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The logical inference description of the Einstein–Podolsky–Rosen–
Bohm experiment is shown to contain the quantum theoretical
description as a particular case.

© 2018 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The algebra of logical inference (LI) provides a mathematical framework that facilitates rational
reasoningwhen there is uncertainty [1–5]. A detailed discussion of the foundations of LI, its relation to
Boolean logic and the derivation of its rules can be found in the papers [1,4] and books [2,3,5]. LI is the
foundation for powerful tools such as the maximum entropy method and Bayesian analysis [3,5]. To
the best of our knowledge, the first derivation of a theoretical description by this generalmethodology
of scientific reasoning appears in Jaynes’ papers on the relation between information and (quantum)
statistical mechanics [6,7]. Some of the most basic equations of quantum theory, e.g. the Schrödinger,
Pauli and Klein–Gordon equations, and the probability distributions of pairs of particles in the singlet
or triplet state have been shown to emerge from the application of LI to (the abstraction of) robust
experiments, without taking recourse to concepts of quantum theory [8–12]. The LI approach yields
results that are unambiguous and independent of the individual subjective judgment and in addition,
provides a rational explanation for the extraordinary descriptive power of quantum theory [9] and
strong support for Bohr’s statement [13] ‘‘The physical content of quantum mechanics is exhausted
by its power to formulate statistical laws governing observations under conditions specified in plain
language’’.

LI derivations of quantum theoretical descriptions are void of postulates regarding ‘‘wave func-
tions’’, ‘‘observables’’, ‘‘quantization rules’’, ‘‘Born’s rule’’, etc. This is a direct consequence of the
basic premise of the LI approach, namely that current scientific knowledge derives, through cognitive
processes in the human brain, from the discrete events which are observed in laboratory experiments
and from relations between those events that we, humans, discover. Whether or not these discrete
events are ‘‘generated’’ according to certain (quantum) laws is irrelevant. The laws themselves appear
as the result of (the best) inference (in a sense discussed below) based on data available in the form
of discrete events. As our LI approach is built on the concept of an event (in the general sense of the
word), it is not possible and it would even be a logical fallacy to ‘‘derive’’ the existence of a definite
result of ameasurement from the theory. In other words, in the LI approach there is no ‘‘measurement
problem’’.

In the LI approach, the machinery of quantum theory appears as a result of transforming a non-
linear, global optimization problem into a linear one which is (much) easier to handle. The wave
function, spin, etc. are only mathematical concepts, vehicles that render a class of complicated
nonlinear minimization problems into the minimization of quadratic forms. As products of our
collective imagination, these concepts are extraordinarily useful but have no tangible existence, just
like numbers themselves.

LI derivations of quantum theoretical descriptions also differ from themore traditional theoretical-
physics approach in the sense that they follow directly from the description of the experimental
scenario and do not rely on reduction from or approximation/simplification of a ‘‘parent’’ equation.
For instance, our LI derivation of the Pauli-equation [10] for a neutral, magnetic particle proceeds
directly from the measurement scenario to the equation whereas the conventional derivation of the
Pauli equation from the Dirac equation for charged particles [14] does not even apply to electrically
neutral particles.

A characteristic feature of quantum theory is the presence of Planck’s constant h̄. Clearly, Planck’s
constant cannot ‘‘emerge’’ from logical considerations only. In the LI derivation of the Schrödinger-
, Pauli-, and Klein–Gordon equation, Planck’s constant appears as a Lagrange parameter, a vehicle
for solving the optimization problem [9–12]. In quantum theoretical language, this paper exclusively
deals with spin operators. Although it is convention to represent these operators by dimensionless
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matrices multiplied by h̄, as long as there are no other degrees of freedom involved, there is no loss of
generality by simply using the dimensionless matrices, which is the approach adopted in this paper.

In this paper, we present a LI treatment of idealized Stern–Gerlach (SG) and Einstein–Podolsky–
Rosen–Bohm (EPRB) experiments with magnetic particles. We derive, not postulate, the quantum
theoretical description of the SG experiment for magnetic particles directly from the LI description of
the observed data and then reuse the LI description to derive the quantum theoretical description of
EPRB experiments. It is important tomention here that we use the idealized SG and EPRB experiments
as representative examples for experiments that, for each repetition, yield one definite outcome out
of a finite number of different possibilities. No elements of e.g. motion enter the description, only the
counting of events is involved, and therefore our treatment is void of physical units.

In short, a SG experiment involves a particle source, a magnet and a particle detector. The source
emits neutral particles (atoms, neutrons, . . . ) which carry a magnetic moment. The particles are sent
through a Stern–Gerlach magnet in which they experience an inhomogeneous magnetic field. As a
result of the interaction with this field, the particles leave the Stern–Gerlachmagnet in spatially well-
separated directions, an experimental fact [15–19]. The directions of the deflections are assumed to
depend on a unit vector a which is along the main axis of inhomogeneity of the magnetic field. The
observation of deflections in spatially well-separated directions is regarded as experimental evidence
that the magnetic moment of the particles is quantized [15,20,21]. The quantized magnetization is
called the spin of the particle and the number of different deflections is given by 2S+1 where S is the
magnitude of the spin. Following Feynman [21], we focus on the case that the particles are deflected
in three distinct directions, that is on spin S = 1 particles, and then show how the LI derivation
generalizes, extending our earlier work on S = 1/2 particles [9,12] to particles with larger spin. As
an application, we use LI to derive the quantum theoretical description of the EPRB experiment with
spin S = 1.

2. Double Stern–Gerlach experiment

Aswill become clear later on, to develop a consistent description, it is not sufficient to consider only
the standard SG experiment consisting of a source, magnet and detector. It is necessary to consider
a double SG experiment [20,21] such as the one sketched in Fig. 1. Following common practice in
developing theoretical descriptions, we assume that the experiment is ‘‘perfect’’, meaning that all
particles leaving the source initially travel along the same direction (which we choose to be along the
x-axis of the laboratory frame of reference), each particle is detected by one (and only one) of the nine
detectors placed in the corresponding outgoing beams, that all SGmagnets are identical and that their
inhomogeneous magnetic fields do not change during the course of collecting data.

2.1. Data generated by the experiment

From Fig. 1, it is clear that for each particle passing through the double SG device, a click of one (and
only one) of the nine detectors tells us the pair (k, l) which labels the path that the particle took. Thus,
repeating the experiment with N particles (and assuming that no particles are lost in the process of
leaving the source and being detected), yields the data set

D =
{
(kn, ln) | kn, ln ∈ E ; n = 1, . . . ,N

}
, (1)

where we introduced the set of elementary events E = {+1, 0,−1}. From the data set Eq. (1) we
compute the relative frequency of an event (k, l)

f (k, l|a, b,N) =
1
N

N∑
n=1

δk,knδl,ln , (2)

that a particle travels along the path labeled by (k, l).
In general, knowledge of the relative frequencies f (k, l|a, b,N) does not suffice to fully characterize

the data of the set D . For instance, the relative frequencies cannot describe correlations between
successive detection events, if any were present.
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Fig. 1. (Color online) Diagram of the double Stern–Gerlach experiment with spin-1 particles. A source sends particles carrying
a magnetic moment through a Stern–Gerlach magnet SG1 which maintains an inhomogeneous magnetic field characterized
by a unit vector a. Particles are deflected in three different directions labeled by k = +1, 0,−1. Each of the three beams
of particles is sent through another SG magnet. The SG magnets SG2, SG3 and SG4 are assumed to be identical with their
inhomogeneousmagnetic fields characterized by a unit vector b. The deflected beams emerging from thesemagnets are labeled
by l = +1, 0,−1. Particle detectors (not shown) count the number of particles in each of the nine beams. The path of each
particle through the double Stern–Gerlach device is uniquely determined by the labels (k, l).

In this paper, we discarding all knowledge about the events that is not contained
in the relative frequencies f (k, l|a, b,N).

According to the text in this box, in this paper we take the viewpoint that all the knowledge that can
be extracted from the data set D is fully captured by the relative frequencies 0 ≤ f (k, l|a, b,N) ≤ 1
subject to the normalization constraint

∑
k,l∈E f (k, l|a, b,N) = 1.

3. Logical inference approach

The key concept of the LI approach is the plausibility, denoted by P(A|B), which in general,
expresses the degree of believe of an individual that proposition A is true, given that proposition B
is true [2,3,5,22]. The plausibility P(A|B) is an intermediate mental construct that serves to carry out
inductive logic, that is rational reasoning, in amathematicallywell-definedmanner [3,5]. In this paper,
the plausibility is regarded as the primary concept for the development of a theoretical description.

The algebra of LI can be derived from so-called ‘‘desiderata’’ which express, in words, what is
generally regarded as rational reasoning [22]. It is a most remarkable fact that these desiderata suffice
to uniquely determine the set of rules by which plausibilities may be manipulated [2–5]. It can be
shown [2–5] that plausibilities may be chosen to take numerical values in the range [0, 1] and the
values of these plausibilities are related by three rules, namely [2–5]

(1) P(A|Z) + P(Ā|Z) = 1 where Ā denotes the negation of proposition A and Z is a proposition
assumed to be true.

(2) P(AB|Z) = P(A|BZ)P(B|Z) = P(B|AZ)P(A|Z) where the ‘‘product’’ AB denotes the logical product
(conjunction) of the propositions A and B.

(3) P(AĀ|Z) = 0 and P(A + Ā|Z) = 1 where the ‘‘sum’’ A + B denotes the logical sum (inclusive
disjunction) of the propositions A and B.

The algebra of logical inference, as defined by the rules (1)–(3), contains Boolean algebra as a special
case and provides the foundation for powerful tools such as the maximum entropy method and
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Bayesian analysis [3,5]. The rules (1)–(3) are unique [3–5] in the sense that any other rule which
applies to plausibilities represented by real numbers and is in conflict with rules (1)–(3) is also at
odds with rational reasoning and consistency [3–5].

In spite of the apparent similarities of rules (1)–(3) with those of probability theory, the reader
should not think of the plausibility as a frequency or probability in the traditional mathematical sense
but merely as a numerical measure for proposition A to be true, given that proposition B is true [9].
Furthermore, plausibilities are concepts resulting from human reasoning about observed events and
their relationships but are not the ‘‘cause’’ of these events. In general, P(A|B) may express the degree
of believe of an individual that proposition A is true, given that proposition B is true. In this paper, we
only consider applications of LI which describe phenomena ‘‘in a manner independent of individual
subjective judgment’’ [13].

For completeness, we mention here that it is not allowed to define a plausibility for a proposition
conditional on the conjunction of mutual exclusive propositions: LI cannot be used to reason on the
basis of two or more contradictory premises.

3.1. Application to the double SG experiment

The first step of the LI approach is to introduce a real number P(k, l|a, b, Z) which represents the
plausibility that the detector labeled by the pair (k, l) fires, under fixed conditions specified by the unit
vectors a and b, and proposition Z . In order to simplify the notation somewhatwemake some abuse of
notation by writing e.g. k, l as a shorthand for the proposition ‘‘the detector labeled by (k, l) fires’’. The
proposition Z represents the conjunction of all propositions about the experiment (e.g. temperature,
humidity, . . . ) that are not deemed important for the description of the data.

The second step is to use the rules (1)–(3) to compute the plausibility P(D|a, b,N, Z) that after
collecting N detection events, we observe the data set D . As stated above in the boxed text, in the
description of the data, we ignore all correlations between detection events (if any). In terms of
plausibilities, this means that the plausibility of an event (k, l) does not depend on an earlier or later
event (k′, l′). Invoking the product rule (2), the logical consequence of this independence is that we
have

P(D|a, b,N, Z) = P(k1, l1|k2, l2, . . . , kN , lN , a, b,N, Z)P(k2, l2, . . . , kN , lN |a, b,N, Z)
= P(k1, l1|a, b, Z)P(k2, l2, . . . , kN , lN |a, b,N, Z)
= P(k1, l1|a, b, Z)P(k2, l2|k3, l3, . . . , kN , lN , a, b,N, Z)
× P(k3, l3, . . . , kN , lN |a, b,N, Z)

= P(k1, l1|a, b, Z)P(k2, l2|a, b, Z)P(k3, l3, . . . , kN , lN |a, b,N, Z) = · · ·

=

N∏
n=1

P(kn, ln|a, b, Z), (3)

where P(k, l|a, b, Z) denotes the plausibility to observe a single event (k, l). As the order inwhich pairs
(k, l) appear is irrelevant (as a consequence of the statement in the boxed text), the data set D can be,
without loss of relevant information, be compressed to

N =
{
n+1,+1, . . . , n−1,−1|a, b,N, Z

}
, (4)

where we have made it explicit that N depends on a, b, N and Z . It then follows from Eq. (3) that the
plausibility P(N |a, b,N, Z) to observe the data set N is, by the usual counting argument, given by

P(N |a, b,N, Z) = N!
∏
k,l∈E

1
nk,l!

(P(k, l|a, b, Z))nk,l . (5)

which is the plausibility to observe the frequencies f (+1,+1|a, b,N), . . . ,f (−1,−1|a, b,N). From
Eq. (5) it follows that the plausibility to observe the frequency f (k, l|a, b,N) is a function of P(k, l|a, b,

Z) and N only.
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The third step involves the formulation of assumptions about the symmetries of the problem and
of other constraints we wish to impose. Thereby it is important to distinguish between the data and
the description thereof. A symmetry expresses an exact relation between the descriptions of two or
more different situations and not between the data sets themselves. Indeed, it is highly unlikely that
data sets such as D , collected in different experiments, exhibit an exact symmetry relation. In other
words, we can impose symmetries on plausibilities (description) but not on frequencies (facts).

3.2. Rotational symmetries

In the case at hand, it seems reasonable to hypothesize that outcomes of the double SG experiment
can be described by amodel which depends on the relative orientation of the SGmagnets, not on both
a and b independently. Thismodel is invariant under rotations of the frame of reference, implying that
P(k, l|a, b, Z) = P(k, l|a · b, Z) = P(k, l|θ, Z) where cos θ = a · b, from which it immediately follows
that P(k, l|θ, Z) = P(k, l|θ + 2π, Z). Furthermore, it seems reasonable to assume that changing the
direction of SG1 from +a to −a has the same effect as changing +k to −k (see Fig. 1). Of course, the
same argument holds for the SGmagnets of the second stage. Therefore, assuming that this reflection
symmetry holds implies the relations P(k, l|a · b, Z) = P(−k, l| − a · b, Z) = P(k,−l| − a · b, Z) =
P(−k, l|θ + π, Z) = P(k,−l|θ + π, Z). To avoid misunderstandings, it may be important to mention
here that our choice of labeling events by the numbers of the set E and their relation to the direction
of a is very convenient but not essential. We could have equally well chosen to work with for instance
the labels k ∈ {r, g, b} where r , g , and b denote the colors red, green and blue, respectively. Then,
the assumption of reflection symmetry implies that changing +a to −a induces the permutation
{r, g, b} → {b, g, r} of the labels.

3.3. Ideal filtering device

The demonstration by SG that atom-size magnetic particles passing through an inhomogeneous
magnetic field experience deflections in spatially well-separated directions was important for the
development of quantum theory because it provided experimental evidence that not only the spectra
of atoms but also the magnetic moment of the particles is quantized [15,20,21]. Since then, the SG
experiment, or its conceptually equivalent experiment with single-photons passing through a bire-
fringent crystal, is used in textbooks tomotivate a few of the postulates of quantum theory [20,21,23].

The SG device is often taken as the prime example of a device that separates a beam of particles
based on the direction of their magnetic moment. In its idealized form, it acts as a perfect filter.

At first sight, it sounds very reasonable to say that after a particle has left a SGmagnet, its magnetic
moment is aligned along the a direction and is quantized with projection+1, 0 or−1 along this axis.
Clearly, this quantization is in one-to-one correspondence with the observed deflection.

If we have no knowledge about the direction ofmagnetization of the particle as it leaves the source,
the deflection by a single SGmagnetwith itsmagnetic field described by the vector a is not, as amatter
of principle, sufficient to make a meaningful statement about the direction of its magnetic moment.

A consistent assignment of a magnetic moment requires that if we send that particle through a
second SG magnet with its magnetic field described by the same a, the particle only emerges in the
same beam, that is lmust be equal to k.

If that is the case, the SG magnet can be viewed as a perfect filter. The direction of the magnetic
moment defined by the direction a of the first SG magnet is preserved if we send the particle through
another SG magnet with its magnetic field along a.

Establishing this filter property from LI principles obviously demands that we treat the double SG
experiment, not the experiment with a single SG magnet. It is evident that the requirement that SG
magnets act as ideal filters cannot be an intrinsic feature of the LI framework. The filtering property has
to be imposed explicitly, just as we did with symmetry relations. The constraint on the plausibilities
which enforces the filtering property is simple: we must have P(k, l|a, a, Z) = 0 if k ̸= l.
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3.4. Relation to laboratory SG experiments

We are not aware of reports on double SG experiments which have been performed in the labora-
tory sowe restrict the discussion that follows to SG experiments involving a single SGmagnet [15–17].
The relevant data set for these experiments is

D ′ =
{
kn | kn ∈ E ; n = 1, . . . ,N

}
, (6)

which clearly lacks information on how the particles form the different beams or how the particles
are distributed over the detection area other than that they have been classified into three groups.
Formulated differently, the data of the positions of where particles have been detected have been
considerably compressed, i.e. reduced to a set of three-valued numbers.

A more detailed, quantum theoretical description starts from the Pauli equation for a neutral
magnetic particle in an inhomogeneous magnetic field. The Hamiltonian reads

H = −
h̄2

2m
∇

2
− γB · S, (7)

where h̄,m, γ , and S are Planck’s constant, the mass, gyromagnetic ratio and spin angular momentum
of the particle, respectively.

Replacing B · S by Bz(x, y)Sz , it follows immediately that the incoming beam splits according to the
eigenvalues of the z-component of the spin operator [20,23,24]. In this case, the SG magnet performs
an ideal, projective measurement, exactly as envisaged by von Neumann [25].

However, the Maxwell equation ∇ · B = 0 does not admit inhomogeneous magnetic fields that
only have one component. For instance, if the particles leave the source in the x-direction and we
choose the magnetic field in this direction to be zero, the general form of the magnetic field is
B = (0, ∂ f (r)/∂z,−∂ f (r)/∂y) where f (r) can be any nice function. Further restrictions on f (r) follow
when we require that the electric field does not change with time, i.e. ∇×B = 0 (we assume that the
electrical current is zero).

These constraints imposed by Maxwell’s equations destroy the ideal filtering property of the SG
magnet because the projections of the spin onto a particular direction do no longer commute with
the Hamiltonian [26]. This means that in a two SG magnet setup with both magnetic fields along a, a
particle leaving SG1 in beam k has a non-zero probability to leave the second layer of SGmagnets in a
beam l ̸= k. Numerical solutions of the Pauli equation with Hamiltonian equation (7) show that this
is indeed what happens [26]. In conclusion, the LI derivation presented in this paper only concerns
the idealized, projective-measurement version of the SG experiment.

3.5. Summary of constraints on the plausibilities

Symmetry considerations restrict the possible LI descriptions of the double SG experiment to
plausibilities that satisfy the relations

P(k, l|a, b, Z) = P(k, l|a · b, Z) = P(k, l|θ, Z) = P(k, l|θ + 2π, Z)
= P(−k, l|θ + π, Z) = P(k,−l|θ + π, Z), (8)

where cos θ = a · b. Note that P(k, l|θ, Z) can only depend on θ through cos θ .
Imposing that the model of the SG magnet acts as a perfect filtering device requires that the

plausibilities satisfy

P(k, l|a, a, Z) = 0 if k ̸= l. (9)

3.6. Robust experiments

All quantumphysics experiments have in common that it is impossible to predict the outcomeof an
individual event, in case a pair (k, l). Therefore, in the case of the double SG experiment, the data set D

is expected to change significantly from run to run. However, if the events (k, l) occurwith frequencies
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that remain fairly constant (within the usual statistical fluctuations) upon repeating the experiment, it
may be possible to construct amodel that describes the dependence of the frequencies on the settings
a andb. In previouswork [8–12], it was shown that themost basic equations of quantum theory derive
directly from the LI principles if we assume that the frequencies of occurrence are robust, i.e. smoothly
change a little if the conditions vary a little. It seems to us that this is a general requirement for any
successful scientific experiment. Indeed, if the frequencies of occurrence are not robust with respect
to small changes of the conditions, they would vary erratically as conditions change and common
practice is to discard experiments that produce such data.

In this paper, we derive the quantum theoretical description of the (double) SG experiment with
spin-1 particles directly from LI principles and symmetry considerations, without taking recourse
to the formalism of quantum theory. The basic assumptions of the LI derivation that follows can be
summarized as follows:

(i) There is uncertainty about each individual event (k, l) and knowledge about any such event
does not change our knowledge about earlier of later events.

(ii) Upon repetition of the experiment with N events, the frequencies f (k, l|a, b,N) for (k, l) =
(+1,+1), . . . , (−1,−1) are, within the usual statistical fluctuations, reproducible.

(iii) The frequencies f (k, l|a, b,N) for (k, l) = (+1,+1), . . . , (−1,−1) are robust with respect to
small changes in a or b.

Obviously, assumptions (i) and (ii) are trivially satisfied when we adopt a description in terms of
plausibilities. Expressing the notion of a robust experiment is the key element of the derivation.

Experiments which produce results that do not change with the conditions a or b are non-
informative and therefore fairly pointless. Therefore, in the following, we explicitly exclude such
experiments from further consideration. In terms of the plausibility, this means that we exclude the
case in which ∂P(N |θ,N, Z)/∂θ = 0.

As explained above, if the outcome of the experiment can be described by the plausibility Eq. (5)
and assuming that the experiment yields reproducible and robust results, small changes in θ should
not have a drastic effect on the description in terms of plausibilities. This means that it is reasonable
to assume that P(N |θ,N, Z) changes smoothly with θ .

Imagine that we carry out two experiments, one under condition θ and another one under
condition θ + ε (ε small compared to π ) and assume that they produce the same data set N . If
the experiment is robust in the sense explained above, we may expect that the difference P(N |θ +
ε,N, Z) − P(N |θ,N, Z) is small. Clearly, this difference is an obvious, very simple measure for the
robustness.

In practice, it is often convenient to work with the logarithm of the plausibility because this turns
the product rule (2) into a sum rule. This is allowed because we may replace all plausibilities by
any continuous monotonic function of them without changing the content of the LI framework [5].
Therefore, we define

R = ± ln
P(N |θ + ε,N, Z)
P(N |θ,N, Z)

, (10)

to be themeasure for the robustness. The± in Eq. (10) reflects the fact that instead ofR = ln(P(N |θ+
ε,N, Z)/P(N |θ,N, Z)) we could have equally well used R = ln(P(N |θ,N, Z)/P(N |θ + ε,N, Z)) as
the measure of robustness. Of course, there may be other definitions for the measure of robustness.
The rationale for adopting Eq. (10) is that it provides a path to derive, not postulate, the basic equations
of quantum physics [9].

Our primary goal is to determine P(N |θ,N, Z) whichminimizes the robustnessmeasure |R|. Thus,
R is to be regarded as a function of the set of plausibilities {P(N |θ,N, Z) | 0 ≤ θ ≤ π}, i.e. as a
functional of the plausibility. Therefore, the goal is to find the plausibility P(N |θ,N, Z), not θ or ε,
which minimizes |R|.

From Eq. (10) it follows immediately that if P(N |θ,N, Z) does not depend on θ then R = 0 for all
θ which is certainly the most robust description one can ever have. However, as we explained above,
a description of an experiment that does not show a θ-dependence is of no interest to us. Therefore,
it seems reasonable to relax the requirement R = 0 for all θ and (small) ε a little and ask for the set
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of plausibilities {P(N |θ,N, Z) | 0 ≤ θ ≤ π} which do change with θ and minimize the functional
|R| > 0 for all θ . In summary:

The LI description of the most robust (relevant) experiment is given by the set of
plausibilities {P(N |θ,N, Z) | 0 ≤ θ ≤ π}which minimizes |R|> 0 for all θ .

Obviously, because of the qualifier ‘‘for all θ ’’, at the minimum, |R| does not depend on θ .

3.7. Robustness in terms of single-event plausibilities

Substituting Eq. (5) into Eq. (10) yields

R =
∑
k,l∈E

nk,l ln
P(k, l|θ + ε, Z)
P(k, l|θ, Z)

, (11)

where the advantage of using the logarithm of the plausibility becomes obvious as it turns all
multiplications in Eq. (5) into additions. From Eq. (11) it follows immediately that our primary goal is
to determine P(k, l|θ, Z) by minimizing |R| > 0 for all θ , where the measure of robustness R is now
given by Eq. (11).

Finding a solution of the global, robust optimization problem Eq. (11) looks like a formidable task.
As explained earlier, robustness means that small variations of a or b result in small and smooth
variations of P(k, l|θ, Z). Therefore, the optimization problem may be brought into a more tractable
form by assuming that P(k, l|θ, Z) varies smoothly with θ , i.e. that P(k, l|θ, Z) allows for a Taylor
expansion as a function of θ . A small change of a or b implies that θ changes to θ + ε where ε is
small (compared to π ). Writing Eq. (11) as a Taylor series in ε we have

R =
∑
k,l∈E

nk,l

{
ε
P ′(k, l|θ, Z)
P(k, l|θ, Z)

−
ε2

2

(
P ′(k, l|θ, Z)
P(k, l|θ, Z)

)2

+
ε2

2
P ′′(k, l|θ, Z)
P(k, l|θ, Z)

}
+ O(ε3), (12)

and

|R| ≤ |ε|

⏐⏐⏐⏐⏐∑
k,l∈E

nk,l
P ′(k, l|θ, Z)
P(k, l|θ, Z)

⏐⏐⏐⏐⏐+ ε2

2

∑
k,l∈E

nk,l

(
P ′(k, l|θ, Z)
P(k, l|θ, Z)

)2

+
ε2

2

⏐⏐⏐⏐⏐∑
k,l∈E

nk,l
P ′′(k, l|θ, Z)
P(k, l|θ, Z)

⏐⏐⏐⏐⏐+ |O(ε3)|, (13)

where a prime denotes the derivative with respect to θ .
Discarding contributions of O(ε3) or higher, we minimize |R| by making the three first sums

in Eq. (13) as small as possible. If we set nk,l = NP(k, l|θ, Z), then the first and third term vanish
identically. Thus, searching for a solution of the global robust optimization problem leads us to make
the intuitively reasonable assignment P(k, l|θ, Z) ← nk,l/N , i.e. to use the frequency nk,l/N as the
numerical value of the plausibility P(k, l|θ, Z). This is a first important consequence of minimizing
|R|: it is precisely this assignment which renders the LI description unambiguous and independent of
the individual subjective judgment [9].

The problem has now reduced to that of minimizing the right-hand-side of

|R| =
ε2N
2

∑
k,l∈E

1
P(k, l|θ, Z)

(
P ′(k, l|θ, Z)

)2
> 0. (14)

Clearly, the right-hand-side of Eq. (14), being non-negative, can only be zero if P ′(k, l|θ, Z) = 0, the
case we have excluded because it can only describe non-informative experiments. Disregarding the
irrelevant prefactor, the right-hand-side of Eq. (14) is the expression of the Fisher information [5,27–
30] of the problem at hand.

Summarizing, to derive the quantum theoretical description of the double SG experiment with
spin-1 particles directly from LI principles and symmetry considerations and without taking recourse
to quantum theory, we search for the solutions of the following set of equations:
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IF =
∑
k,l∈E

1
P(k, l|θ, Z)

(
∂P(k, l|θ, Z)

∂θ

)2

> 0 ,
∑
k,l∈E

P(k, l|θ, Z) = 1, (15)

∂P(k, l|θ, Z)
∂θ

̸= 0 for at least one pair (k, l) ∈ E , (16)

P(k, l|θ, Z) = P(k, l|θ + 2π, Z) = P(−k, l|θ + π, Z) = P(k,−l|θ + π, Z). (17)

P(k, l|θ = 0, Z) = 0 , k ̸= l. (18)

The LI description of the double SG experiment is robust (in the sense explained above), informative
and satisfies the symmetry considerations (see Section 3.1) if the plausibilities {P(k, l|θ, Z) | (k, l) ∈ E }

are the solution of Eq. (15) subject to the constraints Eqs. (16)–(18). Note that we wrote IF instead of
IF (θ ) to emphasize that at the minimum IF (and therefore R up to second order in ε) does not depend
on θ .

3.8. Relation to other work

The idea that the Fisher information can be taken as the starting point for deriving the time-
independent Schrödinger equation first appeared in a paper by Frieden [31]. Frieden’s work [30] has
been an important source of inspiration for our work. However, conceptually, Frieden’s approach is
very different from ours.

In Frieden’s approach, the Fisher information appears as a result of using concepts such as intrinsic
fluctuations and ‘‘smart measurements’’ [30] in combination with estimation theory [27,30]. The
conditions under which the experiments are performed (symbolized by θ in the case at hand) are
viewed as ‘‘parameter to be estimated’’. This viewpoint takes the Fisher information as measure of
the ‘‘resolving power’’ of the experiment, in our notation the answer to the question of how big the
separation ε must be in order that the experiment can distinguish between θ and θ + ε.

This viewpoint has very little in common with the way in which actual quantum physics experi-
ments are performed. In particular, we do not know of any SG experiment that aims at estimating the
direction of themagnetic field by counting the deflected particles. On the contrary, the direction of the
magnetic field is regarded as known (with limited precision of course). In the LI approach, the Fisher
information appears quite naturally as a result of expressing the requirement that the experiment
yields reproducible, robust results. The notion of robustness used in the present paper refers to the
effect of small (systematic) changes of the condition (θ ) on the state of knowledge encoded in the
plausibilities.

There is an interesting conceptual link between the LI description of robust experiments and
the theory of optimal experimental design [32]. The viewpoint taken by the latter is the following.
Laboratory experiments cannot avoid errors and statistical methods may be very helpful for their
design and analysis. The theory of optimal experimental design provides a framework to design
experiments that are optimal with respect to some statistical criterion. It allows parameters to be
estimated without bias and with minimum variance. Obviously, the optimality of a design depends
on the statistical model and its assessment with respect to the statistical criterion chosen. There
are several different optimality criteria, often formulated in terms of invariants of the information
matrix [32], not to be confused with the Fisher information matrix, which in statistics parlance, is the
covariance matrix of the derivative of the log-likelihood [27,29].

We have mentioned earlier that the LI derivation of quantum physics equations is not a kind of
parameter-estimation problem but instead, there is some similarity with the optimal experimental
design approach. Indeed, the LI description of a robust experiment defines an imaginary optimal
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experimental design for which optimality is reached when the Fisher information (matrix) reaches
its minimum. For instance, we know that the Schrödinger equation derives from the LI description of
the appropriate robust experiment [9]. Turning this aroundwemay state that the data collected by an
experiment will comply with quantum theory in terms of the Schrödinger equation if the experiment
satisfies the optimality criterion in terms ofminimumFisher information. If the design does not satisfy
this criterion, the observations will be at odds with quantum theory.

3.9. Quadratic forms and Hilbert space

The plausibilities {P(k, l|θ, Z)|(k, l) ∈ E } are real-valued numbers in the range [0, 1]. Therefore,
without loss of generality, we can write P(k, l|θ, Z) = R2(k, l|θ, Z) where R(k, l|θ, Z) is a real-valued
number in the range [−1,+1], and substitute this expression into Eq. (15) to obtain

IF = 4
∑
k,l∈E

(
∂R(k, l|θ, Z)

∂θ

)2

, (19)

and ∑
k,l∈E

R2(k, l|θ, Z) = 1. (20)

Eq. (20) describes the surface of a hyper-sphere in a 9-dimensional space and the right-hand-side of
Eq. (19) has the structure of an inner product of vectors in this space.

Alternatively, and motivated by the transformation which Madelung used to derive a hydro-
dynamic form of the Schrödinger equation [33] and which was also used in the derivation of the
Schrödinger equation from LI principles [8–12], we introduce the complex-valued function

Φ(k, l|θ, Z) =
√
P(k, l|θ, Z)eiS(k,l) = R(k, l|θ, Z)eiS(k,l), (21)

where S(k, l) is a real-valued number. By straightforward algebra, it follows that

IF = 4
∑
k,l∈E

(
∂Φ(k, l|θ, Z)

∂θ

)∗ (
∂Φ(k, l|θ, Z)

∂θ

)
= 4

(
∂Φ

∂θ

⏐⏐⏐⏐ ∂Φ

∂θ

)
, (22)

where we have introduced a notation for the inner product

(Φ| Ψ ) ≡
∑
k,l∈E

Φ(k, l|θ, Z)∗Ψ (k, l|θ, Z), (23)

of two vectors of nine elements to make it clear that the underlying mathematical structure of
the problem is that of a linear vector space equipped with an inner product. As the inner product
Eq. (23) is invariant under unitary transformations, performing a unitary transformation that does
not depend on θ leaves the Fisher information IF unchanged. More specifically, if the set of functions
{Φ(k, l|θ, Z)|(k, l) ∈ E } is a solution of the problem and U((k, l), (k′, l′)) is a 9× 9 unitary matrix with
entries that do not depend on θ , then the set of functions

Φ̃(k, l|θ,U, Z) =
∑

k′,l′∈E

U((k, l), (k′, l′))Φ(k′, l′|θ, Z), (24)

is a solution too because unitary transformations do not change the inner product of two vectors, i.e.

4
(

∂Φ̃

∂θ

⏐⏐⏐⏐∂Φ̃

∂θ

)
= 4

(
∂Φ

∂θ

⏐⏐⏐⏐∂Φ

∂θ

)
= IF , (25)

Note that

|Φ̃(k, l|θ,U, Z)|2 = P̃(k, l|θ,U, Z) ̸= P(k, l|θ,U, Z) = |Φ(k, l|θ,U, Z)|2, (26)

implies that if we have a solution {Φ(k, l|θ, Z)|(k, l) ∈ E } we can generate other, equivalent but
different solutions by applying unitary transformations U((k, l), (k′, l′)). From Eqs. (19) and (21)
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and Eq. (26) it follows that it is sufficient to limit the search for solutions to real-valued functions
R(k, l|θ,U, Z) which satisfy

IF = 4
∑
k,l∈E

(
∂R(k, l|θ, Z)

∂θ

)2

,
∑
k,l∈E

R2(k, l|θ, Z) = 1, (27)

R(k, l|θ, Z)
∂R(k, l|θ, Z)

∂θ
̸= 0 for at least one pair (k, l) ∈ E , (28)

R(k, l|θ, Z) = ±R(k, l|θ + 2π, Z) = ±R(−k, l|θ + π, Z) = ±R(k,−l|θ + π, Z). (29)

R(k, l|θ = 0, Z) = 0 , k ̸= l. (30)

where the θ-dependence of R2(k, l|θ, Z) can only enter in terms of powers of cos θ and IF must be
independent of θ .

3.10. Closed form solution

We do not know of a practical, deductive procedure to solve Eqs. (27)–(30) and obtain closed form
expressions of the nine functions {R(k, l|θ, Z)|(k, l) ∈ E }. In Appendix A, we reformulate the global
optimization problem for a single SG magnet as a standard variational problem. The solutions of the
latter all have an IF which is independent of θ but we also show that there exist solutions of the
global optimization problem which cannot be found by solving the variational problem. In view of
this, we take a pragmatic viewpoint and search for solutions of the global optimization problem in a
non-deductive, constructive manner.

To this end, it is expedient to introduce a 3 × 3 matrix R(θ ) with elements R2−k,2−l(θ ) =√
3R(k, l|θ, Z) (recall k, l = +1, 0,−1) and write Eq. (27) as

IF =
4
3
Tr
(

∂R(θ )
∂θ

)2(
∂RT(θ )

∂θ

)2

,
1
3
Tr R(θ )RT(θ ) = 1, (31)

where Tr X denotes the trace of the 3 × 3 matrix X. If we set R(θ ) = eθS where S = −ST is a real,
skew-symmetric matrix, then R is an orthogonal matrix (R−1(θ ) = RT (θ )) and it follows that

IF =
4
3
Tr
(

∂R(θ )
∂θ

)2

= −
4
3
Tr eθSSSe−θS

=
4
3
Tr SST ,

1
3
Tr R(θ )RT(θ ) =

1
3
Tr eθSe−θS

= 1.

(32)

Clearly, IF = (4/3)Tr SST does not depend on θ . From the periodicity constraint R(k, l|θ, Z) =
±R(k, l|θ + 2π, Z) it follows directly that e2πS must be equal to a diagonal matrix with elements
±1, implying that the eigenvalues of S must be of the form i(n/2) where n can be any integer value.
Therefore, in general, IF = (n2

1+n2
2+n2

3)/3where n1, n2, and n3 are integers, not all zero. Furthermore,
as Tr S = 0 we have detR(θ ) = det eθS

= exp(θTr S) = 1, meaning that the matrix R(θ )
represents a rotation, not a reflection. In summary, every rotation matrix R(θ ) is a solution of the
global optimization problem Eq. (27) with IF independent of θ and each such matrix that satisfies the
constraints Eqs. (28)–(30) is also a candidate for the robust description of the double SG experiment.

In general, the generators of rotations are the angular momentum operators Jx, Jy, and Jz , defined
through the commutation relations [Jα, Jβ ] = iεαβγ Jγ (α, β, γ = x, y, z, Einstein summation
convention). The three operators Jx, Jy, and Jz are Hermitian and if the elements of two of them are
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chosen to be real-valued the third one is purely imaginary. If we choose the elements of Jx and Jz
to be real-valued, then iJy is real-valued and skew-symmetric and we have S = −iaJy where a is a
proportionality constant to be determined later. In the three-dimensional space spanned by the labels
k or l, the angular momentum operator Jy has the matrix representation [24]

Jy =
1
√
2

( 0 −i 0
+i 0 −i
0 +i 0

)
, (33)

and satisfies (Jy)3 = Jy. Using this latter property, it is easy to show that

e−iaθ J
y
= 1− iJy sin aθ − (1− cos aθ )(Jy)2

=
1
2

⎛⎝ 1+ cos aθ −
√
2 sin aθ 1− cos aθ

+
√
2 sin aθ 2 cos aθ −

√
2 sin aθ

1− cos aθ +
√
2 sin aθ 1+ cos aθ

⎞⎠ . (34)

From Eq. (34), it directly follows that a = 1, 3, 5, . . . because otherwise the matrix elements do not
satisfy the symmetry relation R(k, l|θ, Z) = ±R(−k, l|θ + π, Z) = ±R(k,−l|θ + π, Z). Therefore, the
eigenvalues of S = −iaJy are 0, +ia and −ia and from Eq. (32) it follows that IF = 8a2/3. Clearly,
we must choose a = 1 to have the solution with the smallest, non-zero IF . In summary, we have
constructed a non-trivial solution of the global optimization problem Eqs. (27)–(30). The closed-form
expression of this solution reads

R(θ ) =
1

2
√
3

⎛⎝ 1+ cos θ −
√
2 sin θ 1− cos θ

+
√
2 sin θ 2 cos θ −

√
2 sin θ

1− cos θ +
√
2 sin θ 1+ cos θ

⎞⎠ . (35)

From Eq. (35), it follows that

P(k, l|a · b, Z) = P(k, l|θ, Z) = R2(k, l|θ, Z)

=
1
12

⎛⎝ (1+ a · b)2 2(1− (a · b)2) (1− a · b)2

2(1− (a · b)2) 4(a · b)2 2(1− (a · b)2)
(1− a · b)2 2(1− (a · b)2) (1+ a · b)2

⎞⎠
2−k,2−l

=
1
12

⎛⎝ (1+ x)2 2(1− x2) (1− x)2

2(1− x2) 4x2 2(1− x2)
(1− x)2 2(1− x2) (1+ x)2

⎞⎠
2−k,2−l

, (36)

where x = cos θ = a · b and the somewhat strange-looking indices of the matrix elements take care
of the convention that these indices run from 1 to 3.

Substituting Eq. (35) into Eq. (27) yields IF = 8/3, in agreement with the result obtained from
Eq. (32). From Eq. (36) it follows that P(k, l|a, a, Z) = δk,l/3, which is exactly the property that is
needed for the SG magnet to function as an idealized filtering device, allowing us to assign a definite
direction to the magnetization of the particle.

The expression Eq. (36) is in complete agreementwith the result (see Appendix B, Eq. (B.8)) derived
from the postulates of quantum theory. As we explained and also illustrated by a concrete example
(see Appendix A), we do not have the tools to prove that the solution Eq. (36) yielding IF = 8/3 is
also the solution of the global optimization problem with absolute minimum IF , subject to the same
symmetry relations. However, as we show in Appendix B, there does not exist a quantum theoretical
description that satisfies the additional requirements and has an IF that is smaller than 8/3. Therefore,
if there exists a solution of the global optimization problem, satisfying all additional requirements and
having IF < 8/3, this solution cannot be obtained from quantum theory. We conjecture that such a
solution does not exist.

3.11. Generalization

For concreteness, this paper focuses on the case of three outcomes per SGmagnet. In this particular
case, the matrix Eq. (35) is the so-called Wigner-d matrix for angular momentum J = 1 [34],
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Fig. 2. (Color online) Diagram of the EPRB thought experiment with spin-1 particles. A source emits a pair of particles. The
particle moving to the left (right) passes through a Stern–Gerlach magnet SG1 (SG2) which maintains an inhomogeneous
magnetic field characterized by a unit vector a (b). The particles moving left (right) are deflected in three different directions
labeled by k = +1, 0,−1 (l = +1, 0,−1). Particle detectors (not shown) count the number of particles in each of the six
beams.

suggesting that also for J ̸= 0, the corresponding Wigner-d matrices are the solutions of the global
optimization problem Eqs. (27)–(30) when the set E represents 2, 3, 4, . . . outcomes. Indeed, in each
step of the formulation of the problem and of the construction of the solution, with the exception of
the step where we actually use the matrix representation of Jy, the number of outcomes, that is the
number of elements in the set E , is arbitrary. In other words, for any number of outcomes, the choice
S = −iJy, the matrix elements of which are the Wigner-d matrices, solves the global optimization
problem Eqs. (27)–(30). If K denotes the number of elements in E , it follows from Eq. (32) that for the
solution S = −iJy, we have IF = (K 2

− 1)/3 for K = 2, 3, 4, . . . , respectively.
For instance, if the number of different outcomes is two instead of three, i.e. E = {+1,−1}, we

have

Jy =
1
2

(
0 −i
+i 0

)
, (37)

and (Jy)2 = 1/4 and the matrix S = −iaJy reads

e−iaθ J
y
= 1 cos

(
aθ
2

)
−

iJy

2
sin
(
aθ
2

)
=

(
cos(aθ/2) − sin(aθ/2)
sin(aθ/2) cos(aθ/2)

)
. (38)

As before, we use the symmetry relation R(k, l|θ, Z) = ±R(−k, l|θ + π, Z) = ±R(k,−l|θ + π, Z) to
determine a and find that a = 1. Therefore, for the case of a double SG experiment with two outcomes
per SG magnet, the LI solution having IF = 1 reads

P(k, l|θ, Z) =
1
2

(
cos2(θ/2) sin2(θ/2)
sin2(θ/2) cos2(θ/2)

)
=

1
4

(
1+ x 1− x
1− x 1+ x

)
i(k),i(l)

, (39)

where x = cos θ = a·b, i(1) = 1 and i(−1) = 2. Just as the LI solution for the case of 3 outcomes agrees
with the S = 1 expression postulated in quantum theory, Eq. (39) also agreeswith the expression that
is postulated in quantum theory for the S = 1/2 case.

Finally, for illustrative purposes, we present the solutions for the case that each SG magnet splits
the incoming beam into 4 beams. The expressions for the plausibilities read

P(k, l|θ, Z)

=
1
32

⎛⎜⎜⎝
(1+ x)3 3(1− x)(1+ x)2 3(1+ x)(1− x)2 (1− x)3

3(1− x)(1+ x)2 (1+ x)(1− 3x)2 (1− x)(1+ 3x)2 3(1+ x)(1− x)2

3(1+ x)(1− x)2 (1− x)(1+ 3x)2 (1+ x)(1− 3x)2 3(1− x)(1+ x)2

(1− x)3 3(1+ x)(1− x)2 3(1− x)(1+ x)2 (1+ x)3

⎞⎟⎟⎠
i(k),i(l)

, (40)

where x = cos θ = a · b, i(2) = 1, i(1) = 2, i(−1) = 3, and i(−2) = 4.

4. Einstein–Podolsky–Rosen–Bohm experiment

To head off possible misunderstandings, the material presented in this section does not contribute
in any sense to the debate between Einstein and Bohr, about the foundations of quantummechanics,
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resulting in a Gedanken-experiment suggested by Einstein–Podolsky–Rosen [35] and later modified
by Bohm [20].

The purpose of this section is to demonstrate that a straightforward application of the LI approach
predicts exactly the same results as those obtained from the quantum theoretical treatment of the
EPRB thought experiment, with the important ramification that the LI approach is void of concepts of
quantum theory.

The layout of an EPRB thought experiment with spin-1 particles is shown in Fig. 2. For a fixed pair
of settings (a, b) of the SG magnets, the experiment produces a data set

D =
{
(kn, ln) | kn, ln ∈ E ; n = 1, . . . ,N

}
, (41)

which has exactly the same structure as the data set obtained from a double SG experiment. Therefore,
we only have to repeat the steps that led to the LI formulation of the double SG problem.

We begin by ignoring correlations between all pairs (kn, ln) and (kn′ , ln′ ) with n ̸= n′ and introduce
the plausibility P(k, l|a, b, Z) to observe a pair (k, l) for the settings (a, b) of the SG magnets. Then
we assume that P(k, l|a, b, Z) does not depend on the orientation of the laboratory reference frame,
implying that P(k, l|a, b, Z) = P(k, l|a · b, Z) = P(k, l|θ, Z). Consistency of the description with
the one of the double SG experiment further enforces the symmetry relations P(k, l|θ + 2π ) =
P(k, l|θ ) = P(−k, l|θ+π, Z) = P(k,−l|θ+π, Z). It should now be clear that, within the LI scheme, the
mathematical formulation and solution of the global optimization problem for the case of the EPRB
experiments is exactly the same as for the double SG experiment whereas their physical realization
is very different.

We have already pointed out that in order to consistently assign a definite direction of the
magnetization of a particle, it is necessary that a particle emerging from the SGmagnet with direction
a in beam k and passing through a second SG magnet with direction b = a, emerges in beam l = k
only. Only then it makes sense to say that the magnetization of the particle has a definite direction
(determined by a). As explained in Section 3.10, from Eq. (36) it follows that P(k, l|a, a, Z) = δk,l/3, as
required for a consistent assignment of the direction of magnetization.

However, in the case of the EPRB experiment shown in Fig. 2, it is impossible to make such an
assignment, as a matter of principle. For instance, if a particle leaves SG1 along beam k = +1, it is
a logical fallacy to infer that the particle left the source with its magnetization along a. Evidently, on
the basis of the observation that a particle left SG1 along beam k = +1 we cannot assign a definite
direction to themagnetization of the second particle of the pair. In the absence of any other knowledge
about the particles leaving the source, other than that they interact with a magnetic field, we can
only speculate. Therefore, we have to leave open the possibility that the LI description of the EPRB
experiment is in terms of solutions different from Eq. (36). One such other solution follows from
Eq. (36) by making the substitution a · b → −a · b (or θ → θ + π ). It is easy to check that this
change leaves the Fisher information unchanged, i.e. IF = 8/3. In conclusion, we must consider the
solutions P(k, l|a · b, Z) and P(k, l| − a · b, Z) as potential candidates for the LI description of the EPRB
experiment.

In Appendix C, we give a rigorous proof that the LI solution P(k, l| + a · b, Z) cannot be obtained
from quantum theory of a system of two S = 1/2 or S = 1 particles. This means that there exists
a genuine probabilistic model, described by P(k, l| + a · b, Z), which cannot be described within the
framework of quantum theory. In Appendix C, we also show that the expressions for P(k, l| − a · b, Z)
are identical to those obtained from quantum theory for two spin-1 particles in the singlet state. In
other words:

The LI framework includes quantum theory as a special case.

In the analysis of EPRB experiments, it is customary to compute the correlations between the detection
event k and detection event l. From the two candidate solutions of the form Eq. (36) we find

⟨k⟩ = ⟨l⟩ = ⟨k2l⟩ = ⟨kl2⟩ = 0 , ⟨k2⟩ = ⟨l2⟩ =
2
3

,

⟨kl⟩ = ±
2
3

a · b , ⟨k2l2⟩ =
1
3

(
1+ (a · b)2

)
.

(42)
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According to quantum theory, see Appendix C, we have ⟨k⟩ = ⟨a · S1⟩ = 0, ⟨l⟩ = ⟨b · S2⟩ = 0,
⟨kl⟩ = ⟨a · S1 b · S2⟩ = −2 a · b/3, etc. From Eq. (42) it follows that the correlation coefficient [28] is
given by

COR(k, l) =
⟨kl⟩ − ⟨k⟩⟨l⟩√
⟨k2⟩⟨l2⟩

= ± a · b, (43)

independent of the value of the spin [36].
As explained above, in the case of EPRB experiments it is impossible, as a matter of principle, to

assign definite directions ofmagnetization to the particles. However, the LI solution COR(k, l) = ±a·b
implies that COR(k, l) = ±1 if a = b, independent of a. Therefore, we may say that each pair of
particles leaves the source with their magnetic moments in an undefined but nevertheless perfectly
correlated, parallel (COR(k, l) = 1) or antiparallel (COR(k, l) = −1) direction. On the basis of the data,
this is all that can be inferred.

5. Conclusion

Wehave shown that the quantum-theoretical description of idealized Stern–Gerlach and Einstein–
Podolsky–Rosen–Bohm experiments follow from a logical inference treatment, without having to
resort to postulates or concepts of quantum theory. Following Feynman [21], a detailed derivation
is given for the case that the Stern–Gerlach magnet deflects the beam in three different directions,
i.e. to spin-1 particles. We also indicate how the derivation generalizes to arbitrary values of the spin.

Without going into detail, the main ingredients and results of our derivation may be summarized
as follows:

1. It is assumed that each event is independent of a previous or later event.
2. It is assumed that the frequencies with which events occur are robust with respect to small

changes of the conditions under which the data is being collected.
3. Knowledge about the physical aspects of the experiment enters the logical inference derivation

through symmetry relations and other constraints.
4. The global minimum of the numerical measure for the robustness satisfying all constraints is

found to coincide with the quantum theoretical description of the same experiment.
5. The logical inference description of the Einstein–Podolsky–Rosen–Bohm experiment is shown

to contain the quantum theoretical description as a particular case.
6. The derivation directly proceeds from the data representing the events to the mathematical

description in terms of the plausibilities to observe the data in robust experiments and does
not suffer from the interpretational issues that bedevil quantum theory.

The power of the logical inference framework that we use stems from the fact that it is well-suited
to bridge the gap between the experiences that we accumulate through our sensory system and the
mental representations in terms ofmathematical concepts thatwe construct and use to describe these
experiences. In particular, it provides a solid mathematical basis to discuss Bohr’s philosophical view
that ‘‘Physics is to be regarded not so much as the study of something a priori given, but rather as
the development of methods of ordering and surveying human experience. In this respect our task
must be to account for such experience in a manner independent of individual subjective judgment
and therefore objective in the sense that it can be unambiguously communicated in ordinary human
language [13]’’. The latter, we believe, is exactly what we have accomplished for the case of the Stern–
Gerlach and Einstein–Podolsky–Rosen–Bohm experiments in this paper and for other basic quantum
physics equations in our earlier work [8–12].
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Appendix A. Variational solution of the LI problem of the SG experiment

We focus on one particular beam in the double SG setup. According to the LI formulation of a robust
experiment, we should search for the solutions {R(l|θ, Z)|l ∈ E } of

IF = 4
∑
l∈E

(
∂R(l|θ, Z)

∂θ

)2

, (A.1)

with IF independent of θ and satisfying the normalization condition∑
l∈E

R2(l|θ, Z) = 1, (A.2)

Let us search for a solution of the form

R(l|θ, Z) =

{sinα(θ ) cosβ(θ ) , l = +1
cosα(θ ) , l = 0
sinα(θ ) sinβ(θ ) , l = −1

, (A.3)

which trivially satisfies
∑

l∈ER2(l|θ, Z) = 1 and upon substitution in Eq. (A.1) yields

IF = 4

[(
dα
dθ

)2

+ sin2α

(
dβ
dθ

)2
]

, (A.4)

where we introduced the shorthands α = α(θ ) and β = β(θ ). The problem is to determine α and β

such that IF is a constant.
This particular problem can be solved by introducing

ÎF =
4
2π

∫ 2π

0

[(
dα
dθ

)2

+ sin2α

(
dβ
dθ

)2
]

dθ, (A.5)

and employing standard variational calculus. By variation with respect to α and β , we find the Euler–
Lagrange equations

d2α
dθ2 − sinα cosα

(
dβ
dθ

)2

= 0 ,
d
dθ

(
sin2α

dβ
dθ

)
= 0, (A.6)

from which it follows that

d2α
dθ2 − c2

cosα

sin3α
= 0 ,

dβ
dθ
−

c
sin2α

= 0, (A.7)

where c is a constant of integration. From Eq. (A.7) it follows that

dα
dθ

(
d2α
dθ2 − c2

cosα

sin3α

)
=

1
2

d
dθ

[(
dα
dθ

)2

+
c2

sin2α

]

=
1
2

d
dθ

[(
dα
dθ

)2

+ sin2α

(
dβ
dθ

)2
]

, (A.8)

and therefore

E =
(
dα
dθ

)2

+ sin2α

(
dβ
dθ

)2

=
1
4
IF , (A.9)

is independent of θ whenever α and β are solutions of Eq. (A.7). This is just a restatement of the well-
known fact that the energy of a conservative classicalmechanical system is a constant ofmotion. In the
case at hand, the Lagrangian, the integrand in Eq. (A.5), consists of kinetic energy terms only. Hence
the expression of the energy (Hamiltonian) and Lagrangian are the same.



H. De Raedt et al. / Annals of Physics 396 (2018) 96–118 113

Integrating the equation(
dα
dθ

)2

+
c2

sin2α
= E, (A.10)

we find that

cosα =

√
1−

c2

E
cos

(√
Eθ + α0

)
, (A.11)

where α0 is a constant of integration. Similarly, integrating the equation

dβ
dθ
=

c
sin2α

, (A.12)

we find that

tan(β − β0) =

√
E
c

tan
(√

Eθ + α0

)
, (A.13)

where β0 is a constant of integration.
It is instructive to consider a simple case. If c = 0 then β = β1 does not depend on θ and

cosα = cos
(√

Eθ + α0

)
. As P(l|θ, Z) is a function of cos2α (see Eq. (A.4) and must be equal to

P(l|θ + 2π, Z), we must have E = n2/4 where n is an integer (n = 0 is ruled out because of being
non-informative). In other words, for c = 0, we found solutions of the global optimization problem
with IF = n2, independent of θ . However, the solution having IF = 1 reads

P(l|θ, Z) =

⎧⎨⎩(1− cos2(θ/2+ α0))cos2β1 , l = +1
cos2(θ/2+ α0) , l = 0
(1− cos2(θ/2+ α0))sin2β1 , l = −1

, (A.14)

and does not exhibit the reflection symmetry P(l|θ, Z) = P(−l|θ + π, Z). Therefore it must be
discarded. The solutions with IF ≥ 4 satisfy all symmetry requirements.

Let us now try as a solution, say the first column

R(l|θ, Z) =

⎧⎨⎩
(1+ cos θ )/2 , l = +1
(1/
√
2) sin θ , l = 0

(1− cos θ )/2 , l = −1
, (A.15)

of the LI solution Eq. (35). It is easy to check that Eq. (A.15) is a valid LI solution of Eqs. (A.1) and (A.2)
with IF = 2. Having constructed a valid solution, we now ask ourselves how it relates to the solutions
Eqs. (A.11) and (A.13) that were deduced by variational calculus. Equating Eqs. (A.3) and (A.15) we
have

cosα =
sin θ
√
2
=

√
1−

c2

E
cos

(√
Eθ + α0

)
⇒ E = 1, c =

1
√
2
, α0 = −

π

2
, (A.16)

which implies that this solution has IF = 4E = 4 and can therefore nevermatch the solution Eq. (A.15)
which has IF = 2. This conclusion is confirmed by trying to match the solution for β . We have

cosβ =
1+ cos θ
√
1+ cos2θ

, sinβ =
1− cos θ
√
1+ cos2θ

, tanβ =
1− cos θ

1+ cos θ
,

tan(β − β0) =
1
√
2
cot θ ⇒ tanβ0 =

√
2 tanβ − cot θ
√
2+ tanβ cot θ

tanβ0 =

√
2 sin θ − cos θ − (

√
2 sin θ + cos θ ) cos θ

√
2 sin θ + cos θ + (

√
2 sin θ + cos θ ) cos θ

̸= constant, (A.17)

fromwhich it follows that the solution Eq. (A.15) of the global optimization problem is not a solution
of the Euler–Lagrange equations (A.7).
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Reformulating the global optimization problem as a standard variational prob-
lem, we can generate many but apparently not all solutions of the former. In
other words, there are solutions to the problem ‘‘IF independent of θ ’’ which
cannot be found by standard variational calculus.

Appendix B. Quantum theory of the (double) SG experiment

For the convenience of the reader, we briefly review the quantum theoretical description of the
outcome of a (double) SG experiment with spin-1 particles. The description starts by introducing the
S = 1 matrices [21]

Sx =
1
√
2

( 0 1 0
1 0 1
0 1 0

)
, Sy =

1
√
2

( 0 −i 0
+i 0 −i
0 +i 0

)
,

Sz =

(
+1 0 0
0 0 0
0 0 −1

)
,

(B.1)

which represent the three components of the S = 1 operator [21]. Furthermore we have

(Sx)2 =
1
2

( 1 0 1
0 2 0
1 0 1

)
, (Sy)2 =

1
2

( 1 0 −1
0 2 0
−1 0 1

)
,

(Sz)2 =

(
+1 0 0
0 0 0
0 0 +1

)
,

(B.2)

and (Sx)3 = Sx, (Sy)3 = Sy, and (Sz)3 = Sz .
Next, we consider the matrices that describe only those particles which travel along a particular

beam k. We first consider the case in which a = ez . By construction we have

Mk(ez) = 1− (Sz)2 +
k
2
Sz +

k2

2

[
3(Sz)2 − 2 1

]
=

⎛⎜⎜⎜⎝
k2 + k

2
0 0

0 1− k2 0

0 0
k2 − k

2

⎞⎟⎟⎟⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 0 0
0 0 0
0 0 0

)
, k = +1

(0 0 0
0 1 0
0 0 0

)
, k = 0

(0 0 0
0 0 0
0 0 1

)
, k = −1

. (B.3)

From Eq. (B.3) it is clear that a particle that is being deflected into the beam k can be associated with
the projector Mk(ez) for k ∈ E = {+1, 0,−1} and that Mk(ez)Ml(ez) = δk,lMk(ez), i.e. the Mk(ez)’s are
three mutually orthogonal projectors.

Performing a rotation that changes ez into a changes Sz into a · S and therefore, the general
expression of the spin projector along a reads

Mk(a) = 1− (a · S)2 +
k
2
a · S+

k2

2

[
3(a · S)2 − 2 1

]
, (B.4)
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which are three mutually orthogonal projectors as well. As Eq. (B.4) follows from Eq. (B.3) by unitary
transformation,Mk(a) is a Hermitian matrix and Tr Mk(a) = 1.

The particles that are sent to the first SG magnet yield a certain statistical distribution of the
possible outcomes k ∈ E . In general, this statistical distribution may depend on the direction a. A
complete description of the particles entering the SGmagnet requires a specification of the statistical
distribution for all possible a. Quantum theory postulates such a specification by way of the density
matrix ρ, a Hermitian matrix with Tr ρ = 1 [24]. Then, still according to the postulates of quantum
theory, the probability to observe a particle in the beam k is given by [24]

p(k|a, ρ) = Tr Mk(a)ρMk(a) = Tr ρMk(a). (B.5)

Similarly, the probability to observe a particle in the beam (k, l) is given by [24]

p(k, l|a, b, ρ) = Tr Ml(b)Mk(a)ρMk(a)Ml(b) = Tr ρMk(a)Ml(b)Mk(a). (B.6)

As an illustrative example, we consider the choice ρ = 1/3 and calculate the right-hand-sides of
Eqs. (B.5) and (B.6). We have

p(k|a, ρ = 1/3) =
1
3

, ⟨a · S⟩ = Tr ρa · S = 0 , ⟨(a · S)2⟩ = Tr ρ(a · S)2 = 1, (B.7)

all independent of the direction a. Thus, we could say that the choice ρ = 1/3 describes a situation in
which an experiment with one SG magnet splits the incoming beam in three different beams which
have the same intensity, independent of the direction a of the SG magnet. From Eq. (B.6) we obtain

p(k, l|a, b, ρ = 1/3) =
1
12

⎛⎝ (1+ a · b)2 2(1− (a · b)2) (1− a · b)2

2(1− (a · b)2) 4(a · b)2 2(1− (a · b)2)
(1− a · b)2 2(1− (a · b)2) (1+ a · b)2

⎞⎠
2−k,2−l

. (B.8)

Using the expression Eq. (B.8) to compute the Fisher information, we find that IF = 8/3, in concert
with the LI derivation.

Next, we prove that quantum theory of the double SG magnet cannot yield a value of IF that
is smaller than 8/3 if we require that p(k, l|a, b) is a function of a · b only. First, we note that by
construction

Mk(a) = R(a)|k⟩⟨k|R†(a), (B.9)

where |k⟩ denotes the eigenstate of the Sz matrix with eigenvalue k ∈ E and R(a) is the 3× 3 matrix
that corresponds to the rotationwhich changes the unit vector ez into the unit vector a. From Eq. (B.6)
it follows that

p(k, l|a, b, ρ) = Tr R(b)|l⟩⟨l|R†(b)R(a)|k⟩⟨k|R†(a)ρR(a)|k⟩⟨k|R†(a)R(b)|l⟩⟨l|R†(b)
= ⟨l|R†(b)R(a)|k⟩⟨k|R†(a)ρR(a)|k⟩⟨k|R†(a)R(b)|l⟩
= |⟨l|R†(b)R(a)|k⟩|2⟨k|R†(a)ρR(a)|k⟩. (B.10)

If we take ρ = 1/3, the last factor in Eq. (B.10) is equal to 1/3 and from Eq. (B.8) it follows immediately
that

|⟨l|R†(b)R(a)|k⟩|2 = 3p(k, l|a, b, ρ = 1/3), (B.11)

is a function of a ·b only. In order that p(k, l|a, b, ρ) is be a function of a ·b only for all ρ, wemust have
that the last factor in Eq. (B.10), i.e. ⟨k|R†(a)ρR(a)|k⟩, is independent of a for each of the three basis
vectors |k⟩. The only nonzero Hermitian matrix ρ with this property is ρ = c1 where c is a nonzero
constant. This can be seen as follows. Consider an arbitrary Hermitian matrix Awith elements Ai,j and
apply a rotation that involves elements with row indices i0 < i1 and column indices j0 < j1. We have(

cosϕ e−iγ sinϕ

−e+iγ sinϕ cosϕ

)(
Ai0,j0 Ai0,j1
A∗i0,j1 Ai1,j1

)(
cosϕ −e−iγ sinϕ

e+iγ sinϕ cosϕ

)
=

(
A′i0,j0 A′i0,j1
A′i0,j1 A′i1,j1

)
, (B.12)
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where A′i0,j0
= Ai0,j0cos

2ϕ + Ai1,j1sin
2ϕ + (Ai0,j1e

+iγ
+ A∗i0,j1

e−iγ ) sinϕ cosϕ and the expressions of
the other elements are similar but, for the present purpose, not of interest. The requirement that the
diagonal matrix elements are invariant under any rotation reads A′i0,j0

= Ai0,j0 which can be rewritten
as (Ai1,j1 − Ai0,j0 ) sinϕ+ [(Ai0,j1 + A∗i0,j1

) cos γ + i(Ai0,j1 − A∗i0,j1
) sin γ ] cosϕ = 0. As the latter equation

must hold for any choice of ϕ and γ , we must have Ai1,j1 = Ai0,j0 and Ai0,j1 = 0. Repeating this
procedure for all choices of (i0, j0) and (i1, j1) (with i0 < i1 and j0 < j1) completes the proof.

Finally, it is of interest to mention here that the double SG experiment provides a counter example
to the folklore that in quantum theory, the eigenvalues of non-commuting observables cannot be
measured simultaneously. In general, a · S and b · S do not commute yet in the double SG experiment,
for each particle, we can read off the eigenvalue k of a · S and the eigenvalue l of b · S from the label
(k, l) of the detector that fired.

Appendix C. Quantum theory of the EPRB thought experiment with S=1 particles

According to quantum theory, the state of a system of two S=1 particles is represented by the
densitymatrix ρ, a Hermitian 9× 9matrix with trace equal to one. Unlike in the case of the double SG
experiment, the requirement that the expectation values be rotational invariant, i.e. only depend on
a · b, does not imply that the density matrix is proportional to the unit matrix. As a concrete example,
we consider the density matrix ρ12 = |Ψ ⟩⟨Ψ |where the pure state

|Ψ ⟩ =
1
√
3

(|−1, 1⟩ − |0, 0⟩ + |+1,−1⟩) , (C.1)

is an eigenstate of the total spin S = S1 + S2 with eigenvalue zero and therefore rotational invariant.
Consistency demands that the expression of the projector

Mk(a, Si) = 1− (a · Si)2 +
k
2
a · Si +

k2

2

[
3(a · Si)2 − 2 1

]
, (C.2)

is the same as in the case of SG experiments. In Eq. (C.2), the spin Si appears as an argument because
in an EPRB experiment, we have to distinguish between the spin operator that we assign to the left-
and right-going particle, see Fig. 2.

The probability to observe a left-going particle in beam k (or l) is given by

p(k|a, ρ12 = |Ψ ⟩⟨Ψ |) = Tr Mk(a, S1)ρ12Mk(a, S1) = Tr ρMk(a, S1) =
1
3
. (C.3)

For the right-going particle, the same expression holds with k, a and S1 replaced by l, b and S2,
respectively. The joint probability to observe a particle in beam k and a particle in beam l is given
by

p(k, l|a, b, ρ12 = |Ψ ⟩⟨Ψ |) = Tr Ml(b, S2)Mk(a, S1)ρ12Mk(a, S1)Ml(b, S2)
= Tr ρ12Mk(a, S1)Ml(b, S2)

=
1
12

⎛⎝ (1− a · b)2 2(1− (a · b)2) (1+ a · b)2

2(1− (a · b)2) 4(a · b)2 2(1− (a · b)2)
(1+ a · b)2 2(1− (a · b)2) (1− a · b)2

⎞⎠
2−k,2−l

= P(k, l| − a · b, Z), (C.4)

which is identical to Eq. (B.8)with a·b replaced by−a·b.With ρ12 = |Ψ ⟩⟨Ψ | andΨ | given by Eq. (C.1),
we have

⟨a · S1⟩ = Tr ρ12 a · S1 = 0 , ⟨b · S2⟩ = Tr ρ12 b · S2 = 0,

⟨a · S1 b · S2⟩ = Tr ρ a · S1 b · S2 = −
2
3

a · b,

⟨(a · S1)2 b · S2⟩ = Tr ρ12 (a · S1)2 b · S2 = 0,
⟨a · S1 (b · S2)2⟩ = Tr ρ12 a · S1 (b · S2)2 = 0,

⟨(a · S1)2 (b · S2)2⟩ = Tr ρ12 (a · S1)2 (b · S2)2 =
1
3

(
1+ (a · b)2

)
. (C.5)
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The expressions Eq. (C.5) are identical to those obtained from Eq. (36) with a · b replaced by−a · b.
Can quantum theory also yield the expressions that we obtained from Eq. (36) without this

replacement? To study this question, we consider the inverse problem of determining the matrix ρ̂
such that all equations

Tr ρ̂ = 1 , Tr ρ̂ a · S1 = 0 , Tr ρ̂ b · S2 = 0 , Tr ρ̂ a · S1 b · S2 =
2
3

Aa · b,

Tr ρ̂ (a · S1)2 b · S2 = 0 , Tr ρ̂ a · S1 (b · S2)2 = 0 ,

Tr ρ̂ (a · S1)2 (b · S2)2 =
1
3

(
1+ (Aa · b)2

)
,

(C.6)

are satisfied for all a and b. The right-hand-sides in Eq. (C.6) have been obtained from the LI solution
P(k, l|Aa · b, Z) with A = +1 or A = −1. With the help of Mathematica R⃝ we find

ρ̂ =
1
6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1+ A 0 0 0 0 0 0 0 0
0 0 0 1+ A 0 0 0 0 0
0 0 1− A 0 A− 1 0 2 0 0
0 1+ A 0 0 0 0 0 0 0
0 0 A− 1 0 2 0 A− 1 0 0
0 0 0 0 0 0 0 1+ A 0
0 0 2 0 A− 1 0 1− A 0 0
0 0 0 0 0 1+ A 0 0 0
0 0 0 0 0 0 0 0 1+ A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C.7)

which has eigenvalues (−1− A,−1− A,−1− A, 4− 2A, 1+ A, 1+ A, 1+ A, 1+ A)/6. For A = +1,
three eigenvalues are negative implying that in this case, ρ̂ does not qualify as a density matrix in
quantum theory. For A = −1, the eigenvalues are (0, 0, 0, 1, 0, 0, 0, 0) implying ρ̂ represents a pure
state, i.e. ρ̂ = |Ψ ⟩⟨Ψ | with |Ψ ⟩ given by Eq. (C.1). In summary: quantum theory cannot describe
EPRB experiments for which the probability to observe a pair is given by P(k, l| + a · b, Z). This is also
true for the case of two instead of three outcomes per SG magnet (details of the proof are omitted).
Whether it is possible to realize a laboratory experiment with S = 1/2 particles yielding a correlation
+a · b instead of = −a · b is an open question. What is beyond doubt is that there exists a genuine
probabilistic model, described by P(k, l| + a · b, Z) which cannot be described within the framework
of quantum theory. In other words, the LI framework includes quantum theory, not vice versa.
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