = λ0/4, θi = 0, with n3 vary-
ing. The event-by-event simulation gives the same results as the wave theoretical
description (solid lines).

Fig. 18. Schematic setup of a Mach–Zehnder interferometer, consisting of two beam
splitters and two devices that perform a specific phase shift. A photon is sent on
one of the input ports and leaves the beam splitter on one of its output ports. De-
pending on which path of the interferometer a photon takes, its phase is changed
by either ψ0 or ψ1. It then interacts with the second beam splitter and eventu-
ally, a photon is detected on one of the output ports of the interferometer. In the
simulation we denote the photon numbers on each path with N0, N1, N2, and N3.
The counts N0 and N1 give the number of particles that travel from the first to the
second beamsplitter via one of the two pathways (but never via the two pathways
simultaneously).

Fig. 19. Normalized intensities in Mach–Zehnder interferometer (see Fig. 18) de-
pending on the phase shift ψ0 for various values of the phase shift ψ1. The data
points are simulation results using 100000 events and α = 0.98. Solid circles:
N0/(N0 + N1) for ψ1 = 0; Open circles: N2/(N2 + N3) for ψ1 = 0; Solid squares:
N2/(N2 + N3) for ψ1 = 30◦; Open squares: N2/(N2 + N3) for ψ1 = 240◦; Solid tri-
angles: N3/(N2 + N3) for ψ1 = 0; Open triangles: N3/(N2 + N3) for ψ1 = 300◦; The
solid lines are the predictions of wave theory.

For input on port 0 only, i.e. (a0,a1) = (cosφ0 + i sinφ0,0), we
get the probability distribution

|b0|2 = sin2

(
ψ0 − ψ1

2

)
, |b1|2 = cos2

(
ψ0 − ψ1

2

)
. (38)

6.2. Event-based simulation

We simulate a Mach–Zehnder interferometer with our event-
based approach by using the same building blocks as shown in
Fig. 18; we use two beam splitters, two phase shifters, one single-
photon source (not shown) and two detectors (not shown). The
beam splitters are built from more fundamental single interfaces
as described in Section 4.4. The communication between the com-
ponents of the interferometer is mediated by single photons only.
Each photon carries a message that is just its phase information.

The simulation results for input on a single port only, i.e.
(cosφ, sinφ) on port 0 and no input on port 1, are shown in
Fig. 19. The phase φ is chosen randomly but fixed from an equal
distribution in the range [0,360◦]. Each data point represents
100000 events (N0 + N1 = N2 + N3 = 100000) and α is set to
α = 0.98. The angle of rotation ψ0 is varying in steps of 10◦ and
the normalized intensities for the various ports are determined
from the event-based simulation.

The agreement between the event-based simulation and the
wave theoretical description is very good if α is close to 1. This
has been shown for event-based simulations with a DLM model
that simulates a beam splitter as a whole [3–5], not as a collection
of interfaces, as is done in the present work. Thus, we have shown
that DLMs describing beam splitters can be built up from more
fundamental building blocks, namely single interfaces, illustrating
the modularity of our simulation method.

6.3. Discussion

Our event-based simulation of a MZI shows that this optics
experiment can be simulated by building a network of a basic
building block, the DLM-based machine that simulates an inter-
faces between two homogeneous media. The simulation results
for the basic building block and the more complicated networks
such as a plane parallel plate, a beam splitter, a periodic strati-
fied medium, and a MZI are all in excellent agreement with the
corresponding results of Maxwell’s theory, demonstrating that our
event-based approach is modular. Crucial for the DLM-based simu-
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lation to yield the results of Maxwell’s theory is that the parameter
α which controls the dynamics of the DLM is close to one [3–5].

7. Conclusion

We have shown that basic optical phenomena such as reflec-
tion, refraction and interference can be simulated by an event-
based, particle-like approach. Our computational approach has the
following features:

• It yields the stationary solution of the Maxwell equations by
simulating particle trajectories only.

• Material objects are represented by DLM-based units placed on
a boundary of these objects, which in practice involves some
form of discretization. Apart from this discretization, all calcu-
lations are performed using Euclidean geometry.

• Unlike wave equation solvers, it does not suffer from arti-
facts due to the unavoidable termination of the simulation
volume [2]: Particles that leave this volume can simply be re-
moved from the simulation.

• Unlike wave equation solvers which may consume substantial
computational resources (i.e. memory and CPU time) to sim-
ulate the propagation of waves in free space, it calculates the
motion of the corresponding particles in free space at almost
no computational cost.

• Modularity: Starting from the unit that simulates the behavior
of a plane interface between two homogeneous media other
optical components can be constructed by repeated use of the
same unit.

We believe that the work presented in this paper may open a
route to rigorously include the effects of interference in ray-tracing
software. For this purpose, it is necessary to extend the DLM-based
model for lossless dielectric materials to, say a Lorentz model for
the response of material to the electromagnetic field [2]. This may
be done by simple modifications of the DLM update rule, an ex-
tension that we leave for future research.
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