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a b s t r a c t

With the advent of public access to small gate-based quantumprocessors, it becomes necessary to develop
a benchmarking methodology such that independent researchers can validate the operation of these
processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-
based quantum computing devices and show that circuits performing identity operations are very simple,
scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the
procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for
gate-based quantum computing.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As small gate-based quantum computer hardware is being
made available to the public [1,2], it is now possible for inde-
pendent parties to validate and benchmark the operation of these
devices. Therefore, it seems natural to introduce a suite of quantum
algorithms (i.e. sequences of gate operations [3]) which should be
used to validate quantum processors. The aim of this paper is to
explore the potential of several different, simple sequences of gate
operations that can be used for this task, building on earlier work
that was specifically targeting NMR quantum processors [4].

A gate-based quantum computer is a device that takes input
data and transforms this input data according to a unitary opera-
tion, specified as a sequence of gate operations andmeasurements
(i.e. the algorithm) and conveniently represented by a quantum
circuit [3]. The algorithm itself does not depend on the input data
and returns the result of the transformation in the form of output
data. If the transformation involves random processes, the output
data have to be interpreted according to the probabilistic model
(i.e. quantum theory in the case of a quantum computer) of these
random processes. Evidently, this cursory description of a gate-
based quantum computer refers to the highly abstractmathemat-
ical model of the device only.

The central question is to what extent the hardware implemen-
tation of a quantum processor operates according to the mathe-
matical model and can therefore deliver the exponential speed-up
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that thismathematicalmodel promises [3]. Although one can think
of many physical processes that cause the hardware implementa-
tion to function in a way that differs from the one imagined on the
basis of its circuit model [3], from a user perspective (but not from
the perspective of the manufacturer), it is immaterial whether
a malfunctioning of the device can be attributed to a particular
physical process or not. The only thing that matters is whether the
device performs the desired computation properly.

For a device that performs the mapping ‘‘algorithm(input data)
→ output data’’ to qualify as a computer, the following two re-
quirements seem essential:

• For each instance of the input data and with the algo-
rithm fixed, the relation algorithm(input data) → output
data should yield (within statistical fluctuations) the correct
output data. In the case of a gate-based quantum com-
puter, the correct output data can be obtained by running
the algorithm on the mathematically exact, pen-and-paper-
model of the quantum computer. For this purpose, one can
use a massively parallel quantum computer simulator [5,6]
running on PC’s or supercomputers such as JUQUEEN [7]
(an IBM Blue Gene/Q) or the K computer, allowing the simu-
lation of up to 45 qubits (on the K computer). If the number
of qubits does not exceed 5, it is more convenient to execute
the algorithmon the simulator included in the IBMQuantum
Experience (IBM-QE) [2].

• For the same input data and with the algorithm fixed, the
output data should be stationary in time. Disregarding sta-
tistical fluctuations, this means that the output data should
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not change with the time or day when the procedure is
carried out.

In this paper, we strictly take the viewpoint of a potential user
of a quantum processor, that is we explore the use of simple but
decisive gate sequences to check if the hardware implementation
of a quantum processor complies with the two aforementioned re-
quirements for being a useful computing device. We illustrate the
procedure by running these tests on the IBM-QE [2] and demon-
strate that this device does not qualify accordingly. We assume
that the reader has some elementary notion of what quantum
computation is about but again, from the viewpoint of a user such
knowledge is not required to properly interpret the results of the
tests that we present.

The paper is organized as follows. In Section 2, we give a
brief overview of the IBM-QE hardware, confining ourselves to
those aspects that are relevant for the user who wants to run
applications on the processor. We also discuss the procedure of
collecting and analyzing the experimental data. Section 3 presents
results for a very simple but instructive application, the prepara-
tion and subsequent measurement of the singlet state. Section 4
explores the potential of using a two-register adder as a check
on the hardware. The corresponding quantum circuit [8] involves
the quantum Fourier transform [3] and performs addition modulo
4. The adder circuit has the appealing feature that it is trivial to
check whether or not the hardware does the addition correctly.
Moreover, as it requires significantly more gate operations than
the circuit employed in Section 3, it may be expected to be more
prone to the accumulation of errors. Section 5 introduces a very
simple, flexible and scalable class of quantum circuits that prove
to be well-suited for validating quantum processors. The key is
to perform identity operations or, in other words, no operation
at all. Within the mathematical model of the quantum processor,
each gate operation corresponds to a unitary transformation on
the qubits and hence it is almost trivial to construct sequences of
identity operations. Also in this case, it is easy to decide whether
the processor functions properly or not. In Section 6, we scrutinize
the usefulness of two different error correction schemes and show
that in practice, meaning on the IBM-QE hardware, these schemes
do not live up to the expectations, namely instead of reducing they
enhance the chance for an incorrect result. Section 7 contains a
discussion of the conclusions that we draw on the basis of the
experimental data.

2. The IBM quantum experience

Since May 2016 IBM has been providing public access to a
5-qubit quantum processor [2]. The first version of this processor
allowed for single-qubit operations on all qubits and CNOT opera-
tions between 4 qubits (numbered 0,1,3,4) and the qubit number
2, i.e. between the qubit pairs (0,2), (1,2), (3,2), and (4,2) where the
first element of the pairs denotes the control qubit. The present
version allows for additional CNOT operations, namely between
the pairs (0,1) and (3,4). The device is accessible through a web
interface which provides the necessary tools to execute quantum
programs on the device, as well as on a simulator that performs the
operations according to the mathematical model of the idealized
device.

An experiment on the IBM-QE consists of (i) specifying the
quantum circuit, either through a graphical interface or a text-
based editor, (ii) running the circuit on the simulator to check
if the circuit has been specified correctly, and (iii) executing the
circuit on the hardware processor for a number N of so-called
‘‘shots’’. With each shot, the processor is first initialized and is then
instructed (by a controller not accessible to the user) to execute the
quantum circuit.

Barriers prevent software optimization of successive gates in
a circuit [2]. As this optimization was turned off at the time we
did our experiments, there was no need to include barriers in our
circuits. However, to make sure that the IBM-QE software does not
optimize the circuit, we recommend including barriers in future
experiments.

The final state of the device is read out by a process called
‘‘measurement’’ which, for each shot, returns either the values 0 or
1 for each of themeasured qubits. Thus, each shot yields one string
of at most 5 bits which may or may not be different each time the
circuit is executed. After N shots, the system returns the counts
of the number of times that each of the different bit strings was
generated. These counts, not the individual bit strings, constitute
the result of executing the quantum algorithm.

2.1. Device characteristics

According to the IBM-QE documentation and private commu-
nication with the IBM-QE team, execution of an X, Hadamard,
and CNOT gate takes 130 ns, 130 ns, and 650 ns, respectively.
The coherence time of a single qubit is of the order of 100 µs.
The gate errors, estimated from randomized benchmarking [9], are
in the range 10−2–10−3. These are parameters of the device that
was in use between January 11, 2017 and February 6, 2017. These
numbers vary somewhat from one device calibration to another
(typically twice a day).

2.2. Data analysis

Each run of an algorithmon the IBM-QE yields a definite pattern
of (five) output bits (0 or 1). This pattern, a basis state in quantum
theory parlance, is interpreted as being the result of measuring the
quantum state of the machine. We denote a basis state of the IBM-
QE by |Q4Q3Q2Q1Q0⟩ where the Q’s are either 0 or 1, and we use a
similar notation for less than 5 qubits. The subscripts correspond
to the labels of the qubits of the IBM-QE and are necessary because
some algorithms might permute logical and physical qubits, as in
the case of the adder and the error correction algorithm discussed
below.

In this paper, we present results of repeating the procedure
of executing the algorithm and measuring the state of the device
N = 8192 times, themaximumnumber of shots currently allowed.
The counts of the different configurations of 0’s and 1’s divided
by the number of shots give us the relative frequencies (rational
numbers between 0 and 1, with their sum being equal to one) with
which the basis states are observed.

In this paper, we take as the ‘‘correct’’ result of the
computation either the collection of states with the
largest relative frequencies or the state that appears
with the largest relative frequency if a unique answer
is expected.

If quantum theory is assumed to describe the operation of the
device, each measurement constitutes a statistically independent
trial [10]. Within statistical fluctuations, themeasured frequencies
to observe the system in one of the basis states should correspond
to the probabilities predicted by quantum theory [10]. Let us de-
note by xn = 1(0) the fact that a particular basis state is (not)
observed in trial n = 1, . . . ,N . The relative frequency is then
f = N−1∑N

n=1xn. Assuming that the xn are identically distributed
random variables, the standard error (SE) on the estimated value
of f is bounded by 1/

√
N . For the case at hand, we conclude that

if the measurements constitute identically distributed random
trials, the standard error on the data that we present in this paper
(withN = 8192) does not exceed SE = 0.012. Frequencies that are
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within five standard errors (5 SE = 0.06) are considered to be the
same.

It is to be expected that the results obtained by executing
a quantum circuit not only suffer from statistical errors but, as
shown below, also from other errors that are much harder to
characterize properly. Let us assume that for each gate operation,
there is a probability 0 < pC < 1 that the result of the operation,
if measured, is correct and that the probability for a sequence of
m identical gates to return the correct answer is pmC . For instance,
taking pC = 0.95, this error model would predict a sequence of
m = 20 gates to produce the correct result with a probability
of about 0.36, which is larger than the probability for sampling
(uniformly) at random if the number of qubits is larger than one.
Our experiments strongly suggest that the variations in the ex-
perimental results presented below are much larger and cannot
be explained by probabilistic error models based on the single-
gate errors, often estimated from randomized benchmarking [11],
supporting the viewpoint that the estimates obtained by the latter
have some deficiencies [12].

3. Entanglement

A conceptually simple experiment to test whether a two-qubit
system is capable of exhibiting quantum behavior is to repeatedly
prepare the device such that the readout of its internal state yields
a frequency distribution of events that agrees with the probability
distribution of two spin-1/2 particles in the singlet state, a max-
imally entangled state [10]. Note that the observation that the
frequency distribution of many events agrees with the probability
distribution of the singlet state is only a post-factum characteriza-
tion of the repeated preparation and measurement process, not a
demonstration that at the end of the preparation stage, the device
actually is in the singlet state. The latter describes the statistics, not
the internal state at any particular instance [10].

The singlet state is defined by

|Ψ ⟩ =
1

√
2

(|01⟩ − |10⟩) . (1)

The averages of (combinations of) Pauli spin matrices σ =

(σ x, σ y, σ z) are

⟨Ψ |σ1 · a|Ψ ⟩ = ⟨Ψ |σ2 · b|Ψ ⟩ = 0, (2)

E(a, b) = ⟨Ψ |σ1 · a σ2 · b|Ψ ⟩ = −a · b = − cos θ, (3)

where a andb are three-dimensional unit vectors and θ is the angle
between these two vectors.

It is not difficult to see that in general, any function P(S1, S2|ab)
of the two-valued variables S1, S2 = ±1 can be written as

P(S1, S2|ab) =
P0 + P1S1 + P2S2 + P3S1S2

4
, (4)

simply because∑
S1=±1

∑
S2=±1

P(S1, S2|ab) = P0∑
S1=±1

∑
S2=±1

S1P(S1, S2|ab) = P1∑
S1=±1

∑
S2=±1

S2P(S1, S2|ab) = P2

∑
S1=±1

∑
S2=±1

S1S2P(S1, S2|ab) = P3. (5)

If P(S1, S2|ab) is to represent the probability that a measurement
of the spins (σ1 · a, σ2 · b) yields the values (S1, S2), we must have
P0 = 1 and therefore

P(S1, S2|ab) =
1 + P1S1 + P2S2 + P3S1S2

4
, (6)

with certain restrictions on (P1, P2, P3) because we must also have
0 ≤ P(S1, S2|ab) ≤ 1 for P(S1, S2|ab) to qualify as a probability.

We find the probability for measuring the spins (S1, S2) in the
singlet state by combining Eqs. (2), (3) and (6), meaning that we
set P1 = ⟨Ψ |σ1 · a|Ψ ⟩ = 0, P2 = ⟨Ψ |σ2 · b|Ψ ⟩ = 0, P3 =

⟨Ψ |σ1 · a σ2 · b|Ψ ⟩ = −a · b and obtain

Psinglet(S1, S2|ab) =
1 − S1S2a · b

4
. (7)

The mapping from the spin-1/2 eigenvalues Si = +1, −1 to the
qubit values qi = 0, 1 is given by qi = (1 − Si)/2 (or Si = 1 − 2qi)
for i = 1, 2 [3]. Therefore, according to quantum theory, the
probability that a measurement of the qubits (Q1,Q2) yields the
values (q1, q2) (q1, q2 = 0, 1), is given by

P(q1, q2|ab) =
1 − a · b + 2a · b (q1 + q2) − 4a · b q1q2

4

=
1 − (−1)(q1+q2)a · b

4
. (8)

The quantum circuit generating the singlet state is very simple:
assuming that the initial state of the two qubits is |0201⟩, perform
anX operation on qubits 1 and 2 to change the state to |1211⟩, apply
a Hadamard gate on qubit 1, and execute a CNOT operation with
qubit 1 (2) as control (target) qubit. In our experiments, we have
chosen a = (0, − sin θ1, cos θ1) and b = (0, − sin θ2, cos θ2) such
that a·b = cos(θ1−θ2). The circuit that, in the ideal case, generates
(q1, q2) according to Eq. (8) and implements the measurement in
a rotated basis specified by a and b, then consists of two X-gates,
five Hadamard gates, one U1(θ1) and one U1(θ2) gate, and a CNOT
gate. The sequence of gates that implements this circuit is given in
Appendix.

Executing the sequence of gates on the IBM-QE yields, afterN =

8192 shots, the relative frequencies f (q1, q2) (f (0, 0) + f (0, 1) +

f (1, 0) + f (1, 1) = 1) with which the pair (q1, q2) is generated.
The averages and correlation of the Pauli spin matrices projected
onto the directions of measurement are given by F1(θ1, θ2) =

f (0, 0)+ f (0, 1)− f (1, 0)− f (1, 1), F2(θ1, θ2) = f (0, 0)− f (0, 1)+
f (1, 0)− f (1, 1), and F (θ1, θ2) = f (0, 0)− f (0, 1)− f (1, 0)+ f (1, 1),
respectively.

For a two-qubit system, the averages of the Pauli-spin matrices
are E1(θ1) = ⟨Ψ |σ1 · a|Ψ ⟩, E2(θ2) = ⟨Ψ |σ2 · b|Ψ ⟩, and E(θ1, θ2) =

⟨Ψ |σ1 · a σ2 · b|Ψ ⟩ = −a · b. Therefore, if the operation of the
IBM-QE is described by the quantum theory of a system of qubits,
we expect to find that F1(θ1, θ2) ≈ E1(θ1), F2(θ1, θ2) ≈ E2(θ2), and
F (θ1, θ2) ≈ E(θ1, θ2).

In Fig. 1, we present experimental data as obtained by execut-
ing the sequence of gates on the IBM-QE. Qualitatively, the data
presented in Fig. 1 show the features that are expected from the
quantum theoretical description in terms of the singlet state but
quantitatively, there are significant deviations. For a = b =

(0, − sin θ1, cos θ1) quantum theory predicts that ⟨Ψ |σ1 ·a σ2 ·b|Ψ ⟩

is constant in the range [0.945, 1] whereas the experiment (see
Fig. 1 (right)) gives F (θ1, θ1) ≈ 0.80, far outside the expected
interval. The single-qubit averages F1(θ1, θ1) and F2(θ1, θ1) are zero
within a 6 SE margin. Assuming that the data is described by
quantum theory in terms of a pure state, a nonlinear fit to all the
data presented in Fig. 1 yields

|Φdata⟩ = 0.95|Ψ ⟩ + 0.31
|00⟩ − |11⟩

√
2

+ · · · . (9)

It is noteworthy that thementioned artifacts are not only found
in the data produced by the IBM-QE experiments but are also
present in data collected in Einstein–Podolsky–Rosen–Bohm ex-
periments with photons [13]. From a more general perspective, it
is instructive to compare the ‘‘accuracy’’ of the results produced by
quantum physics experiments such as those (but not only those)
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Fig. 1. (Color online) Data for a quantum-gate circuitwhich, theoretically, generates the singlet state. The quantum-gate circuit used is given in Appendix. The experiments on
the IBM-QE have been carried out on February 16, 2017 with a = (0, − sin θ1, cos θ1) and b = (0, − sin θ2, cos θ2). Left: θ1 = 0 fixed and θ2 variable, in which case quantum
theory predicts E1(θ1) = E2(θ2) = 0, E(θ1, θ2) = − cos(θ1 − θ2); right: θ1 = θ2 variable, in which case quantum theory predicts E1(θ1) = E2(θ2) = 0, E(θ1, θ2) = −1. Lines
connecting the data points are guides to the eye.

Table 1
Data of IBM-QE experiments with circuits which add two 2-bit numbers modulo 4 for the case that each pair of qubits encodes a single integer in the range 0–3. The
first (second) group of results has been obtained with a circuit that uses qubits 0–3 (1–4). See Appendix for more details on the circuits used. The experimental outcomes
are colored according to the rule green: correct; red: wrong; magenta: unexpected (wrong) superposition; black: states with the next-to-highest relative frequency. The
numbers in parentheses are the relative frequencies of occurrence.

performed on the IBM-QE with those on e.g. atomic systems. The
accuracy by which quantum theory predicts, say, the ratios of the
wavelengths of the Balmer absorption/emission lines of hydrogen
is about 4 digits. Some of the wavelengths of these lines have
been measured with roughly this precision in the beginning of
the previous century with, for present-day standards, pre-historic
equipment. Taking the experiments on entanglement, which in-
volve only a few gate operations, as an example, experiments (not
only the IBM-QE but also experiments with photons, neutrons,
ions, etc.) reproduce the quantum-theoretical prediction for the
correlation ⟨Ψ |σ1 · a σ2 · a|Ψ ⟩ = −1 with an accuracy of not more
than 2 digits. Apparently, it seems rather challenging for humans
to engineer devices that operate according to the laws of quantum
theory with a precision akin to that of atomic systems found in
nature.

4. Two-qubit + two-qubit adder

A rather simple but nontrivial algorithm to test the correctness
of quantum computer simulation software and hence also devices
is to perform integer addition, which has the appealing feature that
it is trivial to check the correctness of the results generated by the
software or device [5]. The algorithm that we use here makes use

of a quantum Fourier transform [8]. Due to the limitations of the
IBM-QE hardware, the integers that can be added are rather small
(≤3). Nevertheless, running the algorithm on the IBM-QE reveals
some interesting behavior, also see the supplementary material of
Ref. [14]. The implementation of the adder circuit is different from
the one reported in Ref. [14]. It has been validated by running the
quantum algorithm on the simulator and comparing the results
with those of integer arithmetic modulo 4.

In Table 1, we collect a number of cases for which the IBM-QE
results are sometimes correct and sometimes wrong. We have not
been able to detect any systematics in this behavior. IBM-QE results
that are correct on a particular daymay turn out wrong on another
date, or vice versa. See also Ref. [14].

In Table 2, we present some data for the case that the inputs are
superpositions of the states that represent the integer numbers. In
all cases shown, execution of the algorithm on the IBM-QE returns
the expected answer.

5. Identity operations

Sequences of several CNOT operations provide simple but de-
cisive test cases [4]. Theoretically, each pair of CNOT gates acts as
an identity operation, hence, if the number of CNOT operations is
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Table 2
Data of IBM-QE experiments with circuits which add two 2-bit numbers modulo 4 for the case in which the inputs are superpositions of two or four states. See Appendix
for an example of the circuit used. In all cases shown the IBM-QE yields the correct outcomes.

Table 3
Data for experiments with identity operations, generated by the IBM-QE. See Appendix for more details on the circuits used. Green (red)-colored states indicate experi-
mental outcomes that, according to the rule (see Section 2) used, are (not) the same as the theoretically expected state. The states in the experimental outcomes with the
next-to-highest relative frequency are given in black. The numbers in parentheses are the relative frequencies of occurrence. Each calculation has been repeated several
times, on the dates indicated.

even, we expect to see that the output state is the same as the
input state. In Table 3, we present some representative results for
sequences of 8 and 12 CNOT gates. Some of these sequences are
preceded/followed by some X andH gates to change the input/out-
put to/of the sequence of CNOTs. The duration of 12 successive
CNOT gates (≈8µs) is well within the coherence time of the qubits
(100 µs).

From Table 3 it is clear that, except for the cases shown in
the last two rows, the states that occur with the largest relative
frequency are quite robust: they do not change if we repeat the
experiment. Moreover, all relative frequencies are in the same ball
park and fairly large. However, comparing the data of the second
and third row, we must conclude that there is no guarantee that
the device is operating properly. Obviously, the operation of the
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Fig. 2. (Color online) Circuit with three T -gates performing a rotation of the third qubit Q2 , followed by the encoding circuit of a distance-two surface code.

device suffers from errors which are hard to gauge. We have found
no systematic procedure to determine the conditions under which
the device produces blatantly wrong results.

6. Error correction

The idea of quantum error correction is to introduce redun-
dancy by using m physical qubits to encode k < m logical qubits
such that the information is effectively protected against decoher-
ence [15]. Quantum error-correcting codes are commonly denoted
by [[m, k, d]], where the distance d includes information about
the number of errors the code can correct [3]. Since the IBM-QE
supports five qubits, small codes using m ≤ 5 physical qubits can
be implemented and tested (see also Refs. [14] and [16]).

We study two different five-qubit codes. The first is a particular
distance-two surface code already analyzed by Devitt using a pre-
vious version of the IBM-QE [14]. The second is an instance of the
perfect [[5, 1, 3]] code introduced in Refs. [17] and [18].

6.1. Distance-two surface code

Surface codes are considered to be among the most promising
error-correction schemes as they can cope with error rates of
about 10−2 [19]. The distance-two surface code [[5, 1, 2]] studied
in Ref. [14] employs postselection to discard outcomes which are
not included in the code space. In other words, the set of 5-bit
strings resulting from the N = 8192 shots are first analyzed and
then the results are corrected.

In our first test of the distance-two surface code, we employ
the same encoding circuit as described by Devitt [14]. This circuit
is shown in Fig. 2 and starts right after the last of the three
T -gates. In our test procedure, the chosen number of T -gates
ranges from 0 to 8, eventually resulting in a rotation of the state |0⟩
to |1⟩ and back to |0⟩. For comparison, we also perform the same
test without quantum error correction. As an example, we show
the corresponding circuit with three T -gates in Fig. 3.

In our second test, we use the same encoding circuit as in the
first test, followed by K = 0, . . . , 8 logical X-gates. In contrast
to our first test, the state |0⟩ is first encoded into the logical state
|0⟩L and then the logical-X operator is applied K times before the
measurements in the z-basis are performed. For comparison, the
same experiment is repeated using a single qubitwithout quantum
error correction.

Postselection is done according to Table 4, that is we only count
the outcomes that correspond to a measurement of one of the
logical states |0⟩L or |1⟩L. In our experiments, about three quarters
of the shots are discarded by the postselection process.

The results of the first test are shown in Fig. 4 (left). Stars
correspond to the output of the simulator which operates as an
ideal quantum computer and therefore provides a stringent test
of the correctness of the circuit itself. The outcomes lie on the
solid line which represents the sinusoidal function predicted by
quantum theory. The results from the single-qubit circuit (open
circles) qualitatively follow the expected curve but with a reduced

Table 4
List of measured 5-bit strings that correspond to
the logical states |0⟩L or |1⟩L . Outcomes that corre-
spond to neither of the logical states are omitted.
Note that the order of the qubits differs from that
chosen in Ref. [14].

|0⟩L |1⟩L
00000 00011
01111 01100
10110 10101
11001 11010

Fig. 3. (Color online) Circuit with three T -gates performing a rotation of a single
qubit.

visibility. For the encoded qubit, postselection reduces the number
of valid shots from 8192 to 2000–2300, i.e., there are about 2000
5-bit strings that correspond either to a logical 0 or a logical 1.
After postselection, the results of the encoded qubit (open squares)
are worse than for the single qubit, with deviations from the exact
result that are far outside the range of the statistical fluctuations.
However, a potential problem of this first test is that the rotation
is done on the single qubit before it is encoded. Hence errors
that occur during the rotation cannot be detected by the error-
correction code.

In our second test, see Fig. 4 (right), the rotation is thus per-
formed after the encoding but the results are essentially the same:
the encoding procedure induces more errors than can be detected.
Indeed, the single qubit results (stars) are much closer to the ideal
outcome (one for an even number of X-gates and zero for an odd
number of X-gates) when no error-correcting code is used than
those obtained with the use of error-correction. The results for
the encoded qubit (open circles for an even number of X-gates
and open squares for an odd number) are only slightly better than
just randomly picking zeros or ones. At least, the frequencies of
the quantum error-corrected qubits do not change a lot with the
number of X-gates applied.

6.2. Distance-three 5-qubit code

The distance-three 5-qubit code [[5, 1, 3]] is called a perfect
quantum error-correcting code since it is the smallest code that,
theoretically, has the ability to correct any single-qubit error [17].
From the different presentations of this code (see Ref. [18]), we
choose the one given in Refs. [3] and [20] where the logical states
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Fig. 4. (Color online) Left: first experiment with the distance-two surface code [[5, 1, 2]], previously also performed by Devitt [14]. Solid line (black): prediction of quantum
theory (cos2(πK/8)) for the ideal quantum computer, K denoting the number of T -gates; stars (green): data generated by the simulator; open circles (blue): single qubit
circuit, see Fig. 3; open squares (red): results obtained by postselection of the data produced by the quantum error-correction circuit shown in Fig. 2. Right: results of the
second experiment with the same code. For an even (odd) number of X-gates, quantum theory predicts the probability to measure |0⟩ to be 1 (0). Stars (black): single qubit
circuit; open circles (red): quantum error-corrected results for an even number of X gates; open squares (blue): quantum error-corrected results for an odd number of X
gates. All experiments have been carried out in January 2017. Lines connecting the data points are guides to the eye.

are defined as

|0⟩L =
1
4
(+|00000⟩ − |00011⟩ + |00101⟩ − |00110⟩

+ |01001⟩ + |01010⟩
− |01100⟩ − |01111⟩ − |10001⟩ + |10010⟩
+ |10100⟩ − |10111⟩
− |11000⟩ − |11011⟩ − |11101⟩ − |11110⟩), (10)

|1⟩L =
1
4
(−|00001⟩ − |00010⟩ − |00100⟩ − |00111⟩

− |01000⟩ + |01011⟩
+ |01101⟩ − |01110⟩ − |10000⟩ − |10011⟩
+ |10101⟩ + |10110⟩
− |11001⟩ + |11010⟩ − |11100⟩ + |11111⟩). (11)

The encoding circuit for this code is given in Ref. [20]. As the
IBM-QE does not support the controlled Z (CZ), controlled −Z
(C−Z), and controlled Y (CY ) gates, we rewrite the circuit in terms
of the CNOT gate (C) and other single-qubit gates that the IBM-QE
supports by using the circuit identities

CZij = HjCijHj, (12)

C−Zij = HjCijHjZi, (13)

CYij = HjCijHjCijSi. (14)

Applying the relation SZ = S† and swapping the lines of Q0
and Q2, we thus arrive at the encoding circuit shown in Fig. 5,
whose purpose is to encode the state |00Q200⟩ ↦→ |Q2⟩L. Due
to the reduced connectivity of the IBM-QE, we further express
all unsupported CNOT gates Cij in terms of Ci2 and Cj2 using the
identity Cij = HiHjCjiHiHj and the SWAP gate SWAPij = CijCjiCij.
The listing of the full circuit is given in Appendix and takes about
33 µs to run to completion.

The correctness of the encoding circuit is established by running
the circuit on the ideal quantum computer simulator (included in
the IBM-QE). The results are shown in the left panel of Fig. 6. From
the top-left panel, it is clear that starting from the state |Q2 = 0⟩,
the circuit produces a uniform superposition of all the basis states
(solid bars) contained in the codeword |0⟩L (see Eq. (10)). Similarly,
the bottom-left panel shows that encoding the state |Q2 = 1⟩
properly yields the codeword |1⟩L (hatched bars) given by Eq. (11).
Note that the height of the bars differs slightly from 1/16 due to
the random sampling used in the N = 8192 shots.

The results of running the same circuit on the real chip are
depicted in the right panel of Fig. 6. We repeated each experiment
of N = 8192 shots five times to get some information about the
reproducibility and the statistical distribution of the results. In the
right panel of Fig. 6, the corresponding standard deviations are
indicated by error bars.

The results clearly demonstrate that, apart from statistical fluc-
tuations, the real processor produces the same output irrespective
of whether the initial state was |Q2 = 0⟩ (solid bars) or |Q2 = 1⟩
(hatched bars). The outcome is completely different from the one
obtained with the simulator (compare with left panel of Fig. 6). For
each case, the resulting distribution contains in a pair-wisemanner
almost equally important contributions from the other case. This
makes it impossible for the user to distinguish the logical state |0⟩L
from the logical state |1⟩L. Therefore, we have to conclude that the
IBM-QE fails to generate the correct outcome for the encoding part
of the perfect distance-three 5-qubit code. Unfortunately, because
the number of gates that is allowed on the IBM-QE is limited to 80,
we cannot carry out the corresponding decoding circuit.

7. Discussion

We have explored the use of four classes of quantum circuits
to benchmark quantum computer hardware by executing these
circuits on the only gate-based quantum computer that is publicly
accessible today. The class of identity operations built from CNOT
gates stands out in terms of simplicity, scalability, and sensitivity
to malfunctioning hardware. We propose that apart from charac-
terizing the operation of the individual qubits, and as a minimal
benchmark, any system that performs quantum computation is
subjected to this class of circuits. Some of these circuits might also
be useful for the calibration procedure itself.

From the results presented in the foregoing sections, we draw
the following conclusions:

• For some systems of two and four qubits, qualitative agree-
ment with quantum theory was observed.

• Errors could not be identified by the user nor be corrected
using quantum error-correction, and could not be attributed
to the specified gate errors.

• The data showed strong variations between calibrations.
• Sequences of identity operations provide simple, scalable

algorithms to validate the correct operation of the device [4].
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Fig. 5. (Color online) Circuit diagram to encode the central qubit |Q2⟩ into the logical codeword |Q2⟩L given by Eqs. (10) and (11). The diagram has been taken from Ref. [20]
and adapted to the set of gates that the IBM-QE can execute. The full circuit, obtained by re-expressing the CNOT gates that cannot be executed by the IBM-QE hardware, is
given in Appendix.

Fig. 6. (Color online) Results of the encoding part of the perfect distance-three 5-qubit code. Left: results obtained by the simulator, i.e. by simulating the ideal quantum
computer. Right: results produced by the IBM-QE processor on January 26, 2017. Shown are the resulting frequencies of all the 32 basis states, grouped into those constituting
|0⟩L (top row) and those constituting |1⟩L (bottom row). Solid (hatched) bars correspond to the initial state |00Q200⟩ = |00000⟩ (|00Q200⟩ = |00100⟩). The standard
deviations resulting from five independent runs on the hardware processor (each with N = 8192 shots) are shown as error bars.

• The current IBM-QE device does not meet the two elemen-
tary requirements (see Section 1) for a computing device.

• The IBM-QE allows a theoretician to perform real laboratory
experiments.

From the perspective of a user, the IBM-QE does not perform
as could reasonably be expected from a computer. Except for very
simple circuits which return qualitatively correct results, the IBM-
QE device often fails to return the correct results for reasons which
in some cases may be traced back to running the algorithm on
a different day (with a different device calibration) but in other
cases do not seem to have a simple explanation. Needless to say,
it would be of great interest to have the simple benchmarks car-
ried out on other hardware platforms, in particular on the recent
5-qubit ion-trap device [21], and see how they perform relative to
the IBM-QE.

One fairly simple reason for the failure of the IBM-QE to function
as a computermaybe that the two-statemodel used to describe the
qubits does not capture, not even approximately, the time evolu-
tion of the system of coupled transmons [22]. Indeed, preliminary
simulations based on a more comprehensive model of transmons
indicate that their time evolution fundamentally involves more
than two energy levels. This then raises the question whether
the failures observed in our IBM-QE experiments can be traced
back to the limited usefulness of the two-state description. This
question can readily be addressed by solving the time-dependent
Schrödinger equation for more realistic models of coupled trans-
mons and we intend to carry out such simulations in the near
future.
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Appendix. Algorithms in QASM language

For completeness, we give the .qasm files of the quantum-gate
circuits used to perform the experiments reported on in this paper.
For a detailed description of the programming language seeRef. [2].

A.1. Singlet state

IBMQASM 2.0 ;

include " qelib1 . inc " ;

qreg q [5 ] ;
creg c [5 ] ;

x q [1 ] ;
x q [2 ] ;
h q [1 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
u1( pi /180∗0) q [1 ] ;
u1( pi /180∗0) q [2 ] ;
h q [1 ] ;
h q [2 ] ;
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measure q[1] −> c [1 ] ;
measure q[2] −> c [2 ] ;

A.2. Adder using qubits 0–3

IBMQASM 2.0 ;
include " qelib1 . inc " ;

qreg q [5 ] ;
creg c [5 ] ;

x q [1 ] ;
x q [2 ] ;
x q [3 ] ;

h q [2 ] ;
t q [2 ] ;
cx q [3 ] , q [ 2 ] ;
tdg q [2 ] ;
t q [3 ] ;
cx q [3 ] , q [ 2 ] ;
h q [3 ] ;
s q [2 ] ;
cx q [0 ] , q [ 2 ] ;
s q [0 ] ;
sdg q [2 ] ;
cx q [0 ] , q [ 2 ] ;
t q [2 ] ;
cx q [1 ] , q [ 2 ] ;
t q [1 ] ;
tdg q [2 ] ;
cx q [1 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
h q [3 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
h q [3 ] ;
cx q [3 ] , q [ 2 ] ;
s q [2 ] ;
cx q [1 ] , q [ 2 ] ;
s q [1 ] ;
sdg q [2 ] ;
cx q [1 ] , q [ 2 ] ;
id q [3 ] ;
tdg q [3 ] ;
h q [3 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
h q [3 ] ;
tdg q [2 ] ;
t q [3 ] ;
h q [2 ] ;
h q [3 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
id q [3 ] ;
measure q[3] −> c [3 ] ;
measure q[2] −> c [2 ] ;
measure q[1] −> c [1 ] ;
measure q[0] −> c [0 ] ;

A.3. Adder using qubits 1–4

IBMQASM 2.0 ;
include " qelib1 . inc " ;

qreg q [5 ] ;
creg c [5 ] ;

x q [2 ] ;
x q [3 ] ;
bar r ie r q [0 ] , q [1 ] , q [2 ] , q [3 ] , q [ 4 ] ;
h q [2 ] ;
t q [2 ] ;
cx q [4 ] , q [ 2 ] ;
tdg q [2 ] ;
t q [4 ] ;
cx q [4 ] , q [ 2 ] ;
h q [4 ] ;
s q [2 ] ;
cx q [1 ] , q [ 2 ] ;
s q [1 ] ;
sdg q [2 ] ;
cx q [1 ] , q [ 2 ] ;
t q [2 ] ;
cx q [3 ] , q [ 2 ] ;
tdg q [2 ] ;
t q [3 ] ;
cx q [3 ] , q [ 2 ] ;
id q [4 ] ;
s q [4 ] ;
cx q [3 ] , q [ 4 ] ;
s q [3 ] ;
sdg q [4 ] ;
cx q [3 ] , q [ 4 ] ;
h q [4 ] ;
tdg q [2 ] ;
cx q [4 ] , q [ 2 ] ;
t q [2 ] ;
tdg q [4 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
measure q[1] −> c [1 ] ;
measure q[2] −> c [2 ] ;
measure q[3] −> c [3 ] ;
measure q[4] −> c [4 ] ;

A.4. Identity operation

IBMQASM 2.0 ;
include " qelib1 . inc " ;

qreg q [5 ] ;
creg c [5 ] ;

cx q [0 ] , q [ 1 ] ;
cx q [0 ] , q [ 1 ] ;
cx q [0 ] , q [ 1 ] ;
cx q [0 ] , q [ 1 ] ;
cx q [0 ] , q [ 1 ] ;
cx q [0 ] , q [ 1 ] ;
cx q [0 ] , q [ 1 ] ;
cx q [0 ] , q [ 1 ] ;
measure q[0] −> c [0 ] ;
measure q[1] −> c [1 ] ;

A.5. Error correction: distance-two surface code

IBMQASM 2.0 ;
include " qelib1 . inc " ;
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qreg q [5 ] ;
creg c [5 ] ;

h q [2 ] ;
t q [2 ] ;
t q [2 ] ;
t q [2 ] ;
h q [2 ] ;
measure q[2] −> c [2 ] ;

IBMQASM 2.0 ;
include " qelib1 . inc " ;

qreg q [5 ] ;
creg c [5 ] ;

h q [2 ] ;
h q [1 ] ;
t q [2 ] ;
h q [3 ] ;
t q [2 ] ;
t q [2 ] ;
cx q [1 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
h q [0 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [4 ] ;
h q [0 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
measure q[4] −> c [4 ] ;
cx q [0 ] , q [ 2 ] ;
h q [3 ] ;
h q [0 ] ;
h q [2 ] ;
measure q[3] −> c [3 ] ;
cx q [0 ] , q [ 2 ] ;
h q [0 ] ;
h q [2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [0 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
measure q[0] −> c [0 ] ;
measure q[1] −> c [1 ] ;
measure q[2] −> c [2 ] ;

IBMQASM 2.0 ;
include " qelib1 . inc " ;

qreg q [5 ] ;
creg c [5 ] ;

x q [0 ] ; / / repeat 0−8 times
measure q[0] −> c [0 ] ;

IBMQASM 2.0 ;
include " qelib1 . inc " ;

qreg q [5 ] ;
creg c [5 ] ;

h q [1 ] ;
h q [2 ] ;
h q [3 ] ;
cx q [1 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
h q [0 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [4 ] ;
h q [0 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
h q [4 ] ;
cx q [0 ] , q [ 2 ] ;
h q [0 ] ;
h q [2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [0 ] ;
h q [2 ] ;
cx q [0 ] , q [ 2 ] ;
cx q [1 ] , q [ 2 ] ;

/ / repeat these logica l x gates 0−8 times
z q [0 ] ;
z q [1 ] ;

h q [4 ] ;
h q [0 ] ;
h q [1 ] ;
h q [2 ] ;
h q [3 ] ;

measure q[4] −> c [4 ] ;
measure q[3] −> c [3 ] ;
measure q[0] −> c [0 ] ;
measure q[1] −> c [1 ] ;
measure q[2] −> c [2 ] ;

A.6. Error correction: distance-three 5-qubit code

IBMQASM 2.0 ;
include " qelib1 . inc " ;

qreg q [5 ] ;
creg c [5 ] ;

h q [0 ] ;
h q [1 ] ;
id q [2 ] ;
h q [3 ] ;
h q [4 ] ;
cx q [1 ] , q [ 2 ] ;
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h q [1 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
sdg q [4 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [0 ] ;
h q [2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [0 ] ;
h q [2 ] ;
cx q [0 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [0 ] ;
h q [2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [0 ] ;
h q [2 ] ;
cx q [0 ] , q [ 2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
cx q [0 ] , q [ 2 ] ;
h q [3 ] ;
h q [4 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
h q [3 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
h q [3 ] ;
cx q [3 ] , q [ 2 ] ;
cx q [0 ] , q [ 2 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;
h q [3 ] ;
cx q [3 ] , q [ 2 ] ;
h q [2 ] ;

h q [3 ] ;
cx q [3 ] , q [ 2 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [0 ] , q [ 2 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [2 ] ;
cx q [1 ] , q [ 2 ] ;
h q [1 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [0 ] , q [ 1 ] ;
h q [2 ] ;
h q [4 ] ;
h q [1 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
cx q [1 ] , q [ 2 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
h q [2 ] ;
h q [4 ] ;
cx q [4 ] , q [ 2 ] ;
sdg q [1 ] ;
h q [2 ] ;
h q [3 ] ;
h q [4 ] ;
measure q −> c ;
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