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Abstract

We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation
software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi
SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating
quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator
exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also
serve as benchmark for testing high-end parallel computers.
© 2006 Elsevier B.V. All rights reserved.

PACS: 03.67.Lx; 02.70.-c
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1. Introduction

In this paper, we describe a Fortran 90 software package to simulate universal quantum computers [1]. The software runs
on various computer architectures, ranging from PCs to high-end (vector) parallel machines. The simulator can perform all the
quantum operations that are necessary for universal quantum computation. The maximum number of qubits is set by the memory of
the machine on which the code runs. We present simulation results for quantum computers containing up to 36 qubits. In view of the
fact that the simulation of quantum systems, such as quantum computers, requires computational resources that grow exponentially
with the system size, this represents a significant advance beyond the state of the art, which is currently around 32 qubits [2]. An
overview of quantum computer simulator software is given in Ref. [3].

The main focus of the present work is on the design of portable, efficient parallel simulation code for a universal quantum
computer. A subsequent paper [4] will explore optimization techniques to further improve the performance of the parallel code. In
principle, because of this “universality”, this code for the ideal quantum computer can also be used to simulate physical systems,
such as quantum spin models or models for physical realizations of quantum computers, by writing the time evolution of the
physical system as a sequence of elementary quantum gate operations [1]. However, this approach is bound to be computationally
inefficient for all but nontrivial physical systems. Instead, it is much more effective to allow for additional unitary transformations
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that implement operations such as the time evolution under a Heisenberg Hamiltonian in an optimal manner [3,5–7]. Such an
extension, which does not affect the intrinsic performance of the code, will be dealt with in a future publication.

The paper is organized as follows. In Section 2, we briefly recall some basic elements of quantum computation. In Section 3,
we present a scheme to parallelize the software to simulate a quantum computer on a massive parallel computer. We employ the
standard Message Passing Interface (MPI) [8] to implement this scheme. Section 4 describes the main features of the simulator
software. In Section 5, we discuss a few nontrivial quantum algorithms, such as an adder of two to five registers of qubits and
Shor’s factoring algorithm, that are used to validate and benchmark the simulation software. Section 6 presents our benchmark
results of running the quantum algorithms on various parallel computers. A discussion is given in Section 7.

2. Quantum computation

For convenience of the reader, to make the paper self-contained and to explain the terminology, we summarize some basic aspects
of quantum computation.

2.1. Quantum computer terminology

The state |Φ〉 of a qubit, the elementary storage unit of a quantum computer, is described by a two-dimensional vector of
Euclidean length one:

(1)|Φ〉 = a(0)|0〉 + a(1)|1〉 = a0|0〉 + a1|1〉,
where |0〉 and |1〉 denote two orthogonal basis vectors of the two-dimensional vector space and a0 ≡ a(0) and a1 ≡ a(1) are
complex numbers such that |a0|2 + |a1|2 = 1. The result of inquiring about the state of a single qubit, that is the outcome of a
measurement, is either 0 or 1. The frequency of obtaining 0 (1) can be estimated by repeated measurement of the same state of the
qubit and is given by |a0|2 (|a1|2) [9–11].

The internal state of a quantum computer with L qubits is described by a vector, also called the state vector, in a D = 2L

dimensional space [1]. Adopting the convention of quantum computation literature [1], the state of an L-qubit quantum computer
is represented by

|Φ〉 = a(0 . . .00)|0 . . .00〉 + a(0 . . .01)|0 . . .01〉 + · · · + a(1 . . .10)|1 . . .10〉 + a(1 . . .11)|1 . . .11〉
(2)= a0|0〉 + a1|1〉 + · · · + a2L−2|2L − 2〉 + a2L−1|2L − 1〉,

where in the last line of Eq. (2), the binary representation of the integers 0, . . . ,2L−1 was used to denote |0〉 ≡ |0 . . .00〉, . . . , |2L −1〉
≡ |1 . . .11〉 and a0 ≡ a(0 . . .00), . . . , a2L−1 ≡ a(1 . . .11). We normalize the state vector, that is 〈Φ|Φ〉 = 1, by rescaling the
complex-valued amplitudes ai according to

(3)
2L−1∑
i=0

|ai |2 = 1.

Note that in this notation it is convenient to number the qubits from 0 to L − 1, that is qubit 0 corresponds to the least significant
bit of the integer index that runs from zero to 2L−1.

A quantum algorithm is a sequence of unitary operations on the vector |Φ〉. It has been shown that an arbitrary unitary opera-
tion can be written as a sequence of single qubit operations and the CNOT operation on two qubits [1,12]. Therefore, single-qubit
operations and the CNOT operation are sufficient to construct a universal quantum computer [1]. We call these operations elemen-
tary unitary transformations. According to quantum theory, after executing a quantum algorithm, the probability for observing the
quantum computer in one of its 2L states is given by the square of the absolute value of the corresponding element of the state
vector.

In the quantum computation literature, the convention is to count each elementary, unitary transformation as one operation on
a quantum computer [1]. However, carrying out a unitary operation on a conventional computer requires more than one arithmetic
operation and it is customary to determine the performance of an algorithm by counting the number of arithmetic operations.
Although the difference between these two ways of expressing the performance of an algorithm should be clear from the context,
the reader should keep this difference in mind.

2.2. Single-qubit operations

Single-qubit operations that are often used in quantum computation are the Hadamard operation H and rotations X and Y of
the state vector by π/2 about the x- and y-axis of the spin-1/2 operator S = (Sx, Sy, Sz), representing the qubit. The Hadamard
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Fig. 1. Graphical representation of some of the basic gates used in quantum computation; (a) Hadamard gate; (b) Rotation by π/2 about the x-axis; (c) Rotation
by π/2 about the y-axis; (d) Single qubit phase shift by φ = 2π/2k ; (e) CNOT gate; (f) Controlled phase shift by φ = 2π/2k ; (g) Controlled V operation by
φ = 2π/2k ; (h) Toffoli gate. The horizontal lines denote the qubits involved in the quantum operations. The dots and crosses denote the control and target qubits,
respectively.

operation is defined by [1]

(4)H |Φ〉 = H
(
a0|0〉 + a1|1〉) = 1√

2
(a0 + a1)|0〉 + 1√

2
(a0 − a1)|1〉,

the X operation by

(5)X|Φ〉 = eiπSx/2(a0|0〉 + a1|1〉) = 1√
2
(a0 + ia1)|0〉 + 1√

2
(a1 + ia0)|1〉,

and the Y operation by

(6)Y |Φ〉 = eiπSy/2(a0|0〉 + a1|1〉) = 1√
2
(a0 + a1)|0〉 + 1√

2
(a1 − a0)|1〉.

The phase shift operation R(φ) is defined by

(7)R(φ)|Φ〉 = eiφ/2e−iφSz(
a0|0〉 + a1|1〉) = a0|0〉 + a1e

iφ |1〉,
R(φ) changes the phase of the amplitude of the |1〉 component of the state vector only. Quantum algorithms are often represented
by quantum networks, diagrams that show the order of the operations performed on the qubits. The graphical symbols of H , X, Y ,
and R(φ = 2π/2k) are shown in Fig. 1. The inverse and transpose of a unitary operation U are denoted by U and UT, respectively.

2.3. Two-qubit operations: CNOT and controlled phase shift

Computation requires some form of communication between the qubits. Any form of communication between qubits can be
reduced to a combination of single-qubit operations and the CNOT operation, a two-qubit operation [1,12]. By definition, the
CNOT gate flips the target qubit if the control qubit is in the state |1〉 [1]. If we take qubit zero (that is the least significant bit in the
binary notation of an integer) as the control qubit and qubit one as the target qubit then we have

CNOT10 |Φ〉 = CNOT10
(
a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉)

= a0|00〉 + a3|01〉 + a2|10〉 + a1|11〉
(8)= a0|0〉 + a3|1〉 + a2|2〉 + a1|3〉.

The graphical symbol of the CNOT operation is shown in Fig. 1(e). The dot (cross) denotes the control (target) qubit.
Another frequently used operation is the controlled phase shift. The controlled phase shift operation with control qubit 0 and

target qubit 1 is defined by

R10(φ)|Φ〉 = R10(φ)
(
a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉)

(9)= a0|00〉 + a1|01〉 + a2|10〉 + eiφa3|11〉.
Graphically, the controlled phase shift Rji(φ = 2π/2k) is represented by a vertical line connecting a dot (control qubit) and a box
denoting a single qubit phase shift by 2π/2k (see Fig. 1(f)).

The CNOT operation is a special case of the controlled unitary transformation V . If qubit zero is the control qubit and qubit one
is the target qubit then

V10(φ)|Φ〉 = V10(φ)
(
a0|00〉 + a1|01〉 + a2|10〉 + a3|11〉)

(10)= a0|00〉 + (1 + eiφ)a1 + (1 − eiφ)a3

2
|01〉 + a2|10〉 + (1 − eiφ)a1 + (1 + eiφ)a3

2
|11〉.

The graphical symbol of the controlled V operation, Vji(φ = 2π/2k), is a vertical line connecting a dot and a circle containing the
value k (see Fig. 1(g)).
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2.4. Three-qubit operation: Toffoli gate

The Toffoli gate is a generalization of the CNOT gate in the sense that it has two control qubits and one target qubit [1,13]. The
target qubit flips if and only if the two control qubits are set. If we take qubit zero and qubit one as the control qubits and qubit two
as the target qubit then we have

T210|Φ〉 = T210
(
a0|000〉 + a1|001〉 + a2|010〉 + a3|011〉 + a4|100〉 + a5|101〉 + a6|110〉 + a7|111〉)

= a0|000〉 + a1|001〉 + a2|010〉 + a7|011〉 + a4|100〉 + a5|101〉 + a6|110〉 + a3|111〉
(11)= a0|0〉 + a1|1〉 + a2|2〉 + a7|3〉 + a4|4〉 + a5|5〉 + a6|6〉 + a3|7〉.

Symbolically the Toffoli gate is represented by a vertical line connecting two dots (control qubits) and one cross (target qubit), as
shown in Fig. 1(h).

3. Parallelization

3.1. General computational aspects

Computer memory and CPU time put limitations on the size of the quantum computer that can be simulated on a conventional
digital computer. The required CPU time is mainly determined by the number of operations to be performed on the qubits. The CPU
time does not put a hard limit on the simulation. However, the memory of the computer does. According to Eq. (2), the state of a
L-qubit quantum computer is represented by a complex-valued vector of length D = 2L. In view of the potentially large number of
arithmetic operations, it is advisable to use 13–15 digit floating-point arithmetic (corresponding to 8 bytes for a real number). Thus,
to represent a state of the quantum system of L qubits in a conventional, digital computer, we need at least 2L+4 bytes. Hence,
the amount of memory that is required to simulate a quantum computer with L qubits increases exponentially with the number of
qubits L. For example, for L = 24 (L = 36) we need at least 256 MB (1 TB) of memory to store a single arbitrary state |Φ〉.

As seen in Section 2, operations U on the state vector |Φ〉 result in a transformation of the amplitudes of the basis states in |Φ〉.
More specifically, let us denote

(12)|Φ〉 = a(00 . . .0)|00 . . .0〉 + a(0 . . .01)|0 . . .01〉 + · · · + a(01 . . .1)|01 . . .1〉 + a(11 . . .1)|11 . . .1〉,
and

(13)|Φ ′〉 = U |Φ〉 = a′(00 . . .0)|00 . . .0〉 + a′(0 . . .01)|0 . . .01〉 + · · · + a′(01 . . .1)|01 . . .1〉 + a′(11 . . .1)|11 . . .1〉.
We first consider the single-qubit operations on qubit j that transform |Φ〉 in |Φ ′〉 = Uj |Φ〉. From Eq. (4), it follows that the

Hadamard operation on qubit j , Hj , transforms the amplitudes according to

a′(∗ · · · ∗ 0j ∗ · · · ∗) = 1√
2

(
a(∗ · · · ∗ 0j ∗ · · · ∗) + a(∗ · · · ∗ 1j ∗ · · · ∗)

)
,

(14)a′(∗ · · · ∗ 1j ∗ · · · ∗) = 1√
2

(
a(∗ · · · ∗ 0j ∗ · · · ∗) − a(∗ · · · ∗ 1j ∗ · · · ∗)

)
,

where we use the asterisk to indicate that the bits on the corresponding positions are the same. From Eq. (5), it follows that for Xj

operating on |Φ〉 the elements of |Φ ′〉 are obtained by

a′(∗ · · · ∗ 0j ∗ · · · ∗) = 1√
2

(
a(∗ · · · ∗ 0j ∗ · · · ∗) + ia(∗ · · · ∗ 1j ∗ · · · ∗)

)
m,

(15)a′(∗ · · · ∗ 1j ∗ · · · ∗) = 1√
2

(
a(∗ · · · ∗ 1j ∗ · · · ∗) + ia(∗ · · · ∗ 0j ∗ · · · ∗)

)
.

In the case of |Φ ′〉 = Yj |Φ〉, it follows from Eq. (6) that

a′(∗ · · · ∗ 0j ∗ · · · ∗) = 1√
2

(
a(∗ · · · ∗ 0j ∗ · · · ∗) + a(∗ · · · ∗ 1j ∗ · · · ∗)

)
,

(16)a′(∗ · · · ∗ 1j ∗ · · · ∗) = 1√
2

(
a(∗ · · · ∗ 1j ∗ · · · ∗) − a(∗ · · · ∗ 0j ∗ · · · ∗)

)
.

From Eq. (7) it follows that we obtain |Φ ′〉 = Rj (φ)|Φ〉 by leaving the amplitudes, for which the j th bit of their index is zero,
unchanged and by multiplying the amplitudes, for which the j th bit of their index is one, with the phase factor eiφ . Hence we
have,
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a′(∗ · · · ∗ 0j ∗ · · · ∗) = (∗ · · · ∗ 0j ∗ · · · ∗),

(17)a′(∗ · · · ∗ 1j ∗ · · · ∗) = eiφa(∗ · · · ∗ 1j ∗ · · · ∗).

In summary, performing an operation on qubit j requires in general an update of 2L elements of |Φ〉. The single-qubit phase shift
operation forms an exception and requires an update of 2L−1 single amplitudes only. Note that all these operations can be done in
place, that is, without using another vector of length 2L.

We now consider two-qubit operations |Φ ′〉 = Ukj |Φ〉, with j < k. For the CNOT operation CNOTkj , where qubit j is the
control qubit and qubit k is the target qubit, amplitudes for which bit j of their index is one and bit k of their index is zero need to
be swapped with amplitudes for which bits j and k of their index are one (see Eq. (8)). We have

a′(∗ · · · ∗ 0k ∗ · · · ∗ 0j ∗ · · · ∗) = a(∗ · · · ∗ 0k ∗ · · · ∗ 0j ∗ · · · ∗),

a′(∗ · · · ∗ 0k ∗ · · · ∗ 1j ∗ · · · ∗) = a(∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗),

a′(∗ · · · ∗ 1k ∗ · · · ∗ 0j ∗ · · · ∗) = a(∗ · · · ∗ 1k ∗ · · · ∗ 0j ∗ · · · ∗),

(18)a′(∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗) = a(∗ · · · ∗ 0k ∗ · · · ∗ 1j ∗ · · · ∗).

For the controlled-V operation Vkj , it follows from Eq. (10) that the amplitudes change according to the rules

a′(∗ · · · ∗ 0k ∗ · · · ∗ 0j ∗ · · · ∗) = a(∗ · · · ∗ 0k ∗ · · · ∗ 0j ∗ · · · ∗),

a′(∗ · · · ∗ 0k ∗ · · · ∗ 1j ∗ · · · ∗) = 1

2

[
(1 + eiφ)a(∗ · · · ∗ 0k ∗ · · · ∗ 1j ∗ · · · ∗) + (1 − eiφ)a(∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗)

]
,

a′(∗ · · · ∗ 1k ∗ · · · ∗ 0j ∗ · · · ∗) = a(∗ · · · ∗ 1k ∗ · · · ∗ 0j ∗ · · · ∗),

(19)a′(∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗) = 1

2

[
(1 − eiφ)a(∗ · · · ∗ 0k ∗ · · · ∗ 1j ∗ · · · ∗) + (1 + eiφ)a(∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗)

]
.

Thus, performing two-qubit operations such as the CNOT and the controlled-V amount to update 2L−1 amplitudes.
For the Toffoli gate Tlkj (j < k < l), where qubits j and k are the control qubits and qubit l is the target qubit, only 2L−2

elements of |Φ〉 need to be updated, as can be seen from Eq. (11). The update rules read

a′(∗ · · · ∗ 0l ∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗) = a(∗ · · · ∗ 1l ∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗),

(20)a′(∗ · · · ∗ 1l ∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗) = a(∗ · · · ∗ 0l ∗ · · · ∗ 1k ∗ · · · ∗ 1j ∗ · · · ∗),

and the other amplitudes remain unchanged.
All the qubit operations discussed here can be carried out inO(2L) floating-point operations (here and in the sequel, if we count

operations on a conventional computer, we make no distinction between operations such as add, multiply, or get from and put to
memory). The qubit operations described earlier suffice to implement any unitary transformation on the state vector. As a matter of
fact, the simple rules described are all that we need to simulate a universal quantum computer on a conventional computer.

The fact that both the amount of memory and arithmetic operations increase exponentially with the number of qubits is the major
bottleneck for simulating quantum computers (or quantum systems in general) on a conventional computer. However, in contrast to
the CPU time, the total amount of memory that is available on a computer puts a hard limit on the simulations that can be performed.
From the user’s perspective, the memory on a computer can be shared or distributed. On a shared memory computer, the state |Φ〉
of the quantum computer can be completely stored in the memory and all processors can access the entire memory. On a distributed
memory machine, the elements of |Φ〉 are physically distributed over different nodes and each processor has direct access to its own
local memory only. In the latter case, some extra programming is required to perform the communication between the processors.
We use the standard Message Passing Interface (MPI) to perform the data communication [8]. We assume that the reader has some
basic knowledge of MPI programming [8].

3.2. Implementation

Each MPI process has a rank and a local memory. We assume that the local memory can store the 2M amplitudes of the basis
states of M qubits. Hence, to simulate a L-qubit quantum computer we need N = 2L/2M MPI processes. From Eq. (2), it is clear
that the amplitudes a(xL−1 . . . x0) where xi = 0,1 for i = 0, . . . ,L − 1, can be stored at the local memory address A = ∑M−1

i=0 2ixi

of the MPI process with rank R = ∑L−1
i=M 2i−Mxi . In binary notation the local memory address and the rank of the processor

reads A = (xM−1 . . . x0) and R = (xL−1 . . . xM), respectively. Recall that the qubits are numbered from 0 to L − 1, that is qubit 0
corresponds to the least significant bit of the integer index, running from zero to 2L−1, of the amplitude. An example for L = 4 and
M = 2 is shown in the first four columns of Table 1. The MPI processes are labeled with their ranks running from 00 to 11. The
memory addresses are also running from 00 to 11 for this example.
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Table 1
Single-qubit operation: Distribution of the amplitudes a(xL−1 . . . x0) over the N MPI processes with 2M memory locations after application of the permutation σp ,
for the case L = 4 and M = 2 (N = 2L/2M )

σ1 =
(

3 2 1 0
3 2 1 0

)
σ2 =

(
3 2 1 0
3 0 1 2

)
σ3 =

(
3 2 1 0
2 0 1 3

)

00 01 10 11 00 01 10 11 00 01 10 11

00 a(0000) a(0100) a(1000) a(1100) a(0000) a(0001) a(1000) a(1001) a(0000) a(0001) a(0100) a(0101)

01 a(0001) a(0101) a(1001) a(1101) a(0100) a(0101) a(1100) a(1101) a(1000) a(1001) a(1100) a(1101)

10 a(0010) a(0110) a(1010) a(1110) a(0010) a(0011) a(1010) a(1011) a(0010) a(0011) a(0110) a(0111)

11 a(0011) a(0111) a(1011) a(1111) a(0110) a(0111) a(1110) a(1111) a(1010) a(1011) a(1110) a(1111)

σ1 corresponds to the identity permutation, σ2 interchanges local qubit 0 and nonlocal qubit 2, σ3 interchanges local qubit 2 and nonlocal qubit 3, after having
interchanged qubits 0 and 2. The rank R of the MPI process is shown (in binary notation) in the second row. The local memory addresses are shown in the first
column.

As can be seen from Eqs. (14)–(17), performing an operation on qubit j requires in general an update of 2L elements of |Φ〉.
A qubit j for which j < M we call a “local” qubit. In the example shown in the first four columns of Table 1 qubits 0 and 1 are local
qubits. Updating the amplitudes is easy if the qubit is local because this requires no communication between the MPI processes.

Similarly, if j � M we call qubit j a “nonlocal” qubit. An operation on qubit j requires communication between the MPI
processes. In the example shown in the first four columns of Table 1, qubits 2 and 3 are nonlocal. Note that the nonlocal qubits form
the binary representation of the rank of the corresponding MPI process and that the local qubits form the binary representation of
the memory address. An obvious way of communication would be for pairs of MPI processes to first interchange one half of their
data. Then, the operations on the amplitudes can be performed as if the qubit was local. Finally, the MPI processes need again to
interchange the (modified) data. A clear drawback of this method is that half of the amplitudes needs to be interchanged twice for
every single-qubit operation on qubit j for which j � M .

In order to reduce the amount of communication between the MPI processes we use a different method to handle the operation on
nonlocal qubits. We introduce a permutation σ : {L− 1, . . . ,0} → {σ(L− 1), . . . , σ (0)} of the L qubits. We denote the permutation
by a matrix with two rows and L columns. The first row contains integer numbers ordered from L − 1 to 0. These numbers
correspond to the position of the bits in the index of the amplitude. The second row also contains integer numbers ranging from
L− 1 to 0 but they are not necessarily ordered. These numbers refer to the qubits. Local qubit k corresponds to bit l = σ−1(k) < M

of the index of the amplitude and nonlocal qubit m corresponds to bit n = σ−1(m) � M of the index of the amplitude. After
applying the permutation σ the amplitudes a(xL−1 . . . x0) (xi = 0,1) are stored at the address A = ∑M−1

i=0 2ixσ(i) of the local
memory assigned to the MPI process with rank R = ∑L−1

i=M 2i−Mxσ(i). In binary notation we have A = (xσ(M−1) . . . xσ(0)) and
R = (xσ(L−1) . . . xσ(M)). Note that after applying the permutation σ , the nonlocal qubits still form the binary representation of the
rank of the corresponding MPI process. Similarly, the local qubits still form the binary representation of the address.

Logically, to make a nonlocal qubit m local, all we have to do is to select a permutation that interchanges a local qubit, say k,
and the nonlocal qubit m and leaves the other qubits in place. Clearly, it is always easy to find such a permutation. We now consider
what it actually means for the parallel machine to perform an interchange of a local and nonlocal qubit. A simple reshuffling
of the corresponding amplitudes would work but is not very efficient: We would like to minimize the amount of interprocess
communication.

In terms of data transfer between MPI processes, a permutation that interchanges local qubit k and nonlocal qubit m, swaps the
amplitudes with addresses

A = (∗ · · · ∗ 0l ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 1n ∗ · · · ∗),

(21)A = (∗ · · · ∗ 1l ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 0n ∗ · · · ∗),

where we use the asterisk to indicate that the bits on the corresponding position are the same. Hence, in this operation, only half of
the amplitudes in the memory of an MPI process are swapped against half of the amplitudes in the memory of another MPI process.
After this swap operation, the previously nonlocal qubit m has become local, and we can carry out the operations on this qubit in
exactly the same way as we did for the originally local qubits, that is fully parallel. Using this scheme we do not need to send the
modified amplitudes back to the MPI processes from which they originate as the permutation keeps track of the memory addresses
of the amplitudes.

An example of this process of swapping data is shown in Table 1, for L = 4, M = 2. The permutations σ that have been applied
are shown on the top row. The four columns below σ1 show the original content of the local memories. In this example, qubits
0 and 1 are local and qubits 2 and 3 are nonlocal. Hence, operations on qubit 0 or 1 can be performed in parallel by each MPI
process. However, operations on qubit 2 and 3 require communication between the MPI processes. Let us now assume that we
want to carry out an operation on qubit 2. According to our scheme, this requires that the pairs of amplitudes a(x3,02, x1, x0) and
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Table 2
Two-qubit operation: Distribution of the amplitudes a(xL−1 . . . x0) over the N MPI processes with 2M memory locations after application of the permutation σp ,
for the case L = 4 and M = 2 (N = 2L/2M )

σ1 =
(

3 2 1 0
3 2 1 0

)
σ2 =

(
3 2 1 0
1 0 3 2

)

00 01 10 11 00 01 10 11

00 a(0000) a(0100) a(1000) a(1100) a(0000) a(0001) a(0010) a(0011)

01 a(0001) a(0101) a(1001) a(1101) a(0100) a(0101) a(0110) a(0111)

10 a(0010) a(0110) a(1010) a(1110) a(1000) a(1001) a(1010) a(1011)

11 a(0011) a(0111) a(1011) a(1111) a(1100) a(1101) a(1110) a(1111)

σ1 corresponds to the identity permutation, σ2 interchanges local qubit 0 with nonlocal qubit 2, and local qubit 1 with nonlocal qubit 3. The rank R of the MPI
process is shown (in binary notation) in the second row. The local memory addresses are shown in the first column.

a(x3,12, x1, x0) reside in the same local memory. Conceptually, this can be accomplished by rearranging the amplitudes over the
local memories according to the permutation σ2 (see Table 1) whereas the actual data exchange is carried out according to Eq. (21).

Now qubits 2 and 1 are local and qubits 0 and 3 are nonlocal. Assume that we now want to operate on qubit 3 which is currently
nonlocal. Then, we may interchange, for example, local qubit 2 with the nonlocal qubit 3. This can be accomplished by applying
the permutation σ3 (see Table 1) and data exchange rule Eq. (21). At this point, qubits 3 and 1 are local and qubits 0 and 2 are
nonlocal.

To summarize: A single-qubit operation on a nonlocal qubit consists of a local-nonlocal data exchange defined by Eq. (21),
followed by the actual unitary operation. By construction, there is no interprocess communication during and after the latter. If the
qubit is local, we simply skip the step of exchanging data. From Eq. (17), it is clear that the single-qubit phase-shift operation never
requires communication between MPI processes. Thus, for this particular operation there is additional room for optimization. In
our present simulation code, we have chosen not to optimize gate operations on this level. Optimization of parallel code for specific
gates will be dealt with in depth in a subsequent publication [4].

Extending the single-qubit scheme to two and three-qubit operations is conceptually straightforward but the rules to determine
which processes have to exchange data become more complicated. From Eqs. (18) and (19), it follows that a two-qubit operation
involves an update of 2L−1 elements of |Φ〉. If these elements are located in the same local memory, that is if both qubits are
local, no communication between the MPI processes is required and the operation can be performed independently by all the MPI
processes. However, if one of the qubits is nonlocal, some communication is necessary. If only one qubit is nonlocal, we can use
the same procedure as described above to interchange the qubit for a local one. If both qubits are nonlocal, we can also use the
same procedure, but twice. For each qubit interchange, half of the amplitudes in the memory of a MPI process is swapped against
half of the amplitudes in the memory of another MPI process. Hence, this scheme results in a full memory swap. However, this
amount of communication can be reduced by exchanging two nonlocal qubits and two local qubits simultaneously. We illustrate
this by the example for the case L = 4, M = 2, shown in Table 2. The four columns below σ1 show the original content of the local
memory. In this example, qubits 0 and 1 are local and qubits 2 and 3 are nonlocal. Hence, two-qubit operations on qubit 0 and 1
can be performed independently by each MPI process. However, all other two-qubit operations require communication between the
MPI processes.

Let us now assume that we want to do a two-qubit operation on qubits 2 and 3. Permutation σ2 interchanges nonlocal qubits 2 and
3 with local qubits 0 and 1, respectively. From Table 2 we see that each MPI process has to communicate with three other processes.
For example, MPI process 00 keeps the amplitude in address 00, interchanges its amplitude in address 01 with the amplitude in
address 00 of MPI process 01, interchanges its amplitude in address 10 with the amplitude in address 00 of MPI process 10, and
interchanges its amplitude in address 11 with the amplitude in address 00 of MPI process 11.

In general, for a two-qubit interchange, the MPI processes communicate in groups of four (in the example of Table 2 there is
only one group of four). Each MPI process keeps one quarter of the amplitudes in its local memory and interchanges the other
three quarters of amplitudes with amplitudes in the local memories of the other MPI processes in the group. Swapping of the
amplitudes can be accomplished by applying the permutation σ : {L − 1, . . . ,0} → {σ(L − 1), . . . , σ (0)} of the L qubits so that
the MPI processes interchange local qubits k1, k2 for nonlocal qubits m1, m2. Local qubit ki corresponds to bit li = σ−1(ki) < M

of the index of the amplitude and nonlocal qubit mi corresponds to bit ni = σ−1(mi) � M of the index of the amplitude, where
i = 1,2. Adopting the convention that l2 > l1 and m2 > m1, interchanging local qubits k1, k2 and nonlocal qubits m1, m2 amounts
to swapping the amplitudes with local memory addresses

A = (∗ · · · ∗ 0l2 ∗ · · · ∗ 0l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 0n2 ∗ · · · ∗ 1n1 ∗ · · · ∗),

(22)A = (∗ · · · ∗ 0l2 ∗ · · · ∗ 1l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 0n2 ∗ · · · ∗ 0n1 ∗ · · · ∗),

A = (∗ · · · ∗ 0l2 ∗ · · · ∗ 0l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 1n2 ∗ · · · ∗ 0n1 ∗ · · · ∗),

(23)A = (∗ · · · ∗ 1l2 ∗ · · · ∗ 0l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 0n2 ∗ · · · ∗ 0n1 ∗ · · · ∗),
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A = (∗ · · · ∗ 0l2 ∗ · · · ∗ 0l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 1n2 ∗ · · · ∗ 1n1 ∗ · · · ∗),

(24)A = (∗ · · · ∗ 1l2 ∗ · · · ∗ 1l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 0n2 ∗ · · · ∗ 0n1 ∗ · · · ∗),

A = (∗ · · · ∗ 0l2 ∗ · · · ∗ 1l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 1n2 ∗ · · · ∗ 0n1 ∗ · · · ∗),

(25)A = (∗ · · · ∗ 1l2 ∗ · · · ∗ 0l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 0n2 ∗ · · · ∗ 1n1 ∗ · · · ∗),

A = (∗ · · · ∗ 0l2 ∗ · · · ∗ 1l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 1n2 ∗ · · · ∗ 1n1 ∗ · · · ∗),

(26)A = (∗ · · · ∗ 1l2 ∗ · · · ∗ 1l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 0n2 ∗ · · · ∗ 1n1 ∗ · · · ∗),

A = (∗ · · · ∗ 1l2 ∗ · · · ∗ 0l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 1n2 ∗ · · · ∗ 1n1 ∗ · · · ∗),

(27)A = (∗ · · · ∗ 1l2 ∗ · · · ∗ 1l1 ∗ · · · ∗) of MPI process with rank R = (∗ · · · ∗ 1n2 ∗ · · · ∗ 0n1 ∗ · · · ∗).

As before, the asterisks in Eqs. (22)–(27) indicate that the bits on the corresponding position are the same. As in the case of the
single-qubit operations, particular two-qubit operations (such as the controlled phase shift) allow for additional optimization, but
we have chosen not to do so because we wanted to implement all two-qubit operations in the same manner.

The algorithm to interchange a pair of local qubits with a pair of nonlocal qubits Eqs. (22)–(27) can be generalized to swap as
many local qubits with nonlocal qubits, with the restriction that the number of qubits to be swapped cannot exceed the number
of local or nonlocal qubits. Exchanging K pairs of local and nonlocal qubits simultaneously requires each MPI process to send
(2K − 1)2M/2K amplitudes to another MPI process. Sequentially exchanging the K pairs amounts to sending K2M/2 amplitudes
to another process. Thus, exchanging K pairs of local and nonlocal qubits simultaneously involves less communication. However,
the more qubits we swap simultaneously, the larger becomes the group of MPI processes that communicate with each other. If
this number becomes too big the computer might hang in network collisions. So, in practice there is a limit to the choice of K . In
our implementation of the algorithm, K is an input variable. For each MPI process, we first compute the ranks of the other MPI
processes with which the MPI process has to communicate. We do this on the basis of the K pairs of local and nonlocal qubits
that need to be swapped. Before exchanging data between the MPI processes belonging to one group, we fill a buffer for each MPI
process of the group. The buffer contains all amplitudes that need to be send from one MPI process to the other MPI processes of
the group. In order to reduce the memory allocation for the buffers, an essential requirement for simulating quantum computers
with a large number of qubits L, we split the MPI send instruction in a fixed (user controlled), smaller number of send instructions.

4. Simulator

We have implemented the algorithm described in Section 3 in Fortran 90. The computer code contains all quantum operations
that are necessary for universal quantum computation and runs on machines with distributed and/or shared memory. Standard MPI
is used for interprocess communication. Optionally, OpenMP can be used for parallel processing within each MPI process. This
computer code forms the engine of the parallel quantum computer simulator. It compiles (without modifications) and runs on
various computer architectures, ranging from PCs to high-end (vector) parallel machines. The number of qubits in the computer
codes is limited to 62, but in practice the maximum number of qubits is set by the memory of the machine on which the code runs.

Fig. 2. Quantum network to add the content of two 11-qubit registers modulo 211. The horizontal lines, numbered from 1 to 22, denote the qubits involved in the
quantum operations. The horizontal row of numbers labels the quantum operations. The first 22 quantum operations are the single-qubit operations XX, YY , XX

and YY that are used to put numbers (in binary notation) in the registers. The first register (qubits 1 to 11) contains the number 1365 and the second one (qubits 12
to 22) contains the number 682. Quantum operation 23 is a quantum Fourier transform on the second register. The full quantum network for this quantum Fourier
transform is depicted in Fig. 3. Quantum operations 24–89 are controlled phase shift operations that add the information contained in the first register to the content
of the second one. Quantum operation 90 is a inverse quantum Fourier transform. The (red) dots at the end of each horizontal line denote the measurement process
at each qubit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Quantum network, built from Hadamard gates and single-qubit phase shifts, to perform a quantum Fourier transform on eleven qubits [1].

The simulator takes as input the description of a quantum network in terms of pseudocode (a text-formatted file). Quantum
networks are drawn by making use of a graphical user interface. For this purpose, we developed Quantum Computer Circuit
Editor (QCCE), a Microsoft Windows application. QCCE contains graphical symbols for each of the qubit operations described in
Section 2 and for the quantum Fourier transform. Examples of quantum networks drawn by QCCE are shown in Figs. 2 and 3. QCCE
also contains an interpreter that takes the quantum network as input and generates a text-formatted file that contains pseudocode
describing all operations to be performed on the qubits, including the swap operations described in Section 3.2. An example of the
pseudocode is given in Appendix A. Since drawing a quantum network for a large quantum computer can be quite cumbersome, it
is often more efficient to write a dedicated program that generates the pseudocode language directly. Since the quantum computer
simulator software is a standalone application that takes ASCII files as input, any software package (such as http://www.phys.cs.
is.nagoya-u.ac.jp/~watanabe/qcad/index.html) that can draw quantum networks may be used, as long as it generates the input files
(including the swap operations) in the format that the simulator can understand.

5. Simulation results

In this section we present and discuss the results of running the massive parallel quantum computer simulator on various parallel
computers.

The computers on which we perform the simulations and their characteristics are listed in Table 3. On all computers we have
tested pure OpenMP, pure MPI and combined MPI/OpenMP code. In practice it turns out that the OpenMP code is up to a factor of
two slower than the pure MPI code. As a consequence, also the MPI/OpenMP code is slower than the pure MPI code. A detailed
study of the (dis)advantages of this hybrid approach in the case of optimized parallel code for specific gates will be presented in a
future publication [4]. In what follows we only present the results of the pure MPI code. Because of the special architecture of the
Cray X1E processors (Cray Multistreaming Processors (MSPs) with various vector pipes per MSP), some CRAY specific directives
have been added to the code.

A rather simple algorithm to test the scaling properties of the simulation software with the number of qubits is to perform a
Hadamard operation on each qubit of a L-qubit quantum computer. However, simulating gates for single-, two- and three-qubit
operations only is not sufficient to test the correctness of quantum computer simulation software and to compare the performance
of various massive parallel computers. Hence, for this purpose, we consider some more sophisticated quantum algorithms. A first
nontrivial example is the qubit adder that adds the content of several qubit registers. This quantum algorithm is built up from several
quantum operations, including a quantum Fourier transform, and has the advantage that it is very easy to check the correctness of
the simulation result.

Fig. 2 shows the quantum network to add the content of two eleven-qubit registers. Note that here the qubits are numbered
starting from one. We use a similar modular structure as was used for adding the content of three four-qubit registers [14]. The
basic idea of the algorithm is to use the Quantum Fourier Transform (QFT) to first transfer the information in one register to the
phase factors of the amplitudes, then use controlled phase shifts to add the information from the other registers, and finally QFT

Table 3
Overview of the computer systems used for testing the parallel quantum computer software

SGI Altix 3700 IBM Regatta p690+ IBM Blue Gene/L Hitachi SR11000/J1 Cray X1E

Location SARA FZ-J RuG ISSP CRAY Inc.
Memory 832 GB 5.2 TB 3.1 TB 2.8 TB 512 GB
# CPUs 416 1312 12288 2048 128
CPU type Intel Itanium 2 Power 4+ Power PC 970 POWER5 64-bit Cray X1E MSP
CPU clock 1.3 GHz 1.7 GHz 0.7 GHz 1.9 GHz 1.13 GHz

Simulations have been performed on machines located at SARA Computing and Networking Services, Amsterdam, The Netherlands (SARA); Forschungszentrum
Jülich, Jülich, Germany (FZ-J); Computer Center, University of Groningen, Groningen, The Netherlands (RuG); The Institute for Solid State Physics (ISSP) of the
University of Tokyo, Tokyo, Japan (ISSP); Cray Inc., Seattle, USA (Cray Inc.).
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Fig. 4. Schematic diagram of Shor’s algorithm.

back to the original representation. These quantum networks perform addition modulo two to the power of the number of qubits in
the register on which the QFT is being applied.

Originally all qubits are in the state |0〉. The single-qubit operations XX, YY , XX and YY are used to put numbers (in binary
notation) in the registers. Note that all these operations bring a qubit in the state |1〉. Hence, in principle we could use only one
of these operations to put numbers in the registers. However, in order to test the various single-qubit operations we used the four
different operations. In the example shown in Fig. 2 the first register (qubits 1 to 11) contains the number 1365 and the second
register (qubits 12 to 22) the number 682. We perform a QFT on the second register to transfer the information in the second
register to the phase factors of the amplitudes. The full quantum network for a QFT on eleven qubits is shown in Fig. 3. After
applying the QFT to the second register, we use controlled phase shifts to add the information from the first register to the content
of the second one. Finally we QFT back to the original representation.

As another nontrivial test we implement Shor’s algorithm on a quantum computer containing up to 36 qubits. Briefly, Shor’s
algorithm finds the prime factors p and q of a composite integer G = p × q by determining the period of the function f (x) =
yx mod G for x = 0,1, . . . . Here, 1 < y < G should be coprime (greatest common divisor of y and G is 1) to G (otherwise, since
G = p × q , y = p or y = q , so we already guessed the solution). Let r denote the period of f (x), that is f (x) = f (x + r). If the
chosen value of y yields an odd period r , we repeat the algorithm with another choice for y, until we find an r that is even. Once
we have found an even period r , we compute yr/2 mod G. If yr/2 	= ±1 mod G, then we find the factors of G by calculating the
greatest common divisors of yr/2 ± 1 and G.

On an ideal quantum computer, this algorithm can be carried out with a number of unitary operations that increases as a polyno-
mial, not as the exponential, of the number of qubits required to store the number G. The schematic diagram of Shor’s algorithm is
shown in Fig. 4. The quantum computer has L qubits. There are two qubit registers: A x-register with X qubits to hold the values
of x and a f -register with F = L − X qubits to hold the values of f (x) = yx mod G. What is the largest number we can factorize
on a quantum computer with L qubits? If we write the number G in its binary representation G = ∑g1−1

i=0 2ini , where ni = 0,1,
then it is clearly seen that F = g1. For Shor’s algorithm to work properly, that is to find the correct period r of f (x), the number of
qubits X in the x-register should satisfy [15]

(28)G2 � 2X � 2G2.

Writing G2 = ∑g2−1
i=0 2imi , where mi = 0,1, it follows from Eq. (28) that g2 − 1 � X � g2 + 1. Omitting numbers G that can be

written as a power of two (which are trivial to factorize), the smallest value for X (and hence the largest value for F ) is given by
g2. Hence, L = g1 + g2. Since either g2 = 2g1 − 1 or g2 = 2g1, it follows that the maximum number of qubits that can be reserved
for the f -register is give by F = g1 = 
(L + 1)/3�. For example, on a 36-qubit quantum computer G = 4087 = 61 × 67 � 212 is
the largest integer that can be factorized by Shor’s algorithm.

The initial state of the machine is |Φ0〉 = |0〉. After applying Hadamard operations to all qubits of the x-register we have

(29)|Φ1〉 = 2−X/2
2X−1∑
x=0

|x〉x |0〉f ,

where |.〉x and |.〉f denote the state of the x and f -register, respectively. Then, we compute f (x) for each value x = 0, . . . ,X − 1.
This is implemented as a conditional operation, as indicated by the middle box in Fig. 4. After the second step, the quantum
computer is in the state

(30)|Φ2〉 = 2−X/2
2X−1∑
x=0

|x〉x
∣∣f (x)

〉
f
.

The period r of f (x) can now be determined by applying a Fourier transformation, not to |f (x)〉f but to |x〉x , as indicated in Fig. 4.
To see how this step works, we use the periodicity of f (x) to rewrite Eq. (30) as

(31)2−X/2
2X−1∑
x=0

|x〉x
∣∣f (x)

〉
f

= 2−X/2
r−1∑
x=0

(|x〉x + |x + r〉x + · · ·)∣∣f (x)
〉
f
.
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Using the Fourier representation of |x〉x we obtain

|Φ3〉 = 2−X/2
2X−1∑
x=0

|x〉x
∣∣f (x)

〉
f

= 2−X

2X−1∑
k=0

r−1∑
x=0

e2πikx/2X(
1 + e2πikr/2X + e4πikr/2X + · · · + e2πikr(s−1)/2X)|k〉x

∣∣f (x)
〉
f

(32)+ 2−X

2X−1∑
k=0

s−1∑
x=0

e2πikx/2X

e2πikrs/2X |k〉x
∣∣f (x)

〉
f
,

where s = 
2X/r� denotes the largest integer s such that rs � 2X . The probability to observe the quantum computer in the state |k〉
reads

(33)pk(r) = r

22X

(
sin(πkrs/2X)

sin(πkr/2X)

)2

− 2X − rs

22X

sin(πkr(2s + 1)/2X)

sin(πkr/2X)
.

The function pk(r) is strongly peaked for all kr ≈ 2X . The probability to observe the machine in the state |k〉 for which kr ≈ 2X

is pk(r) ≈ r−1 [16]. Given the observed state |k〉, we can find r because the condition Eq. (28) guarantees that there exists exactly
one function k′/r that satisfies [15]

(34)

∣∣∣∣ k

2X
− k′

r

∣∣∣∣ � 1

2X+1
.

The fraction k′/r (with r < G) can be found effectively by computing the convergents of the continued fraction representation of
k/2X [1,15–17]. From Eq. (33) we can easily compute the expectation values of the qubits of the x-register. Let Qi |xi〉 = xi |xi〉 for

Table 4
Representative results of running Shor’s algorithm on the massive parallel quantum computer simulator

L 24 33 33 36 36
X 16 22 22 24 24
G 247 = 13 × 19 1961 = 37 × 53 2047 = 23 × 89 4087 = 61 × 67 4033 = 37 × 109
y 194 1698 617 1392 1693

r 18 468 88 44 108

〈Q0〉 0.500 0.500 0.500 0.500 0.500
〈Q1〉 0.500 0.500 0.500 0.500 0.500
〈Q2〉 0.500 0.500 0.500 0.500 0.500
〈Q3〉 0.445 0.500 0.461 0.461 0.500
〈Q4〉 0.445 0.500 0.459 0.459 0.490
〈Q5〉 0.445 0.500 0.455 0.455 0.482
〈Q6〉 0.444 0.499 0.455 0.455 0.482
〈Q7〉 0.444 0.496 0.455 0.455 0.482
〈Q8〉 0.444 0.496 0.455 0.455 0.482
〈Q9〉 0.444 0.496 0.455 0.455 0.481
〈Q10〉 0.444 0.496 0.455 0.455 0.481
〈Q11〉 0.444 0.496 0.455 0.455 0.481
〈Q12〉 0.444 0.496 0.455 0.455 0.481
〈Q13〉 0.444 0.496 0.455 0.455 0.481
〈Q14〉 0.444 0.496 0.455 0.455 0.481
〈Q15〉 0.500 0.496 0.455 0.455 0.481
〈Q16〉 0.496 0.455 0.455 0.481
〈Q17〉 0.496 0.455 0.455 0.481
〈Q18〉 0.496 0.455 0.455 0.481
〈Q19〉 0.496 0.500 0.455 0.481
〈Q20〉 0.500 0.500 0.455 0.481
〈Q21〉 0.500 0.500 0.455 0.481
〈Q22〉 0.500 0.500
〈Q23〉 0.500 0.500

The total number of qubits of the simulator is given by L and X is the number of qubits in the x-register. The remaining L − X qubits are used to hold the results of
yx mod G, where G is the composite integer to be factorized. The values of 1 < y < G are chosen such that the period r is even and yr/2 	= ±1 mod G. The rows
labeled by 〈Qi 〉 for i = 0, . . . ,X − 1 give the simulation results for the expectation values of the X qubits. These results are the same as those obtained from the
analytical expression Eq. (35). L = 24: Thinkpad T43P (number of MPI processes N = 1, elapsed time tE = 41 s); L = 33: SGI Altix 3700 (N = 64, tE = 630 s),
IBM Regatta p690+ (N = 64, tE = 810 s); L = 36: IBM Regatta p690+ (N = 512, tE = 970 s) and IBM Blue Gene/L (N = 4096, tE = 170 s).
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xi = 0,1, then

〈Qi〉 = 〈Φ3|Qi |Φ3〉 =
∑
k,k′

〈Φ3|k′〉〈k′|Qi |k〉〈k|Φ3〉

(35)=
∑
k,k′

〈Φ3|k′〉δk,k′ 〈k|Φ3〉〈k|Qi |k〉 =
∑

k

pk(r)ki,

where ki denotes the ith bit of k. The quantum computer simulator should reproduce the values of all 〈Qi〉, for i = 0, . . . ,X − 1,
otherwise there is definitely something wrong in the simulation. On the other hand, agreement is not a guarantee that the simulator
is free of errors. Obviously, for a L = 36 qubit simulation, storing the final state for further analysis requires a lot (> 1 TB) of
disk space. To alleviate this problem, we have added to the simulator a procedure that takes the final state as input and generates a
user-specified number of basis states |x〉 with probability |〈x|Φ3(x)〉|2. This procedure is also fully parallel and uses all available
MPI processes.

In Table 4 we show the results of running Shor’s algorithm on the massive parallel computer simulator. The example for L = 24
qubits was run on an IBM Thinkpad T43P. The two examples for L = 33 qubits were both run on the SGI Altix 3700 and on the
IBM Regatta p690+. The two examples for L = 36 are both run on the IBM Regatta p690+ and on the IBM Blue Gene/L. All the
tests described in this section confirm that the simulator is producing correct results.

6. Benchmark results

The quantum algorithms that we use for benchmarking the simulator software are the Hadamard operation performed on each
qubit, qubit adders to add the content of three 11-qubit registers, two 17-qubit registers, five 7-qubit registers and three 12-qubit
registers. Tables 5–9 of Appendix B summarize the results on the various machines. In order to compare the performance of the
different machines we use the data from Tables 5–9 and plot them in Figs. 5–7. Fig. 5 depicts the elapsed time tE divided by the CPU
time tCPU and multiplied by the number of MPI processes N as a function of the number of qubits L. All data listed in Tables 5–9
is processed. In the ideal case, we expect that N × tE/tCPU = 1, independent of L. As can be seen from Fig. 5, on most machines
we observe scaling properties that are very close to ideal. Deviations from the ideal behavior, if there are any, are relatively small.
The IBM Regatta p690+ and the Cray X1E show the largest deviations.

In Fig. 6 we show the CPU time for a Hadamard operation Hn carried out on qubit n of a quantum computer with L = 34 qubits.
In this case the CPU time is measured per gate and does not include the time for measuring the qubit. Recall that we number the
qubits starting from zero, so that 0 < n � 33. We only show results for the IBM Regatta p690+ (diamonds), IBM Blue Gene/L
(flipped triangles) and the Hitachi SR11000/J1 (circles). The number of MPI processes on the IBM Regatta p690+, the IBM Blue
Gene/L and the Hitachi SR11000/J1 are N = 128, N = 1024 and N = 128, respectively. Hence, on the IBM Regatta p690+ and the
Hitachi SR11000/J1 qubits 0 � n � 26 are local and on the IBM Blue Gene/L qubits 0 � n � 23 are local. In all cases, the CPU time
for Hn carried out on a nonlocal qubit is equal to the CPU time for the Hadamard gate performed on qubit zero, because according
to the algorithm described in Section 3.2, we interchange the nonlocal qubit with the local qubit zero. On the IBM Regatta p690+,
the CPU time to carry out Hn on a local qubit n can differ by a factor of three depending on the qubit number n. This is a result
of how the local memory addresses are accessed and is thus due to the architecture of the machine. Techniques to speed up the

Fig. 5. Elapsed time tE divided by the CPU time tCPU and multiplied by the number of MPI processes N as a function of the number of qubits L. Diamonds:
IBM Regatta p690+; squares: SGI Altix 3700; flipped triangles: IBM Blue Gene/L; circles: Hitachi SR11000/J1; triangles: Cray X1E. The horizontal line at
N × tE/tCPU = 1 shows the ideal case in which the exponential increase of the problem size is exactly compensated by the exponential increase in the number of
processors and memory size. Deviations from the ideal case are due to interprocessor communication.
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Fig. 6. CPU time tCPU for a Hadamard operation Hn carried out on qubit n of a quantum computer with L = 34 qubits (0 < n � 33). Diamonds: IBM Regatta
p690+; flipped triangles: IBM Blue Gene/L; circles: Hitachi SR11000/J1. The lines are guides to the eye. For 15 � n � 26, the increase of CPU time on the IBM
Regatta p690+ is due to less appropriate memory access and can be reduced by appropriate optimization techniques [4].

Fig. 7. CPU time tCPU divided by the number of quantum operations NO multiplied by the number of MPI processes N as a function of the number of qubits L.
Diamonds: IBM Regatta p690+; squares: SGI Altix 3700; flipped triangles: IBM Blue Gene/L; circles: Hitachi SR11000/J1; triangles: Cray X1E. The line is given
by 27 × 2L−27/NO .

memory access will be discussed in a future application [4]. On the IBM Blue Gene/L and on the Hitachi SR11000/J1 we only see
a relatively small increase in CPU time if we operate Hn on qubits with increasing number n. The difference in behavior between
the IBM Regatta p690+ and the two other machines is also reflected in Fig. 5, although there it is much less clear. Fig. 6 clearly
shows that the Hitachi SR11000/J1 is significantly faster than the IBM Regatta p690+ and the IBM Blue Gene/L.

Fig. 7 shows tCPU/(N × NO) as a function of L, NO being the number of quantum operations (not including swap commands).
All data listed in Tables 5–9 is processed. On all machines, the number of MPI processes N = 2L−27, except on the IBM Blue
Gene/L, N = 8 × 2L−27. Therefore, for a program that parallelizes 100% we expect that tCPU = αNO2L−27, where α is a constant.
Hence, in the ideal case tCPU/(N × NO) should be equal to α. From Fig. 7 it can be seen that for all machines, tCPU/(N × NO)

is slightly increasing as a function of L. The deviation from the ideal performance is due to the communication between various
MPI processes. The corresponding increase in CPU time seems to be the largest for the IBM Regatta p690+ and the Cray X1E.
However, the overall scaling properties of the simulation software are extremely good. For comparison we depict the line, given
by 27 × 2L−27/NO , in Fig. 7. This line expresses the expected behavior of tCPU/(N × NO) as a function of L on a non-parallel
computer, that is a computer for which N = 1. Clearly, with the available hardware and the present simulation software, it is possible
to beat the exponential growth of the simulation problem by simply increasing the memory and the number of CPUs by a factor of
two for each qubit added, at least up to 36 qubits.

From Tables 5–9 it is clear that from the point of view of the user, that is in terms of elapsed time, the IBM Blue Gene/L is
the fastest computer. If we make a comparison based on the CPU time then the Cray X1E is the fastest machine, followed by the
Hitachi SR11000/J1. We emphasize that, except for the Cray X1E, we have used the same source code on all machines, that is we
did not make an effort to adapt the code for a particular machine.
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Out of curiosity and to demonstrate the portability of the parallel simulation code, we also test the software on a cluster of three
IBM Thinkpad T43P notebooks and one IBM Think Centre A50P PC, using MPICH2 under Windows XP. Communication between
the machines is handled by a 100 Mbit Ethernet US Robotics router. In Table 10 we show the performance results for carrying out
a Hadamard operation on each qubit. Explicit measurement of the time spent for communication between the machines shows that
for the example with L = 27 qubits, about half of tE and tCPU is spent on network communication.

7. Discussion

The parallel quantum computer simulator presented in this paper is an application that shows nearly perfect scaling with the
number of CPUs and problem size. It is a demanding application in that it can use a significant part of the available memory and
CPUs and can put a heavy burden on the communication network. Therefore, this simulator may find application as a new type of
benchmark to assess the computational power of the new generation of high-end computer systems.
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Appendix A. Quantum Computer Circuit Editor (QCCE)

In this appendix we discuss the text-formatted file, generated by QCCE, that is used as input for the simulator if it has to simulate
a Hadamard operation performed on each qubit of a 32-qubit quantum computer. Lines starting with “ ! ” or “ # ” are considered as
comments. We use these symbols to add comments to the following text generated by QCCE:

QUBITS 32 ! The command QUBITS sets the size of the quantum computer
INITIAL STATE 0 ! The initial state of the quantum computer is set to |0...0>
MPIPROCESSES 32 ! Number of MPI processes is set to 32

! (not used by the OpenMP code)
H 0 ! Hadamard operation on qubit 0.
. ! These lines are omitted here but contain commands for.
. ! Hadamard operations carried out on qubits 1-25.
.
H 26 ! Hadamard operation on qubit 26
SWAP 1 0 27 ! Command to swap 1 pair of qubits: qubits 0 and 27
H 27 ! Hadamard operation on qubit 27
SWAP 1 27 28 ! Command to swap qubits 27 and 28
H 28 ! Hadamard operation on qubit 28
SWAP 1 28 29 ! Command to swap qubits 28 and 29
H 29 ! Hadamard operation on qubit 29
SWAP 1 29 30 ! Command to swap qubits 29 and 30
H 30 ! Hadamard operation on qubit 30
SWAP 1 30 31 ! Command to swap qubits 30 and 31
H 31 ! Hadamard operation on qubit 31
BEGIN MEASUREMENT
DO MEASUREMENT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 31

! Measurement operation on the listed qubits
SWAP 5 31 1 2 3 4 0 27 28 29 30 ! Command to swap 5 pairs of qubits: (31,0), (1,27), (2,28),

! (3,29), and (4,30)
DO MEASUREMENT 0 27 28 29 30 ! Measurement operation on the listed qubits
END MEASUREMENT

As can be seen from the example, the general format of a command consists of a keyword followed by some values. Note that
the swap command is not the same as the quantum swap operation. The swap command carries out the qubit interchange described
in Section 3.2.
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Appendix B. Simulation results

Table 5
Performance results for the IBM Regatta p690+ for the simulation of various quantum algorithms on a L-qubit ideal quantum computer

L N Memory [GB] NO tE [s] tCPU [s] Quantum algorithm

27 1 2 27 144 142 H
28 2 4 28 159 304 H
29 4 8 29 156 646 H
30 8 16 30 202 1510 H
31 16 32 31 3605 4040 H
32 32 64 32 453 13200 H
33 64 128 33 492 28600 H
34 128 256 34 526 61500 H
33 64 128 286 2568 157000 3-11QBA: 292+585+1170
34 128 256 493 4019 496000 2-17QBA: 26214+104857
35 256 512 194 2374 635000 5-7QBA: 7+9+19+35+65
36 512 1024 342 4095 1960000 3-12QBA: 781+1054+3296

N : Number of MPI processes; Memory: Memory required to store |Φ〉; NO : Number of quantum operations (not including swap commands); tE : Elapsed time;
tCPU: CPU time; H: Hadamard operation; n-mQBA:

∑n
i=1 xi : Qubit adder to add the content of n m-qubit registers. The n registers contain each one number x

represented in binary notation by m bits. The CPU time and the elapsed time include the time for measuring each qubit.

Table 6
Same as Table 5 for the SGI Altix 3700 system

L N Memory [GB] NO tE [s] tCPU [s] Quantum algorithm

27 1 2 27 308 304 H
28 2 4 28 343 679 H
29 4 8 29 446 1754 H
30 8 16 30 483 3809 H
31 16 32 31 518 8063 H
32 32 64 32 543 17127 H
33 64 128 286 4112 216772 3-11QBA: 292+585+1170

Table 7
Same as Table 5 for the IBM Blue Gene/L

L N Memory [GB] NO tE [s] tCPU [s] Quantum algorithm

27 8 2 27 40 320 H
28 16 4 28 43 700 H
29 32 8 29 48 1550 H
30 64 16 30 52 3320 H
31 128 32 31 58 7370 H
32 256 64 32 70 17900 H
33 512 128 33 79 40100 H
34 1024 256 34 85 86800 H
33 512 128 286 649 332000 3-11QBA: 292+585+1170
34 1024 256 493 934 956000 2-17QBA: 26214+104857
35 2048 512 194 940 1920000 5-7QBA: 7+9+19+35+65
36 4096 1024 342 1707 6980000 3-12QBA: 781+1054+3296

Table 8
Same as Table 5 for the Hitachi SR11000/J1

L N Memory [GB] NO tE [s] tCPU [s] Quantum algorithm

27 1 2 27 75 70 H
28 2 4 28 79 152 H
29 4 8 29 82 318 H
30 8 16 30 87 679 H
31 16 32 31 108 1720 H
32 32 64 32 123 3900 H
33 64 128 33 148 9410 H
34 128 256 34 164 20500 H
33 128 128 286 586 74300 3-11QBA: 292+585+1170
34 128 256 493 1653 211000 2-17QBA: 26214+104857



Aut
ho

r's
   

pe
rs

on
al

   
co

py

136 K. De Raedt et al. / Computer Physics Communications 176 (2007) 121–136

Table 9
Same as Table 5 for the Cray X1E

L N Memory [GB] NO tE [s] tCPU [s] Quantum algorithm

27 4 2 27 12 50 H
29 8 8 29 26 165 H
32 32 64 32 125 3117 H
33 64 128 286 1006 55750 3-11QBA: 292+585+1170

Table 10
Same as Table 5 for a cluster of three IBM Thinkpad T43P notebooks (each having 1 GB of memory and a 2.13 GHz CPU) and one IBM Think Centre A50P PC
(having 2 GB of memory and a 2.8 GHz CPU), using MPICH2 under Windows XP

L N Memory [GB] NO tE [s] tCPU [s] Quantum algorithm

26 1 1 26 73 73 H
26 4 1 26 81 290 H
27 4 2 27 304 1220 H

Communication between the machines is handled by a 100 Mbit Ethernet US Robotics router. Explicit measurement of the time spent for communication between
the machines shows that for the example with L = 27 qubits half of tE and tCPU is spent on the swap operation.
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