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1. Introduction

Quantum theory has proven to be extraordinary powerful to describe a vast amount of very
different experiments in (sub)-atomic, molecular and condensed matter physics, quantum optics and
so on. Remarkably, after somany extremely successful practical applications, there are still hot debates
about conceptual backgrounds of quantum theory, and attempts to clarify the success continue until
now.

The success of quantum theory reminds us of an example of another very successful theory,
namely classical thermodynamics. Einstein said: ‘‘Classical thermodynamics is the only physical
theory of universal content which I am convinced will never be overthrown, within the framework of
applicability of its basic concepts’’ [1]. Canwe say that we understand the reasons of this success from
the point of view of a more fundamental theory? Strictly speaking, a rigorous derivation of, say, the
second law of thermodynamics from classical (or quantum) mechanics is lacking and therefore the
answer should be ‘‘no’’ but in practice this does not matter too much. Our belief in thermodynamics
is not based on mathematical deduction but on its power to account for everyday experience.

It has been emphasized many times that our description of physical phenomena at some level of
observation is essentially independent of our view of ‘‘underlying’’ levels [2]. In the present paper,
we apply the same world view to nonrelativistic quantum theory. Adopting this view immediately
distinguishes our line of thinking from approaches that assume an underlying ontology [3–7] or
formulate quantum theory starting from various sets of axioms [8–36]. We start with something that
is as reliable as one can imagine, which in our view, are the principles of logical inference [37–41]
(a brief, formal introduction is given below) and ask the question: what should be added to these
principles in order to derive, for instance, the (nonrelativistic) Schrödinger equation? The answer is
that it suffices to add Bohr’s correspondence principle in a probabilistic sense.

The present work explores the possibility of exploiting logical inference [37–41] that is inductive
reasoning to give a rational explanation for the success of quantum theory as a description of a vast
class of physical phenomena. We are not concerned with the various interpretations [19,42–44] of
quantum theory.

We introduce the basic ideas of our approach by starting with a few quotes of Niels Bohr:

1. There is no quantumworld. There is only an abstract physical description. It is wrong to think that
the task of physics is to find out how nature is. Physics concernswhat we can say about nature [45].

2. Physics is to be regarded not so much as the study of something a priori given, but rather as
the development of methods of ordering and surveying human experience. In this respect our
task must be to account for such experience in a manner independent of individual subjective
judgment and therefore objective in the sense that it can be unambiguously communicated in
ordinary human language [46].

3. The physical content of quantummechanics is exhausted by its power to formulate statistical laws
governing observations under conditions specified in plain language [46].

The first two sentences of the first quote may be read as a suggestion to dispose of, in Mermin’s
words [47], the ‘‘bad habit’’ to take mathematical abstractions as the reality of the events (in the
everyday sense of theword) thatwe experience through our senses. Althoughwidely circulated, these
sentences are reported by Petersen [45] and there is doubt that Bohr actually used this wording [48].
The last two sentences of the first quote and the second quote suggest that we should try to describe
human experiences (confined to the realm of scientific inquiry) in a manner and language which is
unambiguous and independent of the individual subjective judgment. Of course, the latter should not
be construed to imply that the observed phenomena are independent of the choices made by the
individual(s) in performing the scientific experiment [49].

The third quote suggests that quantum theory is a powerful language to describe a certain class
of statistical experiments but remains vague about the properties of the class. Similar views were
expressed by other fathers of quantum mechanics, e.g., Max Born and Wolfgang Pauli [50]. They can
be summarized as ‘‘Quantum theory describes our knowledge of the atomic phenomena rather than
the atomic phenomena themselves’’. Our aim is, in a sense, to replace the philosophical components
of these statements by well-defined mathematical concepts and to carefully study their relevance for
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physical phenomena. Specifically, by applying the general formalism of logical inference to a well-
defined class of statistical experiments, the present paper shows that quantum theory is indeed the
kind of language envisaged by Bohr.

Theories such as Newtonian mechanics, Maxwell’s electrodynamics, and Einstein’s (general)
relativity are deductive in character. Starting from a few axioms, abstracted from experimental
observations and additional assumptions about the irrelevance of a large number of factors for
the description of the phenomena of interest, deductive reasoning is used to prove or disprove
unambiguous statements, propositions, about the mathematical objects which appear in the theory.

Themethod of deductive reasoning conforms to the Boolean algebra of propositions. The deductive,
reductionist methodology has the appealing feature that one can be sure that the propositions are
either right or wrong, and disregarding the possibility that some of the premises on which the
deduction is built may not apply, there is no doubt that the conclusions are correct. Clearly, these
theories successfully describe a wide range of physical phenomena in a manner and language which
is unambiguous and independent of the individual.

At the same time, the construction of a physical theory, and a scientific theory in general, from ‘‘first
principles’’ is, for sure, not something self-evident, and not even safe. Our basic knowledge always
starts from themiddle, that is, from theworld ofmacroscopic objects. According to Bohr, the quantum
theoretical description crucially depends on the existence ofmacroscopic objectswhich can be used as
measuring devices. For an extensive analysis of the quantummeasurement process from a dynamical
point of view see Ref. [51]. Most importantly, the description of the macroscopic level is robust, that
is, essentially independent of the underlying ‘‘more fundamental’’ picture [2]. As will be seen later,
formalizing the notion of ‘‘robustness’’ is key to derive the basic equations of quantum theory from
the general framework of logical inference.

Key assumptions of the deductive approach are that the mathematical description is a complete
description of the experiment under consideration and that there is no uncertainty about the
conditions under which the experiment is carried out. If the theory does not fully account for all the
relevant aspects of the phenomenon that we wish to describe, the general rules by which we deduce
whether a proposition is true or false can no longer be used. However, in these circumstances, we can
still resort to logical inference [37–41] to find useful answers to unambiguous questions. Of course,
in general it will no longer be possible to say whether a proposition is true or false, hence there will
always remain a residue of doubt. However, aswill be shown, the description obtained through logical
inference may also be unambiguous and independent of the individual.

In the present paper, we demonstrate that the basic equations of quantum theory directly follow
from logical inference applied to experiments in which there is

(i) uncertainty about individual events,
(ii) the stringent condition that certain properties of the collection of events are reproducible,

meaning that they are robust with respect to small changes in the conditions under which the
experiments are carried out.

It is the latter that renders the theoretical description unambiguous and independent of the individual.
In addition, our work provides a rational foundation for Bohr’s philosophical viewpoints embodied in
quotes (1–3).

The paper is structured as follows. Section 2 contains a brief introduction to the algebra of logical
inference [37–41], a mathematical framework which formalizes the patterns of plausible reasoning
exposed by Pólya [52]. This mathematically precise formalism expresses what most people would
consider to be rational reasoning. The key concept is the notion of the plausibility that a proposition is
true given that another proposition is true. Section 3 discusses the role of uncertainties in experiments
and classifies their theoretical descriptions. In Section 4, we show in detail how logical inference can
be used to derive the quantum theoretical description of the Einstein–Podolsky–Rosen–Bohm thought
experiment without invoking a single concept of quantum theory. Section 5 uses the Stern–Gerlach
experiment to illustrate how the approach of Section 2may be extended by adding features abstracted
from the experiment. These two sections are based on earlier attempts to derive the expressions
of quantum theory by logical inference [53,54]. Finally, we demonstrate that the time-independent
(Section 6) and time-dependent (Section 7) Schrödinger equation can be derived by logical inference
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from the assumption that the experiment yields reproducible data. A discussion of general aspects of
our approach and conclusions are given in Section 8.

2. The algebra of logical inference

Obviously, any attempt to capture the process of human reasoning by which the events are
registered by our senses and are brought in relation to each other, leading to abstract concepts, is
bound to create more problems than we can solve at this time. However, if we are only concerned
about quantifying the truth of a proposition given the truth of another proposition, it is possible to
construct a mathematical framework, an extension of Boolean logic, that allows us to reason in a
manner which is unambiguous and independent of the individual, in particular if there are elements
of uncertainty in the description [37–41].

In this section, we briefly introduce the concepts that are necessary for the purpose of the present
paper. For a detailed discussion of the foundations of plausible reasoning, its relation to Boolean logic
and the derivation of the rules of logical inference, the reader is advised to consult the papers [37,40]
and books [38,39,41] from which our summary has been extracted.

We start by listing three so-called ‘‘desiderata’’ from which the algebra of logical inference can be
derived [38–41]. The formulation which follows is taken from Ref. [40].

Desideratum 1. Plausibilities are represented by real numbers. The plausibility that a proposition A is
true conditional on proposition B being true will be denoted by P(A|B).

Desideratum 2. Plausibilities must exhibit agreement with rationality. As more and more evidence
supporting the truth of a proposition becomes available, the plausibility should increase
monotonically and continuously and the plausibility of the negation of the proposition
should decrease monotonically and continuously. Moreover, in the limiting cases that the
propositionA is known to be either true or false, the plausibility P(A|B) should conform to the
rules of deductive reasoning. In other words, plausibilities must be in qualitative agreement
with the patterns of plausible reasoning uncovered by Pólya [52].

Desideratum 3. All rules relating plausibilities must be consistent. Consistency of rational reasoning
demands that if the rules of logical inference allow a plausibility to be obtained in more
than one way, the result should not depend on the particular sequence of operations.

These three desiderata only describe the essential features of the plausibilities and definitely
do not constitute a set of axioms which plausibilities have to satisfy. It is a most remarkable fact
that these desiderata suffice to uniquely determine the set of rules by which plausibilities may be
manipulated [38–41].

Omitting the derivation, it follows that plausibilitiesmay be chosen to take numerical values in the
range [0, 1] and obey the rules [38–41]

a. P(A|Z)+P(Ā|Z) = 1where Ā denotes the negation of proposition A and Z is a proposition assumed
to be true.

b. P(AB|Z) = P(A|BZ)P(B|Z) = P(B|AZ)P(A|Z) where the ‘‘product’’ BZ denotes the logical product
(conjunction) of the propositions B and Z , that is the proposition BZ is true if both B and Z are
true. This rule will be referred to as ‘‘product rule’’. It should be mentioned here that it is not
allowed to define a plausibility for a proposition conditional on the conjunction ofmutual exclusive
propositions. Reasoning on the basis of two of more contradictory premises is out of the scope of
the present paper.

c. P(AĀ|Z) = 0 and P(A + Ā|Z) = 1 where the ‘‘sum’’ A + B denotes the logical sum (inclusive
disjunction) of the propositions A and B, that is the proposition A+ B is true if either A or B or both
are true. These two rules show that Boolean algebra is contained in the algebra of plausibilities.

The rules (a–c) are unique. Any other rule which applies to plausibilities represented by real numbers
and is in conflict with rules (a–c) will be at odds with rational reasoning and consistency [39–41].

The reader will no doubt recognize that rules (a–c) are identical to the rules by which we
manipulate probabilities [41,55–57]. However, the rules (a–c)were not postulated. Theywere derived
from general considerations about rational reasoning and consistency only. Moreover, concepts
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such as sample spaces, probability measures etc., which are an essential part of the mathematical
foundation of probability theory [56,57], play no role in the derivation of rules (a–c). In fact, if
Kolmogorov’s axiomatic formulation of probability theory would have been in conflict with rules
(a–c),we believe that this formulationwould long have been disposed of because itwould yield results
which are in conflict with rational reasoning. Perhaps most important in the context of quantum
theory is that in the logical inference approach uncertainty about an event does not imply that this
event can be represented by a random variable as defined in probability theory [57].

We emphasize that there is a significant conceptual difference between ‘‘mathematical’’
probabilities and plausibilities. Mathematical probabilities are elements of an axiomatic framework
which complies with the algebra of logical inference. Plausibilities are elements of a language which
also complies with the algebra of logical inference and serve to facilitate communication, in an
unambiguous and consistent manner, about phenomena in which there is uncertainty.

The plausibility P(A|B) is an intermediate mental construct that serves to carry out inductive logic,
that is rational reasoning, in a mathematically well-defined manner [39]. Plausibilities are concepts
resulting fromhuman reasoning about observed events and their relationships but are not the ‘‘cause’’
of these events. In general, P(A|B)mayexpress the degree of belief of an individual that propositionA is
true, given that proposition B is true. However, in the present paper, we explicitly exclude applications
of this kind because they do not comply with our main goal, namely to describe phenomena ‘‘in a
manner independent of individual subjective judgment’’, see Bohr’s quote (2).

To take away this subjective connotation of the word ‘‘plausibility’’, from now on we will
simply call P(A|B) the ‘‘inference-probability’’ or ‘‘i-prob’’ for short.

The algebra of logical inference is the foundation for powerful tools such as the maximum entropy
method and Bayesian analysis [39,41]. Although not formulated in the language of logical inference
used in the present paper, Jaynes’ papers on the relation between information and (quantum)
statistical mechanics [58,59] are perhaps the first to ‘‘derive’’ theoretical descriptions using this
general methodology of scientific reasoning. As we show in this paper, quantum theory also derives
from the application of the algebra of logical inference.

It is important to keep in mind that the rules of logical inference are not bound by ‘‘the laws of
physics’’. In particular, logical inference also applies to situations where there are no causal relations
between the events [39,41]. The point of view taken in this paper is that the laws of physics should
provide a consistent description of relations between certain events that we perceive by our senses
and therefore they should conform to the rules of logical inference. Although extracting cause-and-
effect relationships from empirical evidence by rational reasoning should follow the rules of logical
inference, in general the latter cannot be used to establish cause-and-effect relationships [41,60,61].

A comment on the notation used throughout this paper is in order. To simplify the presentation,
we make no distinction between an event such as ‘‘detector D has fired’’ and the corresponding
proposition ‘‘D = detector D has fired’’. If we have two detectors, say Dx where x = ±1, we write
P(x|Z) to denote the i-prob of the proposition that detector Dx fires, given that proposition Z is true.
Similarly, the i-prob of the proposition that two detectors Dx and Dy fire, given that proposition Z is
true, is denoted by P(x, y|Z). Obviously, this notation generalizes to more than two propositions.

3. Quantum theory as an instance of logical inference

The theoretical description of ‘‘classical physics’’ applies to phenomena for which there is absolute
certainty about the outcome of each individual experiment on each individual object [62–64]. In
mapping the experimental data which are necessarily represented by a limited number of bits, that
is by integers, onto the theoretical abstractions in terms of real numbers, it is assumed that the
necessarily finite precision of the experiment can be increased without limit, at least in principle, and
that there is a one-to-one mapping between the values of the variables in the theory and the values
of the corresponding quantities measured in experiment.

In real experiments there is always uncertainty about some factorswhichmay ormaynot influence
the outcome of the measurements. In the realm of classical physics, standard techniques of statistical
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analysis are used to dealwith this issue. It is postulated that these ‘‘imperfections’’ in the experimental
data are not of fundamental importance but are technical in nature and can therefore be eliminated,
at least in principle [62–64].

Quantum theory is fundamentally different from classical theories in that there may be uncer-
tainties about each individual event, uncertainties which cannot be eliminated, not even in principle
[62–64]. Clearly, this is a statement about the theory, not about the observed phenomena themselves.
The outcome of a real experiment, be it on ‘‘classical’’ or ‘‘quantum’’ objects, is always subject to un-
certainties in the conditions under which the experiment is carried out. However, this issue is not of
direct concern to us here because we only want to explore whether the quantum theoretical descrip-
tion, not the phenomena themselves, can be derived from logical inference applied to certain thought
experiments.

Summarizing, we may classify theoretical abstractions of scientific experiments as follows:

Category 1. The conditions under which the experiment is carried out are known and fixed for the
duration of the experiment and there is no uncertainty about each event.

Category 2. Each event under known conditions is certain but the conditions under which the
experiment is carried out may be uncertain.

Category 3. There may be uncertainty about each event and the conditions under which the
experiment is carried may be uncertain.

A laboratory experiment always falls in category 3. In a strict sense, numerical experiments
on a digital computer belong to category 1. However, disregarding the fact that in the course of
the numerical experiment the time-evolution of each individual bit of the computer is completely
determined and known, in practice, the complexity of the numerical simulation is often so large that
the variables of interest may exhibit behavior that is similar to the one observed in experiments
belonging to category 2 and 3.

In the theoretical description of a real experiment, it makes sense to simplify matters by first
exploring models that belong to category 1 (classical physics) and if no satisfactory description is
obtained to consider models of category 2 (classical physics supplemented with probability theory).
If the latter fails to describe the experiment too, we can still try models in category 3.

The fact that laboratory experiments always belong to category 3 has an important implication.
A basic requirement for any scientific experiment is that the analysis of the data yields quantities
(e.g. frequencies, averages, correlations, etc.) that exhibit a high degree of reproducibility. Only then
it may make sense to attempt drawing scientifically meaningful conclusions from these data. Clearly,
this requirement restricts the uncertainties on the conditions under which the experiment is carried
out. If these uncertainties fluctuate wildly with each measurement, it is unreasonable to expect
reproducible results.

Therefore, it seems justified to limit attention to a subset of theoretical models of category 3which
satisfies the following criteria:

Category 3a. Theremay be uncertainty about each event. The conditions underwhich the experiment
is carried out may be uncertain. The frequencies with which events are observed are
reproducible and robust against small changes in the conditions.

As we show in this paper, the rules of logical inference applied to models belonging to category 3a
rather straightforwardly lead to the basic equations of quantum theory. The derivation has a generic
structure. The first step is to list the features of the experiment that are deemed to be relevant and
to introduce the i-probs of the individual events. The second step is to impose the condition that
the experiment yields reproducible results, not on the level of individual events, but on the level of
averages of many events. The result of the second step is a functional of the i-prob, the minimum of
which yields an expression for the i-prob which is identical to the corresponding probability obtained
from the quantum theoretical description of the experiment.
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Fig. 1. (Color online) Diagram of the EPRB thought experiment. The source S, activated at times labeled by n = 1, 2, . . . ,N ,
sends a signal to the router R1 and another signal to the router R2 . Depending on the orientations of the routers, represented by
unit vectors a1 and a2 , the signal going to the left (right) is detected with 100% certainty by either D+,1 or D−,1 (D+,2 or D−,2).

4. Einstein–Podolsky–Rosen–Bohm thought experiment

As a first illustration, we consider Bohm’s version of the Einstein–Podolsky–Rosen thought
experiment [65,66]. To head off possible misunderstandings, the derivation presented in this section
does not add anything to the ongoing discussions about locality, realism, etc. in relation to the violation
of Bell-like inequalities [54,67–81].

We choose the Einstein–Podolsky–Rosen–Bohm (EPRB) thought experiment as the first example
because it seems to be the simplest nontrivial model for demonstrating how the logical inference
approach works. Indeed, a straightforward application of the ideas of Section 3 yields an expression
for the i-prob to observe detection events which is identical to the probability distribution
obtained from the quantum theoretical description in terms of the singlet state of two spin-1/2
particles [66,82].

4.1. Experiment

The layout of the EPRB thought experiment is shown in Fig. 1. In contrast to the conventional
quantum theoretical description [66,82], we keep the number of assumptions about the experiment
itself to a minimum. Specifically, we assume that
a. Each time the source S is activated, it sends a signal to the left and another one to the right. For the

present purpose, it is not necessary to make any assumption about the nature of or the correlation
between these two signals.

b. The observation station i = 1, 2 contains a ‘‘router’’ Ri which sends the signal to either detectorD+,i
or detectorD−,i. The decision to send the signal to eitherD+,i orD−,i depends on the directions ai of
the router Ri, ai being a three-dimensional unit vector. The orientations of the routers are relative
to the fixed laboratory frame of reference.

c. The detectors register the signal and operate with 100% efficiency, that is, if n = 1, 2, . . . ,N labels
the time at which the source is activated, the firing of the detectors produces a pair of integers
{xn, yn}where xn = ±1 (yn = ±1) represents the firing of D±,1 (D±,2).

The result of a run of the experiment for fixed a1 and a2 is a data set of pairs
Υ = {xn, yn|xn = ±1; yn = ±1; n = 1, . . . ,N}, (1)

whereN is the total number of signal pairs emitted by the source. From thedata set Eq. (1),we compute
the averages

⟨x⟩ =
1
N

N
i=1

xi, ⟨y⟩ =
1
N

N
i=1

yi, (2)

the correlation and coincidences

⟨xy⟩ =
1
N

N
i=1

xiyi, nxy =

N
i=1

δx,xiδy,yi , (3)

which represents the number of events of the type {x, y}. The assumptions (a–c) and Eqs. (2)–(3)
represent our perception about the experiment and specify the data analysis procedure, respectively.
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4.2. Inference-probability of the data produced by the experiment

The next step is to formalize the general features of the possible outcomes of the experiment.

1. The i-prob to observe a pair {x, y} is denoted by P(x, y|a1, a2, Z) where Z represents all the
conditions under which the experiment is performed, with exception of the directions a1 and a2
of the routers R1 and R2, respectively. It is assumed that the conditions represented by Z are fixed
and identical for all experiments.
It is not difficult to see that any real-valued function f (x, y) of two dichotomic variables x, y = ±1
can be written as

f (x, y) =
(1− x)(1− y)f (−1,−1)+ (1+ x)(1− y)f (+1,−1)

4

+
(1− x)(1+ y)f (−1,+1)+ (1+ x)(1+ y)f (+1,+1)

4

=
f (−1,−1)+ f (+1,−1)+ f (−1,+1)+ f (+1,+1)

4

+ x
−f (−1,−1)+ f (+1,−1)− f (−1,+1)+ f (+1,+1)

4

+ y
−f (−1,−1)− f (+1,−1)+ f (−1,+1)+ f (+1,+1)

4

+ xy
f (−1,−1)− f (+1,−1)− f (−1,+1)+ f (+1,+1)

4
. (4)

From this general identity, it immediately follows that P(x, y|a1, a2, Z) can be written as

P(x, y|a1, a2, Z)

=
E0(a1, a2, Z)+ xE1(a1, a2, Z)+ yE2(a1, a2, Z)+ xyE12(a1, a2, Z)

4
, (5)

where

E0(a1, a2, Z) =


x,y=±1

P(x, y|a1, a2, Z) = 1,

E1(a1, a2, Z) =


x,y=±1

xP(x, y|a1, a2, Z),

E2(a1, a2, Z) =


x,y=±1

yP(x, y|a1, a2, Z),

E12(a1, a2, Z) =


x,y=±1

xyP(x, y|a1, a2, Z). (6)

Furthermore, from Eq. (6) and rule (a) (see Section 2), it follows directly that |E1(a1, a2, Z)| ≤
1, |E2(a1, a2, Z)| ≤ 1, and |E12(a1, a2, Z)| ≤ 1.

2. For simplicity, it is assumed that there is no relation between the actual values of the pairs {xn, yn}
and {xn′ , yn′} if n ≠ n′. In other words, as far as we know, each repetition of the experiment
represents an identical event of which the outcome is logically independent of any other such
event. In probability theory, events with these properties are called Bernoulli trials, a concept that
is central to many results in probability theory [39,41,57]. Invoking the product rule, the logical
consequence of this assumption is that

P(x1, y1, . . . , xN , yN |a1, a2, Z)

= P(x1, y1|x2, y2, . . . , xN , yN , a1, a2, Z)P(x2, y2, . . . , xN , yN |a1, a2, Z)

= P(x1, y1|a1, a2, Z)P(x2, y2, . . . , xN , yN |a1, a2, Z)
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= P(x1, y1|a1, a2, Z)P(x2, y2|x3, y3, . . . , xN , yN , a1, a2, Z)

× P(x3, y3, . . . , xN , yN |a1, a2, Z)

= P(x1, y1|a1, a2, Z)P(x2, y2|a1, a2, Z)P(x3, y3, . . . , xN , yN |a1, a2, Z)

= · · ·

=

N
i=1

P(xi, yi|a1, a2, Z), (7)

meaning that the i-prob P(x1, y1, . . . , xN , yN |a1, a2, Z) to observe the compound event {{x1, y1},
. . . , {xN , yN}} is completely determined by the i-prob P(x, y|a1, a2, Z) to observe the pair {x, y}.

3. It is assumed that the i-prob P(x, y|a1, a2, Z) to observe a pair {x, y} does not change if we apply
the same rotation to both routers R1 and R2. Expressing this invariance with respect to rotations
of the coordinate system (Euclidean space and Cartesian coordinates are used throughout this
paper) in terms of i-probs requires that P(x, y|a1, a2, Z) = P(x, y|Ra1,Ra2, Z) where R denotes
an arbitrary rotation in three-dimensional space which is applied to both routers R1 and R2. As a
function of the vectors a1 and a2, the functional equation P(x, y|a1, a2, Z) = P(x, y|Ra1,Ra2, Z)
can only be satisfied for all a1, a2 and rotations R if P(x, y|a1, a2, Z) is a function of the inner
product a1 · a2 only. Therefore, we must have

P(x, y|a1, a2, Z) = P(x, y|a1 · a2, Z) = P(x, y|θ, Z), (8)

where θ = arccos(a1 · a2) denotes the angle between the unit vectors a1 and a2. For any integer
value of K , θ + 2πK represents the same physical arrangement of the routers R1 and R2.

4. According to the basic rules of logical inference, the i-prob to observe x, irrespective of the observed
value of y is given by

P(x|a1, a2, Z) =

y=±1

P(x, y|a1, a2, Z). (9)

The assumption that observing x = +1 is as likely as observing x = −1, independent of the
observed value of y, implies that we must have P(x = +1|a1, a2, Z) = P(x = −1|a1, a2, Z)
which, in view of the fact that P(x = +1|a1, a2, Z) + P(x = −1|a1, a2, Z) = 1 implies that
P(x = +1|a1, a2, Z) = P(x = −1|a1, a2, Z) = 1/2. Applying the same reasoning to the
assumption that, independent of the observed values of x, observing y = +1 is as likely as
observing y = −1 yields P(y|a1, a2, Z) = P(x = +1, y|a1, a2, Z)+ P(x = −1, y|a1, a2, Z) = 1/2.
Then, from Eq. (6) it follows directly that

E1(a1, a2, Z) = E2(a1, a2, Z) = 0. (10)

Assumptions (3) and (4) formalize our expectations about the symmetries of the experimental
setup. Note that we did not assign any prior i-prob nor that at this stage, there is any reference to
concepts such as the singlet-state. Although the symmetry properties which have been assumed are
reminiscent of those of the singlet state, this is deceptive. As we show later, without altering the
assumptions that are expressed in (3) and (4), the logical-inference approach yields the correlations
for triplet states as well. Using Eqs. (5), (6), (8) and (10) we find that the i-prob to observe a pair {x, y}
simplifies to

P(x, y|θ, Z) =
1+ xyE12(θ)

4
, (11)

where E12(θ) = E12(a1, a2, Z) is a periodic function of θ .

4.3. Condition for reproducibility and robustness

Although the data set Eq. (1) changes from run to run, we expect that the averages Eq. (2), the
correlation and the coincidences Eq. (3) exhibit some kind of robustness, a smoothness with respect
to small changes of θ . If this were not the case, these numbers would vary erratically with θ . Most
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likely the results would be called ‘‘irreproducible’’, and the experimental data would be disposed of
because repeating the runwith a slightly different value of θ would often produce results that are very
different from those of other runs.

Obviously, the important feature of robustness with respect to small variations of the conditions
under which the experiment is carried out should be reflected in the expression for the i-prob
to observe data sets which yield reproducible averages and correlations (with the usual statistical
fluctuations). Having exploited all elementary knowledge about the experiment (see Sections 4.1 and
4.2), the next step therefore is to determine the expression for P(x, y|θ, Z) which is most insensitive
to small changes in θ .

Let us assume that for a fixed value of θ , an experimental run of N events yields nxy events of the
type {x, y}where n++ + n−+ + n+− + n−− = N . The number of different data sets yielding the same
values of n++, n−+, n+−, and n−− is N!/(n++)!(n−+)!(n+−)!(n−−)!. According to Eq. (7), the i-prob
that events of the type {x, y} occur nxy times is given by


x,y=±1 P(x, y|θ, Z)

nxy . Therefore, the i-prob
to observe the (compound) event {n++, n−+, n+−, n−−} is given by

P(n++, n−+, n+−, n−−|θ,N, Z) = N!


x,y=±1

P(x, y|θ, Z)nxy

nxy!
. (12)

If the outcome of the experiment is indeed described by the i-prob Eq. (12) and the experiment
is supposed to yield reproducible, robust results, small changes of θ should not have a drastic effect
on the outcome. So let us ask ourselves how the i-prob would change if the experiment is carried out
with θ + ϵ (ϵ small) instead of with θ .

It is expedient to formulate this question as an hypothesis test. Let H0 and H1 be the hypothesis
that the data {n++, n−+, n+−, n−−} is observed if the angle between the unit vectors a1 and a2 is
θ and θ + ϵ, respectively. The evidence Ev of hypothesis H1, relative to hypothesis H0, is defined
by [39,41]

Ev = ln
P(n++, n−+, n+−, n−−|θ + ϵ,N, Z)
P(n++, n−+, n+−, n−−|θ,N, Z)

, (13)

where the logarithm serves to facilitate the algebraicmanipulations. IfH1 is more (less) plausible than
H0 then Ev > 0 (Ev < 0).

The absolute value of the evidence, |Ev| is a measure for the robustness of the description
(the sign of Ev is arbitrary, hence irrelevant). The problem of determining the most robust
description of the experimental data may now be formulated as follows: search for the i-prob’s
P(n++, n−+, n+−, n−−|θ,N, Z) which minimize |Ev| for all possible ϵ (ϵ small) and for all possible
θ . The condition ‘‘for all possible ϵ and θ ’’ renders the minimization problem an instance of a robust
optimization problem [83].

Obviously, this robust optimization problem has a trivial solution, namely P(n++, n−+, n+−, n−−|
θ,N, Z) independent of θ . For the case at hand, such P(n++, n−+, n+−, n−−|θ,N, Z)’s can only
describe experiments for which {n++, n−+, n+−, n−−} does not exhibit any dependence on θ , the
angle between the vectors a1 and a2 which represent the direction of the routers R1 and R2.

Experiments which produce results that do not change with the conditions do not increase
our knowledge about the relation between the conditions and the observed data. In this
paper, we do not consider such (fairly useless) experiments and consequently, we explicitly
exclude solutions for the i-probs that are constant with respect to the conditions.

Assume that we have found a set of i-prob’s P0(n++, n−+, n+−, n−−|θ,N, Z) which are not all
constant functions of θ and which minimize |Ev| for all ϵ (ϵ small). Call this minimum |Ev|0. Suppose
that |Ev|0 itself depends on θ , meaning that the robustness of the description varies with θ . Then, the
found set of i-prob’s is definitely not a solution of the robust optimization problem because it does
not satisfy the condition that the solution must hold for all possible θ . Therefore, to solve the problem
induced by the ‘‘for all possible θ ’’ clause, we require that at the minimum, |Ev| is independent of θ .

Summarizing: our concept of a robust experiment implies that the i-prob’s which describe such
experiment can be found by minimizing |Ev|, subject to the constraints that
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(C1) ϵ is small but arbitrary.
(C2) Not all i-prob’s are independent of θ .
(C3) |Ev| is independent of θ .

Although we have used a particular example to introduce and illustrate the concept of robustness, we
will use the same notion throughout this paper.

4.4. Robust solution

Making use of Eq. (12), we find

Ev =


x,y=±1

nxy ln
P(x, y|θ + ϵ, Z)
P(x, y|θ, Z)

. (14)

Writing Eq. (14) as a Taylor series in ϵ we have

Ev =


x,y=±1

nxy


ϵ
P ′(x, y|θ, Z)
P(x, y|θ, Z)

−
ϵ2

2


P ′(x, y|θ, Z)
P(x, y|θ, Z)

2

+
ϵ2

2
P ′′(x, y|θ, Z)
P(x, y|θ, Z)


+ O(ϵ3), (15)

where a prime denotes the derivative with respect to the variable θ .
According to our notion of robustness, the evidence Eq. (15) should change as little as possible as

ϵ varies. The contribution of the term in ϵ can be made to vanish by substituting nxy = αP(x, y|θ, Z).
From

N =


x,y=±1

nxy = α


x,y=±1

P(x, y|θ, Z) = α, (16)

it follows that α = N . Then we have
x,y=±1

nxy
P ′(x, y|θ, Z)
P(x, y|θ, Z)

= N


x,y=±1

P ′(x, y|θ, Z)

= N
∂

∂θ


x,y=±1

P(x, y|θ, Z)

= N
∂

∂θ
1 = 0. (17)

Using the same reasoning, it follows that the third term in Eq. (15) also vanishes and we have

Ev = −
Nϵ2

2


x,y=±1

1
P(x, y|θ, Z)


∂P(x, y|θ, Z)

∂θ

2

+ O(ϵ3). (18)

Although our choice P(x, y|θ, Z) = nxy/N is motivated by the desire to eliminate contributions of
order ϵ, it follows that our criterion of robustness leads us to the intuitively obvious procedure which
assigns to P(x, y|θ, Z) the value of the observed frequencies of occurrences nxy/N . As shown in the
Appendix, for large N , the same procedure also follows from searching for the P(x, y|θ, Z)’s which
maximize the i-prob to observe {n++, n−+, n+−, n−−}.

Omitting terms of O(ϵ3), minimizing |Ev| while taking into account the constraints (C2) and (C3)
(see Section 4.3) amounts to finding the i-prob’s P(x, y|θ, Z)which minimize

IF =


x,y=±1

1
P(x, y|θ, Z)


∂P(x, y|θ, Z)

∂θ

2

, (19)

subject to the constraint that ∂P(x, y|θ, Z)/∂θ ≠ 0 for some pairs (x, y). The r.h.s. of Eq. (19) is the
Fisher information for the problem at hand and because of constraint (C3), does not depend on θ .
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Using Eq. (11), we can rewrite Eq. (19) as

IF =
1

1− E2
12(θ)


∂E12(θ)
∂θ

2

, (20)

which is readily integrated to yield

E12(θ) = cos

θ

IF + φ


. (21)

where φ is an integration constant.
As E12(θ) is a periodic function of θ we must have

√
IF = K where K is an integer and hence

E12(θ) = cos (Kθ + φ) . (22)
Because of constraint (C2) we exclude the case K = IF = 0 from further consideration because it

describes an experiment in which the frequency distribution of the observed data does not depend
on θ . Therefore, the physically relevant, nontrivial solution with minimum Fisher information corre-
sponds to K = 1. Furthermore, as E12(θ) is a function of a1 · a2 = cos θ only, we must have φ = 0, π ,
reflecting an ambiguity in the definition of the direction of R1 relative to the direction of R2.

Choosing the solution with φ = π , the two-particle correlation reads
E12(a1, a2, Z) = − cos θ = −a1 · a2, (23)

in agreement with the expression for the correlation of two S = 1/2 particles in the singlet
state [66,82].

4.5. Discussion

We have shown that the application of our criterion of robust, reproducible experiments to the
EPRB thought experiment depicted in Fig. 1 amounts to minimizing the Fisher information Eq. (21)
for this specific problem. The result of this calculation is the correlation Eq. (23)which is characteristic
for the singlet state. Needless to say, our derivation did not use any concepts of quantum theory. Only
plain, rational reasoning strictly complying with the rules of logical inference and some elementary
facts about the experiment were used.

It is most remarkable that the equations of quantum theory for a system in the singlet state
appear by simply requiring that (i) everything which is known about the source is uncertain, except
that it emits two signals, (ii) the routers R1 and R2 transform the received signal into two-valued
signals, and that (iii) the i-prob describing the frequencies of the observed events depends on the
relative orientation of the routers only, see Eq. (8). Apparently, the latter requirement suffices to
recover the salient feature of the singlet state of two spin-1/2 particles, namely that the state vector
|ψ⟩ = (|↑↑⟩ + |↓↓⟩) /

√
2 is invariant for rotations, implying that its physical properties do not

depend on the direction chosen to define ‘‘up’’ or ‘‘down’’ [66,82]. Realizing conditions (i) and (iii)
in a real EPRB experiment is not a trivial matter [84–86].

The correlations that are characteristic for other entangled states for which Eq. (10) holds are
obtained bymaking different assumptions about the properties of the routers. As an example, assume
that the output of router R1 is determined by (−ax, ay,−az) instead of by (ax, ay, az). Repeating the
derivation that leads to Eq. (23) yields E12(a1, a2, Z) = +ax1a

x
2−ay1a

y
2+az1a

z
2, which, in quantum theory,

is the correlation of two S = 1/2 particles described by the state vector |ψ⟩ = (|↑↑⟩ + |↓↓⟩) /
√
2,

the triplet state with the z-projection of total magnetization zero.

5. Stern–Gerlach experiment

The expression Eq. (23) for the correlation of the data produced by an EPRB experiment has been
obtained without making specific assumptions about the nature of the signals. In this section, we add
some extra assumptions and we show how the same reasoning of Section 4 leads to the expression
of a simple quantum mechanical model of the Stern–Gerlach experiment, see Fig. 2. In order to
avoid repetition, in the following we leave out arguments/derivations/discussions which, with minor
changes have been given earlier.
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Fig. 2. (Color online) Diagram of the Stern–Gerlach experiment. The source S, activated at times labeled by n = 1, 2, . . . ,N ,
sends a particle carrying a magnetic moment S to the magnet M with its magnetization in the direction a. Depending on the
relative directions of a and S, the particle is detected with 100% certainty by either D+ or D− .

5.1. Experiment

We start by listing the assumptions about the nature of the signal and the action of the magnet on
the signal. Specifically, we assume that
a. The signal emitted by the source takes the form of a particle which carries a magnetic moment

represented by a unit vector S. The magnetic moment interacts with the magnetic field generated
by the magnetM . This field is a function of the direction a of the magnet only. The direction of the
magnetic moment and magnet are relative to the fixed laboratory frame of reference.

b. As the particle passes through the magnetic field, it is directed towards either D+ or D−. The
mechanism which causes this to happen is assumed to depend on a · S = cos θ only. In other
words, the distribution of the number of particles detected byD+ orD− does not change (within the
usual statistical fluctuations) if both the magnetic moment of the particles and the direction of the
magnetic field are rotated by the same amount. Obviously, this is just expressing the assumption
that space is isotropic.

c. The detectors count the particles with 100% efficiency, that is, if n = 1, 2, . . . ,N labels the
time at which the source is activated, the firing of the detectors produces a data set of integers
{xn|xn = ±1; n = 1, . . . ,N}where xn = ±1 represents the firing of D±.

5.2. Inference-probability of the data produced by the experiment

In complete analogy with Section 4.2, we have
1. The i-prob to observe an event x = ±1 is denoted by P(x|a · S, Z) where Z represents all the

conditions under which the experiment is performed, with exception of the directions a of the
magnet and S of themagneticmoment of the particle. It is assumed that the conditions represented
by Z are fixed and identical for all experiments. It is expedient to write P(x|a · S, Z) as

P(x|a · S, Z) = P(x|θ, Z) =
1+ xE(θ)

2
, (24)

where

E(θ) = E(a · S, Z) =

x=±1

xP(x|θ, Z). (25)

2. For simplicity, it is assumed that there is no relation between the actual values of xn and xn′ ifn ≠ n′.
In other words, as far as we know, each repetition of the experiment represents an identical event
of which the outcome is logically independent of any other such event. Repeated application of the
product rule yields

P(x1, . . . , xN |a · S, Z) =
N
i=1

P(xi|θ, Z), (26)

meaning that the i-prob P(x|a · S, Z) to observe the event {x1, . . . , xN} is uniquely determined by
the i-prob to observe the event x.
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5.3. Condition for reproducibility and robustness

Enforcing the condition of reproducibility, exactly the same reasoning that leads to Eq. (18) now
yields

Ev = −
Nϵ2

2


x=±1

1
P(x|θ, Z)


∂P(x|θ, Z)

∂θ

2

+ O(ϵ3), (27)

from which it follows that in order to reduce the variation of Eq. (27) as a function of ϵ as much as
possible, we should minimize the Fisher information

IF =

x=±1

1
P(x|θ, Z)


∂P(x|θ, Z)

∂θ

2

=
1

1− E2(θ)


∂E(θ)
∂θ

2

, (28)

subject to the constraint ∂P(x|θ, Z)/∂θ ≠ 0. The method of solution is identical to the one employed
in Section 4.4. Using the fact that E(θ) is a function of a · S = cos θ only, we find that there are two
solutions, namely E(θ) = ± cos θ . Therefore, we have

P(x|a · S, Z) = P(x|θ, Z) =
1± xa · S

2
, (29)

in agreementwith the expressions of the quantum theoretical expression for the probability to deflect
the particle in one of the two distinct directions labeled by x = ±1 [82]. The± sign in Eq. (29) reflects
the fact that the mapping between x = ±1 and the two different directions is only determined up to
a sign.

5.4. Discussion

In quantum theory, Eq. (29) is in essence just the postulate (Born’s rule) that the probability to
observe the particle with spin up (corresponding to say x = +1) is given by the square of the absolute
value of the amplitude of the wavefunction projected onto the spin-up state [82]. Obviously, the
variability of the conditions under which an experiment is carried out is not included in the quantum
theoretical description. In contrast, in the logical inference approach, Eq. (29) is not postulated but
follows from the assumption that the (thought) experiment that is being performed yields the most
reproducible results, revealing the conditions for an experiment to produce data which is described
by quantum theory.

6. Particle in a potential: Schrödinger equation

Sections 4 and 5 showed that, with a minimum of input about the nature of an experiment, simply
demanding that the recorded data sets of events yield reproducible results for the i-probs, leads to
expressions that are known from the quantum theoretical treatment of the experiment. In essence,
these results derive from the following ideas:
(i) The i-probs for events to occur obey the rules of the algebra of logical inference.
(ii) The i-prob to observe an event (labeled by {x, y} or x) depends explicitly on a variable condition

(represented by the variable θ ).
(iii) Maximizing the robustness of the i-prob to observe the data with respect to small variations of

the condition yields the functional dependence of the i-prob on this condition.

This section shows that extending this approach to a particle in a potential is straightforward. The key
points are to formulate precisely what it means to perform a robust, reproducible experiment and to
feed in knowledge about the Newtonian dynamics of the particle. We consider the time-independent
case and to keep the notation simple, we only treat the case of a particle on a line. The extension to
2- or 3-dimensional space and the time-dependent case is given in Section 7.
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6.1. Experiment

We consider the following experiment. A particle is located on a line segment [−L, L], relative to
a fixed reference frame. Its unknown position is denoted by θ . We have a source that emits a signal
which always solicits a response of the particle. We cover another line segment [−L, L]with 2M + 1
detectors of width ∆, where M∆ = L. The signal that arrives at detector j with −M ≤ j ≤ M is
assumed to be particle-like, that is for each signal emitted by the source, only one of the 2M + 1
detectors actually fires. Each detector operates with 100% efficiency, meaning that it fires whenever
a particle-like signal arrives.

The result of a run of the experiment is a data set of detector clicks

Υ = {jn| −M ≤ jn ≤ M; n = 1, . . . ,N}. (30)

Denoting the total count of detector j by 0 ≤ kj ≤ N , the experiment produces the data set

D = {k−M , . . . , kM |N = k−M + · · · + kM} . (31)

6.2. Inference-probability of the data produced by the experiment

A priori, the relation between the unknown location θ of the particle and the location j of the
detector which fires is unknown. Therefore, to describe this relation, we introduce the i-prob P(j|θ, Z)
that the particle at unknown location θ activates the detector located at the position −M ≤ j ≤ M .
As before, the conditions represented by Z are fixed and identical for all experiments. As in Sections 4
and 5, the key question is what the requirement of reproducibility tells us about the i-prob P(j|θ, Z) as
a function of θ . Note that unlike in the case of parameter estimation, in the case at hand both P(j|θ, Z)
and the parameter θ are unknown.

The following assumptions are essentially the same as those of Sections 4.2 and 5.2 and are listed
here for completeness.

1. For fixed position θ , the i-prob to observe the data is given by

P(D|θ,N, Z) = P(k−M , . . . , kM |θ,N, Z). (32)

It is assumed that there is no relation between the actual values of jn and jn′ ifn ≠ n′. In otherwords,
each repetition of the experiment represents an identical event of which the outcome is logically
independent of any other such event. As mentioned before, events with these properties are
called Bernoulli trials, a concept which is central to many results in probability theory [39,41,57].
By the standard combinatorial argument, the number of possible ways ND to generate the data set
D is given by

ND =
N!

k−M ! . . . kM !
. (33)

The logical consequence of the Bernoulli-trial assumption is then that

P(D|θ,N, Z) = P(k−M |k−M+1, . . . , kM , θ,N, Z)× P(k−M+1, . . . , kM |θ,N, Z)
= P(k−M |θ,N, Z)P(k−M+1, . . . , kM |θ,N, Z)
= · · ·

= NDP(−M|θ,N, Z)k−M . . . P(M|θ,N, Z)kM

= N!
M

j=−M

P(j|θ, Z)kj

kj!
. (34)

2. In physics we often assume that space is homogeneous, implying that it does not matter where
in space we perform the experiment. For the model at hand, this means that a translation of
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the unknown position θ and the array of detectors by the same distance should not affect our
inferences based on the data. In other words, the i-prob has the property

P(j|θ, Z) = P(j+ ζ |θ + ζ , Z), (35)

where ζ is an arbitrary real number.

6.3. Condition for reproducibility and robustness

Comparing Eqs. (34) and (12), it is not a surprise that by simply repeating all the steps that lead to
Eq. (18), the condition for reproducibility applied to Eq. (34) yields the evidence

Ev = −
Nϵ2

2

M
j=−M

1
P(j|θ, Z)


∂P(j|θ, Z)

∂θ

2

+ O(ϵ3). (36)

At this point, tomake contact with the Schrödinger equationwhich is formulated in continuum space,
it is necessary to replace Eq. (36) by its continuum limit

Ev = −
Nϵ2

2


∞

−∞

dx
1

P(x|θ, Z)


∂P(x|θ, Z)

∂θ

2

+ O(ϵ3), (37)

where we have assumed that the width of the detectors approaches zero (∆→ 0) and the length of
the line segment approaches infinity (L→ ∞). Making use of translational invariance (see Eq. (35))
we have

∂P(x|θ, Z)
∂θ

= lim
δ→0

P(x|θ + δ, Z)− P(x|θ, Z)
δ

= lim
δ→0

P(x− δ|θ, Z)− P(x|θ, Z)
δ

= −
∂P(x|θ, Z)

∂x
. (38)

Hence, we may replace the partial derivative with respect to θ by the partial derivative with respect
to x, yielding

Ev = −
Nϵ2

2
IF + O(ϵ3), (39)

where

IF =

∞

−∞

dx
1

P(x|θ, Z)


∂P(x|θ, Z)

∂x

2

, (40)

denotes the Fisher information of the experiment considered in this section. Obviously, minimizing
Eq. (40) as we did for the EPRB and Stern–Gerlach problem cannot yield a solutionwhich incorporates
the fact that the particle moves in a potential simply because this knowledge is not yet built into the
minimization problem.

According to classical mechanics the orbit in phase space of a particle is given by the solution of
the time-independent Hamilton–Jacobi equation (HJE)

1
2m


∂S(θ)
∂θ

2

+ V (θ)− E = 0, (41)

wherem, S(θ), V (θ) and E denote the mass of the particle, the action (Hamilton’s principal function),
the potential, and the energy, respectively. Note that θ represents the position of the particlewhich, in
classical mechanics, is assumed to be knownwith certainty. The HJE describes experiments for which
there is no uncertainty about each individual event (category 1).
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If there is uncertainty about the position θ but not about the individual event (category 2 experi-
ment), this uncertainty may be captured by assuming that the i-prob P(x|θ, Z), has a particular func-
tional dependence, e.g. P(x|θ, Z) = exp[−(x − θ)2/2σ 2

]/
√
2πσ 2. Given that the equation which

determines the action S(x) should reduce to Eq. (41) in the limit that P(x|θ, Z)→ δ(x− θ), the sim-
plest equation reads

∞

−∞

dx


∂S(x)
∂x

2

+ 2m[V (x)− E]


P(x|θ, Z) = 0. (42)

Inwords, Eq. (42) tells us that the inference drawn from the distribution of detector clicks as a function
of their location on the line, is that, on average, these locations satisfy the time-independent HJE.

Finally, if there is uncertainty about the individual events as well as about the conditions (category
3 experiment), the i-prob P(x|θ, Z) is unknown but can be determined by requiring that the frequency
distributions of the observed events are robust (category 3a experiment). It is important to note that
in this case, there is no assumption about the unknown position θ of the particle.

Inspired by Schrödinger’s original derivation [87] of his equation (see Section 6.5), we minimize
the Fisher information Eq. (40) with the constraint that the time-independent HJE only holds on
average. Specifically, the functional to be minimized under the constraint that ∂P(x|θ, Z)/∂θ =
−∂P(x|θ, Z)/∂x ≠ 0 reads

F(θ) =

∞

−∞

dx


1

P(x|θ, Z)


∂P(x|θ, Z)

∂x

2

+ λ


∂S(x)
∂x

2

+ 2m[V (x)− E]


P(x|θ, Z)


, (43)

where λ is a Lagrange multiplier. It is important to note that without changing the minimization
problem, we may substitute P(x|θ, Z)→ αP(x|θ, Z)where α is any nonzero real number. Therefore,
any solution for P(x|θ, Z) obtained by minimizing Eq. (43) can be normalized by P(x|θ, Z) →
P(x|θ, Z)/


∞

−∞
dx P(x|θ, Z). Hence, there is no need to introduce a Lagrange multiplier to impose

the normalization condition on P(x|θ, Z).
It is easy to show, directly fromEq. (43), that at an extremum (with respect to variations in P(x|θ, Z)

and S(x), not to θ ) the derivative of F(θ)with respect to θ is zero, that is

∂F(θ)
∂θ


Extremum of F(θ)

= 0, (44)

hence the solutions of the variational problem comply with the constraint (C3) (see Section 4.3).
We do not know of any direct analytical method to solve the nonlinear minimization problem

Eq. (43). However, fromMadelung’s hydrodynamic-like formulation [88] or Bohm’s interpretation [3]
of quantum theory it follows that the extrema (and therefore also theminima) of Eq. (43) can be found
by solving the time-independent Schrödinger equation.

With a minimum of algebra this can be shown as follows. We start from the functional

Q (θ) =

∞

−∞

dx

4
∂ψ∗(x|θ, Z)

∂x
∂ψ(x|θ, Z)

∂x
+ 2mλ[V (x)− E]ψ∗(x|θ, Z)ψ(x|θ, Z)


. (45)

Substituting

ψ(x|θ, Z) =

P(x|θ, Z)eiS(x)

√
λ/2 (46)

yields Eq. (43).
On the other hand, from a standard calculation using the variation ψ∗(x|θ, Z) → ψ∗(x|θ, Z) +

δψ∗(x|θ, Z), it follows that the extrema of Eq. (45) are given by the solutions of the linear eigenvalue
problem,

−
∂2ψ(x|θ, Z)

∂x2
+

mλ
2

[V (x)− E]ψ(x|θ, Z) = 0, (47)
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which is nothing but the time-independent Schrödinger equation with λ = 4/ h̄2. Planck’s constant
h̄ enters here because of dimensional reasons (see also Section 6.5) and it sets the energy scale of
experiments which belong to category 3a. As Eq. (47) is a linear second-order partial differential
equation, in practice computing its solution requires the specification of two boundary conditions
on ψ(x|θ, Z).

The equivalence between Eqs. (43) and (45) was established by representing the two real-valued
functions P(x|θ, Z) and S(x) by the complex-valued function ψ(x) [88]. Given a solution ψ(x|θ, Z) of
Eq. (47), it follows that P(x|θ, Z) = |ψ(x|θ, Z)|2 and S(x) = −i ln(ψ(x|θ, Z)/ψ∗(x|θ, Z)) whenever
ψ(x|θ, Z) ≠ 0. Clearly, because of the complex logarithm, the mapping from ψ(x|θ, Z) to the real-
valued function S(x) is not one-to-one [89,90]. In the hydrodynamic form of quantum theory [88],
the ambiguity that ensues has implications for the interpretation of the gradient of S(x) as a velocity
field [89,90]. As pointed out by Novikov, similar ambiguities appear in classical mechanics proper
if the local equations of motion (Hamilton equations) are not sufficient to characterize the system
completely and the global structure of the phase space has to be taken into consideration [91].
However, for the present purpose, this ambiguity has no effect on the minimization of F(θ) because
Eq. (43) does not change if we add to S(x) a real number which does not depend on x or, equivalently,
if we multiply ψ(x|θ, Z) by a global phase factor.

For the experiment considered in the current (and next) section the equation describing the ex-
periment is Eq. (43), not the Schrödinger equation, Eq. (47), and the wavefunctionψ(x|θ, Z) is merely
a vehicle to solve a set of nonlinear equations through the solution of a linear eigenvalue problem.
This is logically consistent with the logical-inference treatment of the EPRB and Stern–Gerlach exper-
iments (see Sections 4 and 5) where there is no need to introduce a ‘‘wavefunction’’ψ(x|θ, Z) to find
closed form solutions.

In the case that the solutions of Eq. (47) are real-valued, we have S(x) = 0 mod 2π . Hence, it
would be sufficient thatψ(x|θ, Z) is a real-valued function. On the other hand, it is a simple matter to
repeat the derivation and show thatminimization of the Fisher informationwith the constraint that on
average, the HJE of a particle in an electromagnetic field should hold leads to the corresponding time-
independent Schrödinger equation (see also Section 7). Then, in general, it is necessary to introduce a
complex-valued function ψ(x|θ, Z) to linearize the minimization problem.

6.4. Discussion

Starting from the assumptions that the experiment belongs to category 3a and averages of the
observed data complies with Newtonianmechanics, application of logical inference straightforwardly
leads to the time-independent Schrödinger equation, Eq. (47). The key step in this derivation, which
in essence is the same as in Sections 4 and 5, is to express the robustness of the observed data
(distribution of frequencies of the events) with respect to small variations in the unknown position of
the particle, taking into account the inference that we draw on the basis of the observed data, namely
that on average there is agreement with Newtonian mechanics.

Of course, a priori there is no good reason to assume that on average there is agreement with
Newtonian mechanics. The only reason to do so here is that only then we recover the time-
independent Schrödinger equation. In other words, the time-independent Schrödinger equation
describes the collective of repeated experiments of category 3a subject to the condition that the
averaged observations comply with Newtonian mechanics. The question what kind of equations are
obtained by assuming a different kind of ‘‘mechanics’’ is out of the scope of the present paper.

It is very important to emphasize that from the logical-inference viewpoint the superposition
principle, that is, the linearity of the Schrödinger equation, is not fundamental but follows from the fact
that in classical mechanics the kinetic energy is quadratic in the velocities and, thus, in the momenta.
Only in this case the substitution of Eq. (46) reduces the nonlinear minimization problem to a linear
equation. This raises the question what to do with different types of classical mechanics, such as
relativistic mechanics. It is well known, that relativistic quantum mechanics cannot be mechanics, it
can only be a field theory [92–94], the argument being that any attempt to measure the coordinate of
a particle with the accuracy better than its Compton wavelength unavoidably leads to the creation of
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particle–antiparticle pairs. We leave the challenging problem of extending the present work to the
relativistic domain for future research.

A comment on the identification λ = 4/ h̄2 is in order. Clearly, from a dimensional analysis of
Eq. (47), λ has to be a parameter with the dimension of h̄−2 but there is no a-priori reason why we
must have λ = 4/ h̄2. However, comparing the results of a numerical calculation based on Eq. (47)
with specific experimental results for the spectra of atoms etc., we are forced to choose λ = 4/ h̄2. It
is worthmentioning here that the logical-inference derivation of the canonical ensemble of statistical
mechanics [58,59] employs the same reasoning to relate the inverse temperature β = 1/kBT to the
average thermal energy. At this point it should be mentioned that recent work has shown that h̄may
be eliminated from the basic equations of (low-energy) physics by a re-definition of the units of mass,
time, etc. [95,96].

A very important point, which renders our treatment very different from other statistical formula-
tions of quantum theory [8–11,13,14,19,20,25–28,31–33] is that the unknown position of the particle
θ never appears in the solution of the problem. It appears as a condition on the i-probs but it has no
effect on the functional dependence of the i-probs on the relevant, observable coordinate x.

From quantum theory we know that Eq. (47) usually has more than one solution, the minimum of
Eq. (45) corresponding to the quantum state with the lowest energy and the others being excited
states. The latter correspond to extrema of Eq. (43) with values of F(θ) that are larger than the
minimum value of F(θ).

From Eq. (44) it also follows that the excited quantum states describe experiments which are not
the ‘‘most’’ robust against small changes of θ but nevertheless have the property that, to first order,
the ‘‘quality’’ of the results (i.e. averages, etc.) does not depend on the particular value of θ .

If we were to follow the tradition of conventional statistics, we would introduce, for instance, an
estimatorθ(x) for θ and assume that the expectation value of this estimator relates to the ‘‘true’’
position of the particle. As we know from the early days of the development of quantum theory [97]
trying to interpret such estimators as objective properties of the particle creates seemingly endless
possibilities for different interpretations, paradoxes, andmysteries [42]. From the viewpoint of logical
inference, θ was and remains unknown and any attempt to interpret the function ψ(x) seems
superfluous; ψ(x) is just an extremely useful vehicle to compute the numerical values of the i-probs
P(x|θ, Z).

6.5. Historical note

It is of interest to repeat here the first few steps in Schrödinger’s first paper on his equation [87]. For
simplicity, we consider a particlemoving on a line only. Schrödinger starts from the time-independent
HJE.

H

x,
∂S(x)
∂x


= E, (48)

where

H

x,
∂S(x)
∂x


=

1
2m


∂S(x)
∂x

2

+ V (x), (49)

is the Hamiltonian of the classical, Newtonian particle. Then, in Eq. (48) he substitutes

S(x) = K lnψ(x), (50)

whereψ(x) is assumed to be a real single-valued function of x and K is a constant with the dimension
of action and obtains

H

x,

K
ψ(x)

∂ψ(x)
∂x


= E. (51)
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Then, Schrödinger observes that one can rewrite Eq. (51) as a quadratic form in ψ(x), namely

K 2

2m


∂ψ(x)
∂x

2

+ [V (x)− E]ψ2(x) = 0. (52)

Of course, solving Eq. (52) for ψ(x) does not bring anything new. Therefore, Schrödinger postulates
that instead of solving Eq. (52), one should search for the extrema of the functional

Q =

+∞

−∞

dx


K 2

2m


∂ψ(x)
∂x

2

+ [V (x)− E]ψ2(x)


, (53)

knowing that the formal solution of this variational problem leads to an eigenvalue problem. He then
continues to show that by using the classical Hamiltonian for the Kepler problem, the solution of the
eigenvalue problem yields the spectrum of the hydrogen atom.

It is quite remarkable that in his next publication on the subject [98], Schrödinger calls both the
ansatz Eq. (50) and the transition from Eq. (52) to Eq. (53) incomprehensible (‘‘unverständlich’’) and
then goes on to motivate his equation using the analogy with optics. As shown by our derivation of
Eq. (47), which on choosing λ = 4K−2 is the same as Eq. (52), from the viewpoint of logical inference
applied to experiments of category 3a, there is nothing incomprehensible to Eq. (53).

7. Time-dependent Schrödinger equation

Extending the reasoning which yields the time-independent Schrödinger equation to the time-
dependent, multidimensional case does not require new concepts but simply replacing the position
on the line by a vector in 3D space and adding time labels does not suffice. Therefore, in what follows,
we focus on those aspects which are absent in the examples treated in Sections 4–6.

7.1. Experiment

We consider N repetitions of a thought experiment on a particle moving in a d-dimensional
hypercube � of linear extent [−L, L], relative to a fixed reference frame. Here and in the following
d is a positive integer. A source emits a signal at discrete times labeled by the integer τ = 1, . . . ,M .
It is assumed that for each repetition, the particle is at the unknown position θτ ∈ �. As the particle
receives the signal, it responds by emitting another signal which is recorded by an array of detectors.
For each signal emitted by a particle the data recorded by the detector system is used to determine
the position jn,τ of a voxel of linear extent [−∆,∆] in the d-dimensional space �. The dimension of
the voxels determines the spatial resolution of the detection system. As in Section 6, in a later stage,
we will let∆→ 0 to solve the problem analytically.

The result of N repetitions of the experiment yields the data set

Υ = {jn,τ |jn,τ ∈ [−Ld, Ld]; n = 1, . . . ,N; τ = 1, . . . ,M}, (54)

or, denoting the total counts of voxels j at time τ by 0 ≤ kj,τ ≤ N , the experiment produces the data
set

D =

kj,τ
τ = 1, . . . ,M;N =


j∈[−Ld,Ld]

kj,τ

. (55)

7.2. Inference-probability of the data produced by the experiment

In analogy with the procedure followed in the previous sections, we introduce the i-prob
P(j|θ, τ , Z) to describe the relation between the unknown location θ and the location j of the voxel
determined by the detector system at discrete time τ . Except for the unknown location θ, all other
experimental conditions are represented by Z and are assumed to be fixed and identical for all
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experiments. Note that unlike in the case of parameter estimation, in the case at hand both P(j|θ, τ , Z)
and the parameter θ are unknown. As in all examples treated so far, the key question is what the
requirement of reproducibility tells us about the i-prob P(j|θ, τ , Z) as a function of θ.

The following assumptions are essentially the same as those of Sections 4.2, 5.2 and 6.2.

1. It is assumed that each repetition of the experiment represents an identical event of which the
outcome is logically independent of any other such event. By application of the product rule, the
consequence of this assumption is that

P(D|θ1, . . . , θM ,N, Z) = N!
M
τ=1


j∈[−Ld,Ld]

P(j|θτ , τ , Z)kj,τ

kj,τ !
. (56)

2. As in Section 6.2, we assume that space is homogeneous. This implies that the i-prob has the
property

P(j|θ, Z) = P(j + ζ|θ + ζ, Z), (57)

where ζ is an arbitrary vector in d-dimensional space.

7.3. Condition for reproducibility and robustness

In Sections 4.2, 5.2 and 6.2 the variable condition θ is a scalar variable whereas in the present case,
θ denotes a collection of d scalars. This has some impact on the expression for the evidence. Repeating
the steps that took us from Eq. (14) to Eq. (18), we find that

Ev =

j,τ

d
i,i′=1

ϵi,τ ϵi′,τ

P(j|θτ , τ , Z)
∂P(j|θτ , τ , Z)

∂θi

∂P(j|θτ , τ , Z)
∂θi′

, (58)

where we have dropped the irrelevant prefactor −N/2 and omitted from the summation sign the
range of τ and j (see Eq. (56)) and the terms of third and higher order in the ϵ’s.

The condition for reproducibility applied to Eq. (58) requires that we minimize Ev (which is non-
negative, see Eq. (59)). A minor problem thereby is that the ϵi’s are arbitrary (but small) but we can
get around this problem by noting that

Ev =

j,τ


d

i=1

ϵi, τ
√
P(j|θτ , τ , Z)

∂P(j|θτ , τ , Z)
∂θi

2

≥ 0, (59)

and, by using the Cauchy–Schwarz inequality, that

Ev ≤

j,τ


d

i=1

ϵ2i,τ


d

i=1

1
P(j|θτ , τ , Z)


∂P(j|θτ , τ , Z)

∂θi

2


≤ dϵ2
j,τ

d
i=1

1
P(j|θτ , τ , Z)


∂P(j|θτ , τ , Z)

∂θi

2

, (60)

whereϵ2 = maxi,τ ϵ2i,τ . From Eq. (60) it follows that as the ϵi’s are arbitrary (but small), minimizing
the rightmost factor in Eq. (60) is the best we can do to make sure that Ev is as small as possible.
Therefore, we find that in order to realize the condition for reproducibility we have to minimize the
Fisher information

IF =

j,τ

d
i=1

1
P(j|θτ , τ , Z)


∂P(j|θτ , τ , Z)

∂θi

2

, (61)

subject to additional constraints that we impose (see below).
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As before, to make contact with the Schrödinger equation which is formulated in continuum
space–time, it is necessary to replace sums over space–time coordinates by integrals. Invoking
translational invariance (see Section 7.2), we have

IF =


dx


dt
d

i=1

1
P(x|θ(t), t, Z)


∂P(x|θ(t), t, Z)

∂xi

2

, (62)

where x = (x1, . . . , xd).
We include the knowledge that the particle moves in a time-dependent electromagnetic field and

time-dependent potential by repeating the steps of Section 6 that lead us from Eq. (41) to Eq. (43),
that is we start from the classical HJE and then account for the uncertainties about the events.

According to classical mechanics, the motion of a particle with mass m in a time-dependent
electromagnetic field and time-dependent potential is governed by the time-dependent HJE

∂S(θ, t)
∂t

+
1
2m


∇S(θ, t)−

q
c
A(θ, t)

2
+ V (θ, t) = 0, (63)

where q denotes the electrical charge of the particle, c is the velocity of light in vacuum, A(x, t)
represents the vector potential and the electrical potential and all potentials of non-electromagnetic
origin are collectively denoted by V (x, t).

Using the same argument as the one in Section 6, if there is uncertainty about the position θ but not
about the individual event (category 2 experiment), the simplest equation for S(x, t) which reduces
to Eq. (63) in the limit that there is no uncertainty reads

∞

−∞

dx

∂S(x, t)
∂t

+
1
2m


∇S(x, t)−

q
c
A(x, t)

2
+ V (x, t)


P(x|θ(t), t, Z) = 0, (64)

for each value of t . If there is uncertainty about both the individual event and the conditions (category
3 experiment), the i-prob P(x|θ(t), t, Z) is unknown but can be determined by requiring that the
frequency distributions of the observed events are robust (category 3a experiment). Note that no
assumption about the unknown position θ of the particle has been or will be made and that this line
of reasoning, which is reminiscent of Ehrenfest’s theorem [99], does not determine P(x|θ(t), t, Z) but
merely provides a constraint on it.

Minimizing the Fisher information Eq. (62) with the constraint Eq. (64) amounts tominimizing the
functional

F =


dx


dt
d

i=1


1

P(x|θ(t), t, Z)


∂P(x|θ(t), t, Z)

∂xi

2

+ λ


∂S(x, t)
∂t

+
1
2m


∂S(x, t)
∂xi

−
q
c
A(x, t)

2

+ V (x, t)


P(x|θ(t), t, Z)


, (65)

where λ is a Lagrange parameter and the normalization of P(x|θ(t), t, Z) can be taken care of by
exploiting the invariance of the extrema of Eq. (65) with respect to the rescaling transformation
P(x|θ(t), t, Z) → αP(x|θ(t), t, Z). Note that the integrand of Eq. (65) is invariant for the gauge
transformation A(x, t) → A(x, t) + (q/c)∇χ(x, t), V (x, t) → V (x, t) − (q/c)∂χ(x, t)/∂t , and
S(x, t)→ S(x, t)+ (q/c)χ(x, t)where χ(x, t) is an arbitrary scalar function [100].

As in Section 6, it follows that finding the extremaof the functional Eq. (65) is tantamount to solving
the time-dependent Schrödinger equation (TDSE). Applying the standard variational argument, it
follows that the solutions of the TDSE

ih̄
∂ψ(x|θ(t), t, Z)

∂t
=


−

h̄2

2m

d
j=1


∂

∂xj
−

iq
h̄c

A(x, t)
2

+ V (x, t)


ψ(x|θ(t), t, Z), (66)
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are the extrema of the functional

Q = 2


dx


dt

mi
√
λ


ψ(x|θ(t), t, Z)

∂ψ∗(x|θ(t), t, Z)
∂t

−ψ∗(x|θ(t), t, Z)
∂ψ(x|θ(t), t, Z)

∂t


+ 2

d
j=1


∂ψ∗(x|θ(t), t, Z)

∂xj
+

iq
√
λ

2c
Aj(x, t)ψ∗(x|θ(t), t, Z)



×


∂ψ(x|θ(t), t, Z)

∂xj
−

iq
√
λ

2c
Aj(x, t)ψ(x|θ(t), t, Z)



+mλV (x, t)ψ∗(x|θ(t), t, Z)ψ(x|θ(t), t, Z)

, (67)

if λ = 4/ h̄2. The equivalence of Eqs. (65) and (67) follows by substituting ψ(x|θ(t), t, Z) =
√
P(x|θ(t), t, Z)eiS(x,t)

√
λ/2. Note that the solutions of Eq. (66) do not depend on the unknown position

θ(t), as it should be. As in the case of the SE (see Section 6), it follows that the solutions of the
variational problem comply with the constraint (C3) (see Section 4.3).

The functional Eq. (67) inherits from Eq. (65) the invariance under gauge transformations.
Specifically, it is easy to show that the integrand in Eq. (67) does not change by substituting
A(x, t)→ A(x, t)+(q

√
λ/2c)∇χ(x, t), V (x, t)→ V (x, t)−(q/c)∂χ(x, t)/∂t , andψ(x|θ(t), t, Z)→

ψ(x|θ(t), t, Z) exp[iq
√
λχ(x, t)/2c]where χ(x, t) is an arbitrary scalar function.

Instead of solving the nonlinear differential equation that follows from extremizing Eq. (65), it is
usually more expedient to solve the linear partial differential equation, Eq. (66). Of course, in practice
weneed to specifyψ(x|θ(t), t, Z) at t = 0 in order to solve the initial-value problemEq. (66). Unlike in
the time-independent case (see Section 6) where wemay have solutions for which S(x) = 0 mod 2π ,
in the general case, the equivalence between Eqs. (65) and (67) cannot be established unless we allow
ψ(x|θ(t), t, Z) to be complex-valued. In general, minimizing Eq. (65) yields solutions for the two
real-valued functions P(x|θ(t), t, Z) and S(x, t) and although we can represent these two functions
in a variety of ways, the complex-valued representation in terms of ψ(x|θ(t), t, Z) offers the for
computational reasons very important advantage that it transforms a nonlinear optimization problem
into a linear one.

The equivalence of Eqs. (65) and (67) allows us to determine, from the solutions of the TDSE,
the i-probs P(x|θ(t), t, Z) which yield the most likely and most reproducible data, collected in the
experiment described in Section 7.1. Put differently, through the TDSE, quantum theory describes an
experiment which yields data that is the most robust with respect to small variations of the external
conditions (the unknown positions of the particle) under which the experiment is being performed.

7.4. Discussion

In essence, all the points that were mentioned in the discussions in Sections 4–6 also hold for
the time-dependent case. Of course, one should replace for instance ‘‘time-independent’’ by ‘‘time-
dependent’’, but otherwise there are no significant conceptual changes.

Having shown howbasic results of quantum theory follow from the application of logical inference
to experiments of category 3a, it is appropriate to compare our approach to the considerable body of
work [8–11,13,14,19,20,25–28,31–33] which shows that quantum theory can be cast into a ‘‘classical’’
statistical theory.

Central in the derivations presented in the present paper is the appearance of the Fisher informa-
tion. Therefore, it is instructive to compare the methodology adopted in the present paper with the
ones of earlier works [8–11,13,14,20,27,28,31–33] in which it is de facto postulated that the Fisher
information is the basic expression from which the equations of theoretical physics can be derived.
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To the best of our knowledge, the idea of postulating that the Fisher information is the starting
point for deriving the time-independent Schrödinger equation appeared for the first time in a paper
by Frieden [8] who also showed that the Heisenberg–Robertson inequalities, often regarded as a land-
mark of quantummechanics, directly follow from theCramér–Rao inequality [8,11,13,14,20,27,28,32],
a standard result in classical statistics [14,101].

The expressions of functionals akin Eq. (65) are justified using arguments from estimation theory,
and concepts such as intrinsic fluctuations and ‘‘smart measurements’’. Thereby, it seems essential
that the difference between the parameter to be estimated (e.g. θ(t) in our notation) and themeasured
quantity (e.g. x) may be interpreted as intrinsic fluctuations.

These earlier works [8–11,13,14,20,27,28,31–33] have been instrumental for the development of
our logical-inference approach. But in contrast to these earlier works in which the Fisher information
is postulated as the starting point, in the logical-inference approach the Fisher information appears
quite naturally as a result of expressing the requirement that the experiment yields reproducible,
robust results. Thereby the notion of robustness used in the present paper refers to the effect of
small (systematic) changes of a parameter on the state of knowledge encoded in the i-probs and is
conceptually very different from the one introduced by Hall which expresses resilience with respect
to noise [11].

We further illustrate the conceptual differences between the logical-inference approach and the
Fisher-information approach using two concrete examples. First, consider Frieden’s treatment of
the EPRB experiment [14] in which the angle θ between the two unit vectors corresponding to the
directions of the two routers that are controlled by the experimenter is regarded as the variable-to-
be-estimated. From the point of view of laboratory experiments this seems to be a rather artificial
starting point. Indeed, we do not know of any real EPRB experiment which attempts to estimate this
angle (which experimenters consider to be known). Moreover, mathematically we cannot even define
the difference between the observed event {x, y} and the ‘‘estimated’’ angle θ , let alone that we can
interpret this difference as a signature of intrinsic fluctuations. Yet, as we have shown in Section 4,
straightforward application of logical inference to an experiment assumed to belong to category 3a,
effortlessly yields the equations of the quantum theoretical description for this experiment. Next, as
another example illustrating the conceptual differences, consider Reginatto’s derivation of the time-
dependent Schrödinger equation [10], the algebra of which has been our source of inspiration to
connect Eqs. (65) and (66). From the point of view of probability theory, the justification of Reginatto’s
derivation is problematic. In Ref. [10] the Fisher information (matrix) is introduced in the conventional
manner [14], namely as an information measure of estimating a parameter θ from the observed
random variable y = θ + x, x representing the additive noise. Then, in the next step, the noise x
is tactically taken as the position of the particle(s), a remarkable reinterpretation of mathematical
symbols. Logical difficulties of this kind are absent in the logical inference approach simply because it
is not permitted to drop conditional dependences of the i-probs.

In short, the main conceptual difference with earlier works that start by postulating expressions
containing the Fisher information [8,11,13,14,20,27,28,32], is that in the logical inference approach the
expression to be minimized is not postulated but it is derived by assuming that the theory describes
reproducible experiments in the most robust possible way.

8. Conclusion

We have shown that the basic equations of quantum theory derive from logical inference applied
to experiments in which there is uncertainty about individual events but for which the frequencies of
events are reproducible and most insensitive to small variations of the unknown factors.

The derivations presented in Sections 4–7 demonstrate that logical inference, that is plausible
reasoning, applied to experiments which belong to

Category 3a. There is uncertainty about each event, the conditions under which the experiment
is carried out may be uncertain, and the frequencies with which events are observed are
reproducible and robust against small changes in the conditions,

yields two important, general results.
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The first is the justification of the intuitive procedure to assign to the i-probs the frequencies for the
events to occur. For fixed experimental conditions, the usual argument for adopting this assignment is
that it maximizes the i-prob to observe these frequencies (see the Appendix). On the other hand, it is
quite natural to expect that under variable experimental conditions it is themost robust, reproducible
experiment which produces the most likely frequencies of events. Obviously, the argument based on
reproducibility under variable experimental conditions is more general as it contains the condition of
fixed experimental conditions as a special case.

The second, andmost important for the purpose of recovering the quantum theoretical description
as an application of logical inference, are equations that determine the functional dependence of the
i-probs on the condition that is considered to be variable. Application of exactly the same procedure
to the Einstein–Podolsky–Rosen–Bohm experiment, the Stern–Gerlach experiment, and experiments
on a particle in a potential demonstrate that the equations known from the quantum theoretical
description of these experiments follow in a straightforward manner without invoking concepts of
quantum theory.

The key point in the derivation of the quantum theoretical description is to express precisely
and unambiguously, using the mathematical framework of plausible reasoning [37–41], the essential
features of experiments belonging to category 3a. Adding the requirement that the experimental
results are insensitive to small changes of the conditions under which the experiment is carried out
yields equations that are known fromquantum theory. Furthermore, it also explains that if it is difficult
to engineer nanoscale devices which operate in a regime where the data is reproducible, it is also
difficult to perform these experiments such that the data complies with quantum theory.

In our logical inference derivation of the time-independent and time-dependent Schrödinger
equation we did not assume that the former can be deduced from the latter: both emerge as
descriptions of the data obtained from different kinds of experiments. Once both descriptions
have been formulated in terms of quadratic forms, the machinery of linear algebra brings out the
equivalence of these two descriptions. However, from a logical-inference viewpoint, there is no a-
priori reason why this connection should exist and therefore it is a logical, not physical, requirement
that the logical inference approach can be applied to the time-independent and time-dependent data
without assuming that there is a deeper relation between the two. In a sense, the mathematical
relationship that appears is a result of logical inference. As mentioned in the introduction, this
way of thinking is different from the deductive, reductionist approach. For instance, it has recently
been suggested that starting from real-valued Majorana-fermion equations, one can derive the
complex-valuedWeyl equation, then reduce it to the Dirac equation fromwhich the time-dependent
Schrödinger equation follows by taking the non-relativistic limit [102]. In the reductionist approach,
a description of the observed phenomena at low energy emerges from an appropriate low-energy
approximation of the underlying high-energy model [102]. In contrast, in the logical inference
approach, we take the point of view that a description of our knowledge of the phenomena at a
certain level is independent of the description at a more detailed level. Of course, this implies that
it should be possible to show that e.g. the Dirac and Klein–Gordon equation can be obtained by logical
inference applied to data collected in some (thought) experiment, without making any reductionist
detour. Clearly, such a demonstration would be a very important step for establishing the usefulness
of the logical inference as a methodology to construct descriptions of observed phenomena.

The logical-inference methodology to derive the basic equations of quantum theory has some
implications for interpretational aspects of quantum theory. First, although it supports Bohr’s view
expressed in quotes (1–3) of the introduction, it does not support the Copenhagen interpretation
(in any form) [42]. Indeed, the wavefunction Eq. (46) merely appears to be a purely mathematical
vehicle to turn nonlinear differential equations into linear ones and it seems difficult to attribute
more meaning to such a vehicle other than mathematical. On the other hand, there is no conflict
with the statistical interpretation [82,103] if we ignore the conceptual difference between i-probs and
‘‘mathematical’’ probabilities. Second, it follows that quantum theory is a ‘‘common sense’’ description
of the vast class of experiments that belongs to category 3a. Quantum theory definitely does not
describe what is happening to a particle, say. This follows most clearly from our derivation of the
Schrödinger equation, which shows that quantum theory does not provide any insight into themotion
of a particle but instead describes all what can be inferred (within the framework of logical inference)
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from or, using Bohr’s words, said about the observed data, in complete agreement with Bohr’s view
expressed in quotes (1–3) of the introduction.

The logical-inference derivation of the quantum theoretical description does not, in any way,
prohibit the construction of cause-and-effect mechanisms that, when analyzed in the same manner
as in real experiments, create the impression that the system behaves as prescribed by quantum
theory [5,7,104]. From Bohr’s quote (1) reproduced in the introduction, and as demonstrated in a
mathematically rigorous manner in the present paper, quantum theory is but an abstract description,
be it a very powerful one. As mentioned in Section 3, it is straightforward to construct computer
simulation models that mimic, for all practical purposes almost perfectly, experiments that belong
to category 3a. Work in this direction, for a review see Ref. [105], has shown that it is indeed possible
to build simulationmodels which reproduce, on an event-by-event basis, (quantum) interference and
entanglement phenomena.

Summarizing: In line with Bohr’s statement that ‘‘Physics concerns what we can say about
nature [45]’’, the aim of physics is to provide a consistent description of relations between certain
classes of events. Some of these relations express cause followed by an effect and others do not. If
there are uncertainties about the individual events and the conditions under which the experiment is
carried out, situationsmay arise in which it becomes difficult or even impossible to establish relations
between individual events. In the case that the frequencies of these events are reproducible and
robust, it may still be possible to establish relations, not between the individual events, but between
the frequency distributions of the observed events. As we have demonstrated, it is precisely under
these circumstances that the application of logical inference to the (abstraction of) the experiment
yields the basic equations of quantum theory. This then also explains the reason for the extraordinary
descriptive power of quantum theory: it is plausible reasoning, that is common sense, applied to
reproducible and robust experimental data. The algebra of logical inference facilitates this reasoning
by means of a mathematically precise language which is unambiguous and independent of the
individual.
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Appendix. Maximum of the inference-probability

We consider an experiment with logically independent outcomes O1, . . . ,Om which is repeated
N times under constant conditions represented by the proposition Z . The i-prob that the outcome Ok
occurred nk times reads

P(n1, . . . , nm|N, Z) =
N!

n1! . . . nm!
P(O1|N, Z)n1 . . . P(Om|N, Z)nm . (A.1)

Let us denote the set of values of {n1, . . . , nm}which maximizes P(n1, . . . , nm|N, Z) by {n∗1, . . . , n
∗
m}.

Then, we must have

P(n∗1, . . . , n
∗

k , . . . , n
∗
m|N, Z)

P(n∗1 + 1, . . . , n∗k − 1, . . . , n∗m|N, Z)
=

n∗1 + 1
n∗k

P(Ok|N, Z)
P(O1|N, Z)

≥ 1, (A.2)

or

n∗kP(O1|N, Z) ≤ (n∗1 + 1)P(Ok|N, Z), (A.3)

for all 2 ≤ k ≤ m. Summing over all k yields

P(O1|N, Z)
m

k=2

n∗k ≤ (n
∗

1 + 1)
m

k=2

P(Ok|N, Z),
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or

P(O1|N, Z)(N − n∗1) ≤ (n
∗

1 + 1)(1− P(O1|N, Z)),

or

P(O∗1|N, Z) ≤
n∗1 + 1
N + 1

. (A.4)

Similarly, if we consider

P(n∗1, . . . , n
∗

k , . . . , n
∗
m|N, Z)

P(n∗1 − 1, . . . , n∗k + 1, . . . , n∗m|N, Z)
=

n∗k + 1
n∗1

P(O1|N, Z)
P(Ok|N, Z)

≥ 1, (A.5)

we find

P(O1|N, Z) ≥
n∗1

N +m− 1
. (A.6)

In the derivation that leads to Eqs. (A.4) and (A.6), our choice of the pair (1, k) (2 ≤ k) was arbitrary.
Repeating the derivation for 1 ≤ j, k ≤ m with k ≠ j yields

n∗j
N +m− 1

≤ P(Oj|N, Z) ≤
n∗j + 1

N + 1
, 1 ≤ j ≤ m, (A.7)

or equivalently

P(Oj|N, Z)−
1

N + 1
≤

n∗j
N + 1

≤ P(Oj|N, Z)

1+

m− 2
N + 1


, (A.8)

for all 1 ≤ j ≤ m.
For sufficiently large N , it follows from Eq. (A.7) that for an experiment with logically independent

outcomes O1, . . . ,Om which is repeated N times under constant conditions represented by the
proposition Z , the assignment

P(Oj|N, Z)←
nj

N + 1
, 1 ≤ j ≤ m, (A.9)

maximizes the i-prob that Oj occurs nj times for all 1 ≤ j ≤ m.
The derivation of the assignment Eq. (A.9) justifies the intuitive procedure to take as the

numerical values of the i-probs, the frequencies of occurrences, if the latter are known through actual
measurement.
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