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h i g h l i g h t s

• Ferromagnetic measurement device exploits symmetry breaking to measure a spin.
• Quantum interaction results in loss of phase coherence of test object.
• Dynamics lead to sizeable correlation with, and enhancement of, microscopic object.
• No reliable registration of pointer readings is observed after decoupling spin.
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a b s t r a c t

A quantummeasuring instrument is constructed that utilises sym-
metry breaking to enhance a microscopic signal. The entire quan-
tum system consists of a system–apparatus–environment triad
that is composed of a small set of spin-1/2 particles. The apparatus
is a ferromagnet that measures the z-component of a single spin. A
full quantummany-body calculation allows for a careful examina-
tion of the loss of phase coherence, the formation and amplification
of system–apparatus correlations, the irreversibility of registration,
the fault tolerance, and the bias of the device.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Bohr, in his discussions with Einstein [1], repeatedly emphasised that each peculiar feature or
seemingly paradoxical phenomenon in quantummechanics, is always to be viewed in the light of the
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experimental arrangement that is used to interrogate the quantal test object (e.g., an electron or atom).
But if one takes seriously the idea that the laws of quantum mechanics are universally valid, then, in
turn, themeasurement instrument itself must obey the laws of quantummechanics. The first attempt
to consolidate the internal consistency ofmeasurement andquantum theorywas by vonNeumann [2].
By detailing measurement as a non-unitary disruption of the density operator to diagonal form
(in the basis determined by the measurement), von Neumann noted that the same result can be
accomplished by considering an enlarged quantum system in which the Hilbert space is partitioned
into two HAB = HA ⊗ HB [2]. Particular interactions between A and B entangle initially uncorrelated
quantum states, and the density operator pertaining to A leads to diagonal form after coarse graining
over B, the basis of which is determined by the form of the interaction. These foundational works have
led to new flourishing fields of research – notably the theory of decoherence [3–5] – and by now the
quantum theory of measurement comprises a vast amount of work, see e.g. Refs. [6,7].

One of the salient features of quantum measurement is the ability to amplify signals. This was
stressed in, e.g., Refs. [7–11] and amplification is now also adopted by decoherence theory under the
umbrella of quantumDarwinism [12]. One particularway to achieve amplification of a quantumsignal
is to utilise the sensitivity of a system that is prone to symmetry breaking [9–11,13,14]. One frequently
encountered example that is used to illustrate [9,10,13,15,16] measurement as a phase transition
is Wilson’s cloud chamber. This device contains a metastable gas where droplets are formed upon
ionisation of atoms,which lead to particle tracks. In analogy, the same rational of phase nucleation in a
metastable state can be used to enhancemicroscopic perturbations in a variety of other hostmaterials.
Particular focus has been on magnetic systems [7,10,11,13,17]. The requirement that the detector is
metastable, which sowed the seeds of a symmetry breaking instrument, can already be traced back
to [15,18]. Although several other works discuss phase transitions and symmetry breaking in some
relation to quantummeasurement [16,19–22], themost relevantworks for this paper are Refs. [10,11]
and in particular Ref. [7] where a magnetic set up was used to examine the dynamics of a symmetry
breakingmeasurement device. For amore comprehensive overviewof quantummeasurementmodels
the reader is referred to [7].

This work aims to complement the detailed work of Refs. [7,11] by studying the full quantum
many-body dynamics (instead of a mean field model) of a ferromagnetic apparatus undergoing
symmetry breaking. To this end, the time-evolution of a few-particle apparatus is considered that
measures a spin 1/2, in a similar vein as the Coleman–Hepp models [23,24]. The apparatus consists
of a ferromagnet chain that is in contact with a thermal reservoir. The goal is to examine whether
a fully quantum mechanical apparatus of modest size is indeed able to capture the most important
measurement aspects, such as truncation (i.e., loss of phase coherence) of the test object, correlation
with the apparatus, amplification of the signal, and reliable registration of the outcome.

This paper is organised as follows: First, the Hamiltonian of our device is laid out in Section 2.1. The
initial states and the numerical implementation of the model are discussed in Section 2.2. Next, the
correlation development with the test object and the decoherence of the apparatus are analysed in
Section 3. Then, in Section 4, the bias and predictability of the device is examined. The stability and the
irreversibility of the instrument is further investigated in Section 5. And finally, some recapitulating
and concluding marks are made in Section 6.

2. Method

2.1. Hamiltonian

The entire system is composed of a collection of spin-1/2 particles, in which the measurement
instrument measures spin S in the von Neumann sense [2]. The apparatus is composed of a NA
ferromagnetically coupled spins, collectively called A, that are in contact with an environment E , of
NE spins. For simplicity the self-Hamiltonian of S is neglected. The entire Hamiltonian is

H = HSA + HA + HAE + HE , (1)
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Fig. 1. Schematic of themeasurement set up. A ferromagnet ofNA spins 1/2with exchange constant J is immersed in a spin-glass
like environment E of NE = 12 spins that resemble a thermal reservoir of temperature β−1

= J/50. The intra-environment
strength is K and the environment interaction with the ferromagnet is of size IAE . The order parameter of the ferromagnet is
coupled to S along the z-direction with strength ISA so as to measure its spin.

with HSA (HAE ) the system–apparatus (apparatus–environment) interaction and HA (HE ) the self-
Hamiltonian of the apparatus (environment). The Hamiltonian is schematically depicted in Fig. 1. The
apparatus consists of an open Heisenberg ferromagnetic chain [25]

HA = −J
NA∑
i=2

Si · Si+1 , (2)

in which the spin indices are labelled from i = 2 . . .NA + 1, Sαl = σ αl /2 are spin-1/2 operators in
terms of Pauli matrices, and J > 0 to ensure ferromagnetism. The basic premise of the measurement
device is that the initial unstable configuration, the ready state, is sensitive to perturbations of the
order parameter SA =

∑NA+1
i=2 Si. The device will be used to measure the z-direction of S, therefore the

coupling

HSA = −ISASzSS
z
A , (3)

of strength ISA is used, which ensures that z-direction measurements are non-destructive in that
direction. The minus sign in HSA will lead to parallel alignment, and therefore positive correlation
along the z-direction, between the system and the apparatus when ISA > 0. For the environment, a
spin glass-like environment

HE = K
∑

α∈{x,y,z}

∑
k,l∈E

rαklS
α
k S

α
l , (4)

is used to facilitate decoherence and relaxation in A [26,27], with K the interaction strength, rαkl are
random numbers uniformly distributed in the range [−1, 1] and the sum is over all spins in E . The
apparatus–environment coupling consists of

HAE = −IAE
∑

i∈A,k∈E

rikSi · Sk , (5)

with rik uniform in [0, 1] and the summation i (k) over all spin indices in A (E). The importance
of an environment besides the apparatus is multifold, e.g., to remove the system–apparatus basis
ambiguity [4,5,28] and to enhance irreversible registration [7]. Here, in addition, it is one of practical
interest: in order to get pointer readings, terms not commuting with the order parameter are needed
in the Hamiltonian.
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2.2. Initial states and simulation procedure

As indicated in the Introduction, one of the primary goals of a measurement instrument is
to become correlated with the test object. It will therefore be assumed that initially, there is no
correlation between the apparatus A and the test spin S. This is ensured by writing the wave function
at t = 0 as a product state

|Ψ (t = 0)⟩ = |ψ0⟩S ⊗ |0⟩A,E , (6)

with |ψ0⟩ the initial state of S (indicated by the subscript) and |0⟩A,E the ready-state of the apparatus
and environment combined. More specifically, for |ψ0⟩ the following family of initial states of S

|ψ(a)⟩S =
√
a |↑⟩ +

√
1 − a |↓⟩ , (7)

parametrised by a ∈ [0, 1] will be examined [additional phase factors are unimportant in Eq. (3)].
Furthermore, three different ready states |0⟩A,E are analysed. First of, a product state

⏐⏐⏐NA
2 , 0

⟩
A
⊗ |β⟩E

with
⏐⏐⏐NA

2 , 0
⟩
A
the ferromagnetic state of maximal multiplicity SA = NA/2 in which SzA

⏐⏐⏐NA
2 , 0

⟩
A

= 0

and where the environment is in a thermal-like state |β⟩E of inverse temperature β [29]. The latter
is constructed by first generating Gaussian-distributed randomweights for each element of the wave
function in E , using the Box–Muller method [30]. Next, imaginary time-evolution exp[−βHE/2] is
carried out on the normalised random state to project onto a low energy configuration [29]. And
finally, the resulting wave function is normalised to give |β⟩E . Observe that

⏐⏐⏐NA
2 , 0

⟩
A
belongs to the

NA + 1 fold degenerate ground state subspace of HA [Eq. (2)]. In an isolated ferromagnet, the state⏐⏐⏐NA
2 , 0

⟩
A
can therefore be carried to the fully polarised states |⇑⟩A and |⇓⟩A without energy cost.

Secondly, the ready state |R⟩A ⊗ |β⟩E will be examined in which the states in the SzA = 0 subspace
(d0A = NA!/(NA/2)!2 in total) have Gaussian random weight in |R⟩A. The environment state |β⟩E is the
same as before. The aim of this state is to examine impact of the energy content of the state, since
|R⟩A resembles an infinite temperature (β = 0) state in the subspace spanned by vanishing order
parameter states.

And thirdly, the combined state |β⟩A,E that is like |β⟩E but now for both A and E . That is, it is
constructed from a Box–Muller state before projecting with exp[−β(HA + HAE + HE )/2]. From a
practical point of view this state is perhaps most realistic, in that the apparatus is initially in thermal
equilibrium with its surrounding, rather than being isolated (as for the previous two uncorrelated
configurations).

For convenience, the initial state
⏐⏐⏐NA

2 , 0
⟩
A
⊗ |β⟩E (|R⟩A ⊗ |β⟩E ) shall henceforth be abbreviated as⏐⏐⏐NA

2 , 0
⟩
A
(|R⟩A); the suppressed |β⟩E is implicit. Of the three ready states, the order parameter SzA of⏐⏐⏐NA

2 , 0
⟩
A
and |R⟩A are by construction unbiased.

It is argued by some authors [7] that a mixed state is a physically more realistic starting point.
This works focusses on pure states because the numerical code [31] is optimised for wave functions.
Nevertheless, the expectation values of the thermal states |β⟩(A,)E are practically independent of
the random number realisations and converge to their thermal average [29]. Since a mixed state is
essentially the conjunction of pure states, it is therefore expected that the restriction to pure states is
not a serious limitation.

To calculate the time evolution of the wave function, the operator exp[−itH] is expanded in
Chebyshev polynomials up to machine precision [31,32]. Throughout this work units in which h̄ = 1
and kB = 1 are used. The resulting quantities corresponding to a specific initial state are thus
obtained via |Ψ (t)⟩ = exp[−itH]|Ψ (0)⟩. The imaginary time operator is calculated similarly, with the
addition of a subsequent wave function normalisation step. The simulation data shown in this paper
correspond to a single, but representative, realisation of the Hamiltonian couplings. The efficiency of
themeasurement device is quite sensitive to the precise numerical values of the coupling constants. As
analysed in the Appendix, the constraints on the coupling strengths is a consequence of the number of
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Table 1
Parameters used in the simulations.

ISA IAE K β NE

0.25 J −0.025 J −0.1 J 50.0/J 12

Fig. 2. Development of system–apparatus correlation (top row) and the loss of phase coherence (bottom row) for test object⏐⏐ψ( 34 )
⟩
S . The size of the apparatus NA is indicated in the columns, and the initial apparatus–environment (ready) states are

shown in the panels. The average (lines) and the region within one standard deviation (shading) are calculated by averaging
over nr = 15 realisations of the ready state.

spins, which are expected to disappear in a sufficiently large system. For convenience, the simulation
parameters used throughout this work (and its respective values) are summarised in Table 1.

3. Decoherence and development of correlations

In this section, the focus shall be on the ability of the measurement apparatus to quench the phase
coherence of spin S and the capacity to develop system–apparatus (S–A) correlations [33]. To this end,
the reduced density matrix (RDM) of the S–A combination is introduced

ρSA(t) = TrE [|Ψ (t)⟩⟨Ψ (t)|] , (8)

where the trace is over all spins in E (NE in total). The phase coherence corresponding to S is then

ρ↑↓ = ρ∗

↓↑
= TrA [S⟨↑|ρSA|↓⟩S] , (9)

where the trace is now over the NA apparatus spins.
The simulation results are shown in Fig. 2, where the data is averaged over nr = 15 realisations

of the apparatus–environment (A-E) ready state. For convenience, the correlations are expressed
in terms of Pauli matrices (i.e., 2SS/A = σS/A) and normalised with NA. Let us highlight some key
observations:

1. The apparatus initial state |
NA
2 , 0⟩A and the A-E state |β⟩A,E lead to significant, but not maxi-

mal, correlation between the system and the apparatus (maximal correlation corresponds to
⟨σ z

S σ
z
A ⟩/NA = 1). In comparison, the SzA = 0 random state |R⟩A develops only a modest amount

of correlation. To be more precise: For |
NA
2 , 0⟩A the correlation saturates around 0.78, 0.79, and

0.76 of its maximum value for respectively NA = 4, 6, and 8, for the data shown in the figure.
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Fig. 3. Entropy S(t) of the apparatus relative to the spin-up state of the test object – calculated using the reduced density
matrix ρ̃↑↑(t), see Eq. (10) –as a function of time. The apparatus size NA is indicated above each column. Initially, the test object
is prepared in

⏐⏐ψ( 34 )
⟩
S with the remainder indicated in the legend.

2. While the loss of coherence is an order of magnitude faster for |β⟩A,E compared to |
NA
2 , 0⟩A,

the development of correlations are rather similar. Presumably, the initial A-E entanglement of
|β⟩A,E enhances decoherence, but does not affect relaxation.

3. The decoherence time scale progressively decreases upon increasing the apparatus size NA.

Note further that the large standard deviation in the S–A correlation for |R⟩A and the coherence
recurrences for |β⟩A,E , as both observed for NA = 4, appear to be small apparatus-size artefacts;
these characteristics are reduced upon increasing NA. In contrast, the standard deviation for

⏐⏐⏐NA
2 , 0

⟩
A

is almost always smaller than the linewidth, for each NA shown. Correlations ⟨σ αS σ
α
A ⟩ along α = x, y

originate from fluctuations in the apparatus (spin S is a constant of motion), are essentially zero, and
hence not shown here.

Since initial state |
NA
2 , 0⟩A does not saturate to its maximal value, the apparatus does not perform a

simple precession in the maximal multiplicity subspace. But one might one wonder whether it is still
possible to ascribe a pure state (the pointer reading) to the apparatus relative to the state of spin S.
Therefore, the (apparatus’) entropy of the reduced density matrix (RDM) corresponding to state i of S

ρii =S ⟨i|ρSA|i⟩S ; ρ̃ii = ρii/Tr[ρii] , (10)

is calculated, with i equal to ↑ or ↓. The entropy corresponding to density operator ρ(t) is defined as

S(t) = −Tr [ρ(t) ln ρ(t)] . (11)

Fig. 3 shows, for each initial state, the entropy time development of a single (representative) sim-
ulation. Interestingly, the entropy of initial state |

NA
2 , 0⟩A thermalises to that of initial state |β⟩A,E

after some initial relaxation—the non-zero entropy S(t = 0) of |β⟩A,E originates from the initial
A–E entanglement of that state. As expected for high-temperature ready state |R⟩A, the apparatus’
entropy turns out significantlymore than the other two states (almost a factor 3 in the data displayed).
Observe, moreover, the entropy decrease for |β⟩A,E , especially near t ≈ 102, which is indicative for
non-Markovian behaviour [34]. In line with the apparatus being extensive, the entropy scales with NA
for all three ready states. The data for RDM ρ̃↓↓(t) does not differ in an essential way from Fig. 3.

Data not shown here indicates that the coherence of ρ̃ii(t), in the basis diagonalising HA, is only
partly reduced. The remaining coherence is amongst the states with maximal multiplicity SA = NA/2,
which are degenerate in HA. In particular, coherence in ρ̃↑↑ (ρ̃↓↓) is between those states with SA =

NA/2 and near-maximum (near-minimum) magnetisation. As a result, a purely statistical description
using a partition function is inadequate to capture all facets of our apparatus.

Since |R⟩A poorly correlates with the apparatus and displays suboptimal truncation of spin S, the
focus shall be on

⏐⏐⏐NA
2 , 0

⟩
A
and |β⟩A,E in the remainder of the text.
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Fig. 4. system–apparatus correlation ⟨σ αS σ
α
A ⟩ (left) and the apparatusmagnetisation ⟨σ αA ⟩ (right) with α indicated in the panels.

Markers indicate simulation data for initial state |Ψ (0)⟩ = |ψ(a)⟩S
⏐⏐⏐ NA

2 , 0
⟩
A
|β⟩E , after the apparatus (of NA = 4 spins) has

relaxed at t = 104 . The lines are fits to the data points.

Fig. 5. Time evolution of the order parameter Tr
[
σ z
A ρ̃ii

]
/NA of the apparatus relative to spin S state i [see also Eq. (10)]. The

apparatus (NA = 4 spins) is connected to spin S (initial state |Ψ (0)⟩ =
⏐⏐ψ ( 3

4

)⟩
S |β⟩A,E ) at t1 = 104 until t2 = 2 · 104 [see

Eq. (12)]. The average (lines) and the region within one standard deviation (shading) are calculated by averaging over nr = 15
realisations of the ready state |β⟩A,E .

4. Calibration

Almost every pair of quantum states that are led to interact, will produce a mutual imprint. This
imprint is in general quite intricate and non-generic, which makes it – in practice – difficult to use
the imprint to infer the original states before interaction took place. Hence, a measurement device is
not only required to measure spin S, but do so in a way that allows one to infer the state of the to-be
measured object. The apparatus will now be examined to see if it gives an unbiased indication of the
value a in Eq. (7).

In Fig. 4, the S–A correlation (left panel) and order parameter (right panel) are plotted against
spin S parameter a with initial apparatus state

⏐⏐⏐NA
2 , 0

⟩
A
and NA = 4. The data indicates that (i) the

apparatus does not have a bias towards a particular value of a, as shown in the left panel and (ii) the
order parameter ⟨σ z

A ⟩ (right panel) can directly be used to infer a.
On average, the same unbiased behaviour is observed for initial state |β⟩A,E with an average

standard deviation std[⟨σ z
S σ

z
A ⟩] of 0.08 (averaged over a) for nr = 30 realisations per a and (to preserve

computation time) NE = 11 instead of 12. Individual runs, however, can show a bias towards low or
high a as a result of initial non-zero apparatusmagnetisation in |β⟩A,E . But these artefacts are expected
to disappear upon increasing NA.

Finally, it was observed that, in line with the data in Section 3, the size of the correlations scale
linearly with NA. The ability to unbiasedly capture the correlation and order parameter with a linear
fit directly carries over to NA = 6 and 8, for both

⏐⏐⏐NA
2 , 0

⟩
A
and |β⟩A,E .

5. Stability test

The goal of this section, to evaluate the stability of the initial states, is two-fold. Firstly, the free
evolution of an initial state is examined to explore whether this spoils its ability to give pointer
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Fig. 6. Time evolution of the system–apparatus z-correlation for initial state |Ψ (0)⟩ =
⏐⏐ψ ( 3

4

)⟩
S

⏐⏐⏐ NA
2 , 0

⟩
A
|β⟩E with NA indicated

in the legend. Spin S is connected at t1 = 2.5 · 103 to the apparatus and decoupled at t2 = 5 · 103 .

readings and if it leads to false positives. Secondly, the stability of the apparatus readings are analysed,
to see if it is able to retain its registration record upon completion of the measurement. To this end,
spin S is coupled to the apparatus in the time window t1 ≤ t ≤ t2 only. Thus, the S–A coupling ISA is
made time dependent as

ISA(t) =

{
ISA t1 ≤ t ≤ t2
0 otherwise . (12)

In Fig. 5 the order parameter is shown relative to its spin S state, with initial state |β⟩A,E . No distinction
can be made between ρ̃↑↑ and ρ̃↓↓ before connecting at t < t1, since the system and apparatus
still form a product state. Large fluctuations in the order parameter are observable as indicated by
the green shading. Nevertheless, after t1 the development of magnetic order relative to the spin S
state is unaffected by the initial evolution. While this is perhaps expected for the state |β⟩A,E since
it is supposed to resemble a thermal (and therefore steady-) state of the apparatus and environment
combined, the same holds for

⏐⏐⏐NA
2 , 0

⟩
A
. Fig. 6 depicts the S–A correlation, in which the same behaviour

is observed for
⏐⏐⏐NA

2 , 0
⟩
A
(but nowwith t1 = 2.5 ·103 and t2 = 5 ·103). No false positive measurements

were observed in any of the simulations.
Finally, and perhaps most unexpectedly, upon decoupling the apparatus at t2 the correlations are

immediatelywashed out (see both Figs. 5 and 6). The apparatus is thus not able to accommodate stable
pointer readings upon completion of the measurement. In Ref. [7] similar observations, of ineffective
registration, were reported for (i) a two spin ferromagnet unless the temperature is very low and
(ii) a macroscopic ferromagnet undergoing a first-order phase transition, where the pointer readings
become stuck in a paramagnetic fixed point (and return to zeromagnetisation upon decoupling of the
test spin) if the system–apparatus coupling is too weak.

While onemight expect the states of our apparatus to stabilise upon increasingNA, our calculations
show that it is not the case for NA = 6 and NA = 8. This is true for both |β⟩A,E and

⏐⏐⏐NA
2 , 0

⟩
A
, with

the results of the latter shown in Fig. 6. Introducing a near-neighbour anisotropy to the apparatus
H ′

A = HA −∆
∑NA

i=2S
z
i S

z
i+1 to help pin the fully polarised states, does not stabilise the pointer readings

up to NA = 8. Instead it suppresses the ability to develop system–apparatus correlations in the first
place. Neither is replacing the near-neighbour chainHA by a fully connectedmagnet H̃A = −J/NSA ·SA.
The same instability is found, which can be understood from the fact that H̃A has the same NA + 1-
fold degenerate ground state subspace as HA. Here too the introduction of anisotropic terms (for
each connection) does not salvage the ferromagnetic configuration, and the same suppression of S–A
correlations is found as for HA.

6. Discussion and conclusion

In this work, a measuring instrument was constructed that aims tomeasure themagnetic moment
of S, a spin-1/2 particle. The goal was to build a device that exploits the sensitivity of an initial state
that is susceptible to symmetry breaking to, in this way, amplify a microscopic signal. The device
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Fig. A.7. Contour plots of the system–apparatus correlation ⟨SzS S
z
A⟩ evaluated at time-step t = 103 with NA = 4. The panels

indicate that for a given environment size NE there is a narrow region in the coupling strength (expressed in units of J and
shown in logarithmic scale) that lead to appreciable system–apparatus correlations. The region expands upon enlarging the
size of the environment.

consists of a ferromagnetic chain A that is immersed in a low-temperature thermal reservoir E . By
coupling the z-component of spin S to the order parameter of A, the test object leads to explicit
symmetry breaking of the ferromagnet. In contrast to earlier work [7,9–11,13], the present results
account for the full quantum many-body dynamics without resorting to mean field and/or quasi-
classical approximations. The turn side is that the instrument is not really macroscopic and contained
up to NA + NE = 20 spins only.

It was found that the device can develop pointer readings with significant, but not maximal,
correlation to S. In the process, the coherence of the reduced density matrix of S is quenched, thereby
leading to a mixed state. Furthermore, the state of the ferromagnet relative to either spin up or down
of S is itself not pure but, instead, described by a mixed state.

Going further, the instrument was found to give unbiased measurements of S and no false
positive readings were observed. Finally, the simulations indicated that the apparatus was unable
to irreversibly register the measurement outcomes. Meaning that, upon finishing the measurement,
the device was unable to maintain its record. It is expected that this characteristic is a peculiarity of
the small size of the ferromagnet NA, but a comparison of NA = 4, 6, and 8 are unable to substantiate
this view.

With the danger of stating the obvious, we note that this work has no bearing on the quantum
measurement problem – i.e., the occurrence of individual events – for this would require additional
interpretative elements [7] (see, e.g., Ref. [35] for a more specific treatment). At present, these
interpretational elements are not amendable to objective and independent verification and are, as
such, beyond the scope of this work.
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Appendix. Fine tuning the coupling strengths

For efficient relaxation in small spin systems it is not only beneficial to use spin glass types of
environments [26], but also to use finely tuned couplings strengths. For spin environments of finite
size, there is a small window in the parameters that lead to optimal relaxation, as already pointed out
in several other works [26,36,37]. In general, one might hope that the loss in generality of the specific
coupling strengths is an artefact of the small size of the environment. Meaning, the constraints on
the values of the parameters disappear when the environment size becomes sufficiently large. Thus,
by doing small spin simulations one sacrifices the generality in the coupling strengths. Extensive
number of simulations for the measurement set up [see Eq. (1) for the Hamiltonian] whereby all free
parameters – to wit, the system–apparatus coupling ISA, the apparatus–environment coupling IAE ,
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and the intra-environment coupling K – were varied corroborate the hypothesis that the window of
optimal parameter values expand upon increasing the environment size NE . The results are shown
in Fig. A.7 whereby the system–apparatus correlation, ⟨SzSS

z
A⟩, is shown for three slices of parameter

space of the set {ISA, IAE , K } with initial state
⏐⏐⏐NA

2 , 0
⟩
A
and NA = 4. Additional calculations (not shown

here) for |β⟩A,E with NA = 4 and NA = 6 indicate qualitatively the same, but slightly less sharp,
sensitivity for the couplings compared to

⏐⏐⏐NA
2 , 0

⟩
A
.
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