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The neuroimaging technique three-dimensional polarized light imaging

(3D-PLI) provides a high-resolution reconstruction of nerve fibres in human

post-mortem brains. The orientations of the fibres are derived from birefrin-

gence measurements of histological brain sections assuming that the nerve

fibres—consisting of an axon and a surrounding myelin sheath—are uniaxial

birefringent and that the measured optic axis is oriented in the direction of the

nerve fibres (macroscopic model). Although experimental studies support this

assumption, the molecular structure of the myelin sheath suggests that the

birefringence of a nerve fibre can be described more precisely by multiple

optic axes oriented radially around the fibre axis (microscopic model). In

this paper, we compare the use of the macroscopic and the microscopic

model for simulating 3D-PLI by means of the Jones matrix formalism. The

simulations show that the macroscopic model ensures a reliable estimation

of the fibre orientations as long as the polarimeter does not resolve structures

smaller than the diameter of single fibres. In the case of fibre bundles, polari-

meters with even higher resolutions can be used without losing reliability.

When taking the myelin density into account, the derived fibre orientations

are considerably improved.
1. Introduction
Unravelling the architecture and connectivity of nerve fibres in the human brain

is one of the greatest challenges in neuroscience. Over the past years, several

methods have been developed to reconstruct the human connectome [1–3]. The

neuroimaging technique three-dimensional polarized light imaging (3D-PLI)

has been employed to reconstruct the three-dimensional architecture of nerve

fibres in human post-mortem brains with a resolution of a few micrometres

[4,5]. 3D-PLI enables the investigation of the pathways of long-range fibre bundles

as well as single fibres and thus serves as a bridging technology between the

macroscopic and the microscopic scale.

The spatial orientations of the nerve fibres are derived by transmitting

polarized light through histological brain sections in a polarimeter and measur-

ing their birefringence. To relate the measured signal to the fibre orientation, an

effective model of birefringence is used which assumes that the fibre density is

constant over the whole brain section [4] and that the measured optic axis indi-

cates the predominant fibre orientation [5,6]. This assumption is based on

various experimental studies on white matter which show that the average bi-

refringence of parallel nerve fibres is negatively uniaxial and that the measured

optic axis is oriented along the length of the fibres [7–10].

The majority of nerve fibres in the brain consist of an axon and a surrounding

myelin sheath. The cytoplasm of the axon contains tubular polymers (micro-

tubules) and neurofilaments running along the length of the axon [11,12].
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Figure 1. (a) Measurement set-up of 3D-PLI ( for the LAP): the brain tissue is placed between a pair of crossed linear polarizers and a quarter-wave retarder, which
are rotated simultaneously by 18 discrete rotation angles r. The transmitted light intensity is calculated with the Jones calculus, in which each optical element is
represented by a Jones matrix (symbols on the right). (b) The normalized transmitted light intensity ITðrÞ=IT,0 describes a sinusoidal curve for each image pixel. The
phase w corresponds to the local fibre direction angle and the peak-to-peak amplitude jsin dj to the local fibre inclination angle. (c) The three-dimensional orien-
tation of a fibre is defined by the direction angle w and the inclination angle a. (Online version in colour.)
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The myelin sheath is formed by oligodendrocytes (glial

cells) which are spirally wrapped around the axon. The cell

membranes are bimolecular layers consisting of lipid mol-

ecules and membrane proteins. The membrane proteins are

embedded in the bilayer or attached to the membrane surface

[13–15], whereas the lipid molecules are oriented radially to

the fibre axis [15–17]. The cell organelles of the axon and the

protein framework of the myelin sheath lead to a weak positive

birefringence with respect to the longitudinal fibre axis

[7,8,10,17–20]. The anisotropic structure of the lipid molecules

causes a positive birefringence with respect to the radial fibre

axis [7,8,15,18,21].

The effective model of uniaxial negative birefringence that

is currently used in 3D-PLI seems reasonable for sufficiently

low optical resolutions. However, it might no longer be valid

if the anisotropic molecular structure of the nerve fibres is

resolved. In this paper, we investigated the limitations of the

effective model in terms of the optical resolution of the polari-

meter using numerical simulations. The simulations were

performed with a modified version of SIMPLI [6], a simulation

method that models the birefringence of the fibres with the

Jones matrix calculus and allows data to be generated from syn-

thetic fibre constellations that is comparable to experimental

data. In order to study and understand the most dominant

effects that generate the birefringence signals in 3D-PLI,

the anisotropic molecular structure of the nerve fibres was

described by a simplified birefringence model with radial

optic axes (microscopic model) and the effective model of uni-

axial negative birefringence by a birefringence model with

axial optic axes (macroscopic model). To investigate the limit-

ations of the effective model, the transition between the

microscopic and the macroscopic model was investigated

depending on the optical resolution of the imaging system.
2. Three-dimensional polarized light imaging
The neuroimaging technique 3D-PLI determines the orientation

of nerve fibres in post-mortem brains at the micrometre scale.

The principles of 3D-PLI have been explained in detail by

Larsen et al. [22] and Axer et al. [4,5]. This section describes
the measurement and data analysis procedures that are relevant

for this study.

2.1. Measurement
To determine the orientation of the nerve fibres, a post-mortem

brain—obtained from a body donor in accordance with ethical

requirements—is fixed in buffered formaldehyde for several

months, frozen and cut with a cryotome into histological

sections of 70 mm, which are measured with a polarimeter.

For the 3D-PLI measurement, two state-of-the-art polari-

meters with different optical resolutions and sensitivities are

employed: the large-area polarimeter (LAP) has a pixel size

of 64 mm and is mainly used for single-shot images of whole

human brain sections. The polarizing microscope (PM) has a

pixel size of 1.33 mm (i.e. down to small axonal diameters),

which enables complex fibre constellations to be disentangled.

The LAP contains a pair of crossed linear polarizers and a

quarter-wave retarder (with its fast axis adjusted at an angle

of 2458 with respect to the transmission axis of the first linear

polarizer) (figure 1a). The employed light source emits incoher-

ent, non-polarized, diffusive light with a peak wavelength of

525 nm. During the measurement, the polarizers and the quar-

ter-wave retarder are rotated simultaneously around

the stationary tissue sample. For each rotation angle r ¼ 08,
108, . . . , 1708, the transmitted light intensity is recorded by a

CCD camera so that a series of 18 images is acquired.

The imaging principle works as follows: the quarter-wave

retarder transforms the linearly polarized light from the first

polarizer into circularly polarized light. The birefringent

brain tissue induces an additional phase shift so that the out-

going light is elliptically polarized. The fraction of light that

then passes the second linear polarizer depends on the

local orientation of the optic axis of the birefringent tissue,

which is assumed to coincide with the local fibre orientation.

The polarimetric set-up of the PM is slightly different to

the set-up of the LAP (the order of the optical elements is

reversed and only the first linear polarizer is rotatable). How-

ever, the imaging principle and the signal analysis are similar

[4] so that the following considerations are only described for

the LAP.
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2.2. Signal analysis
The measured light intensity of an individual pixel describes

a sinusoidal curve across the acquired image series, which

depends on the orientation of the fibres within this pixel

(figure 1b). A physical description of the measured light

intensity profile can be derived with the Jones matrix calculus

[23,24], assuming that the light is coherent and completely

polarized and that the optical elements are linear. For simpli-

city, the derivation is shown for a single pixel at a certain

rotation angle r.

In the Jones matrix calculus, all optical elements in the

polarimeter are represented by Jones matrices (cf. figure 1a).

The Jones matrices of the crossed linear polarizers are given

by [25]

Px ¼
1 0
0 0

� �
and Py ¼

0 0
0 1

� �
: ð2:1Þ

The Jones matrix of a wave retarder that is rotated by an

angle c in counterclockwise direction and induces along

the fast axis a phase shift d between the two orthogonal

components of the light wave is given by [25]

MdðcÞ¼RðcÞ �Md �Rð�cÞ

¼
cosc �sinc

sinc cosc

� �
eid=2 0

0 e�id=2

 !
cosc sinc

�sinc cosc

� �
:

ð2:2Þ

In the experimental set-up, the fast axis of the quarter-wave

retarder is rotated by 2458 with respect to the axis of the

first linear polarizer. Thus, the quarter-wave retarder can be

described by the Jones matrix of a rotated wave retarder as

given in equation (2.2) with a rotation angle of c ¼ 2458
and a phase shift of d ¼ 908:

Ml=4 ; M908ð�458Þ ¼ 1ffiffiffi
2
p 1 �i

�i 1

� �
: ð2:3Þ

Under the assumption that the birefringence of the brain

tissue can locally be described as negatively uniaxial with the

optic axis indicating the predominant fibre direction (effective

model), the brain tissue can locally be represented by a wave

retarder that introduces a phase shift d along the fast axis

(fibre axis). During the measurement, the two polarizers

and the quarter-wave retarder are rotated simultaneously

around the specimen stage in counterclockwise direction by

a rotation angle r. For simplicity, the equivalent case is con-

sidered in which the brain tissue is rotated by an angle (2r)

in counterclockwise direction while the other optical elements

are fixed. Thus, the brain tissue can be described by the Jones

matrix of a rotated wave retarder as given in equation (2.2)

with phase shift d and rotation angle c ¼ w 2 r, where w

denotes the in-plane orientation of the optic axis:

Mtissue ; Mdðw� rÞ

¼ cosðw� rÞ � sinðw� rÞ
sinðw� rÞ cosðw� rÞ

� �
eid=2 0

0 e�id=2

� �

� cosðw� rÞ sinðw� rÞ
� sinðw� rÞ cosðw� rÞ

� �
: ð2:4Þ

When light with an electric field vector E 0 passes through

the 3D-PLI set-up, the resulting output beam with electric

field vector ET can be described by multiplication of the

associated Jones matrices. As the Jones matrix calculus

cannot be used to describe the non-polarized light emitted
by the employed light source, the Jones vector Ex ¼ Px � E0

is used to describe the horizontally polarized light after the

first linear polarizer (cf. figure 1a):

ET ¼ Py �Mtissue �Ml=4 � Ex: ð2:5Þ

Using IT � jETj2, the transmitted light intensity is calculated,

yielding a sinusoidal intensity profile (figure 1b):

ITðrÞ ¼
IT,0

2
ð1þ sinð2ðr� wÞÞ sin dÞ, ð2:6Þ

where IT,0 � jExj2 corresponds to the transmitted light inten-

sity averaged over all rotation angles (here referred to as

transmittance) and jsin dj to the peak-to-peak amplitude of

the normalized sinusoidal intensity profile (here referred to

as retardation). The phase shift d is given by (appendix A)

d � 2p

l
tDn cos2 a , ð2:7Þ

where l is the wavelength of the incident light, t the thickness

of the brain section, Dn the local birefringence of the sample

and a the local out-of-plane inclination angle of the fibre.

Thus, the intensity profile in equation (2.6) is a direct measure

of the spatial fibre orientation defined by the direction angle

w and the inclination angle a (figure 1c).

In order to compute transmittance, direction and retar-

dation, the intensity profile is fitted by means of a discrete

harmonic Fourier analysis [4,26]. The inclination angle a is cal-

culated from the measured retardation jsin dj by rearranging

equation (2.7). The direction and inclination angles are com-

bined to a unit vector indicating the local fibre orientation

in three dimensions. Putting all unit vectors of several adja-

cent brain sections together, a three-dimensional volume of

vectors is created and the fibre tracts are reconstructed with

streamline algorithms.
3. Simulation of three-dimensional polarized
light imaging using the Jones matrix
formalism

3.1. Simulation model
3D-PLI derives the nerve fibre orientations based on the fact

that the average birefringence of parallel fibres is negatively

uniaxial [7–10] and assuming that the orientation of the

measured optic axis corresponds to the local fibre orientation.

To investigate the limitations of this effective birefringence

model, a straight single fibre and a hexagonal bundle of

straight parallel fibres were simulated and the birefringence

of the fibres was modelled according to a microscopic and

a macroscopic model for different optical resolutions of the

simulated imaging system.

3.1.1. Microscopic model
The microscopic model of birefringence considers the anisotro-

pic molecular structure of a single nerve fibre. To investigate

and understand the predominant effects generating the

birefringence signals in 3D-PLI, a simplified model of birefrin-

gence was chosen for the simulations. As stated in §1, the

average birefringence of parallel nerve fibres is negative with

respect to the longitudinal fibre axis. Therefore, the positive

birefringence of the axon and the myelin proteins is weak as

compared to the birefringence effects of the myelin lipids

http://rsif.royalsocietypublishing.org/
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[8,9,18,20,21]. Since the exact contribution of the different bire-

fringence effects to the overall birefringence is unknown, the

birefringence effects of the nerve fibres were modelled by con-

sidering only the anisotropic radial structure of the myelin

sheaths: the fibres were simulated as hollow tubes (represent-

ing the myelin sheaths) with positive birefringence and radial

optic axes (cf. figure 2b(ii)). The axons were considered to be

non-birefringent.

3.1.2. Macroscopic model
To compare the simulation results of the microscopic model

with the effective model of uniaxial negative birefringence, a

macroscopic model of birefringence was defined. According to

the assumptions made in the effective model, a single nerve

fibre was simulated as negatively birefringent with axial optic

axes oriented along the length of the fibre (cf. figure 2b(i)).

Dohmen et al. [6] used this simulation model to investigate the

effect of crossing fibre constellations. As this study concentrates

on straight parallel fibres, the macroscopic model only serves as

a reference for the effective model to verify the simulations of the

microscopic model. To ensure a better comparison with the

microscopic model, the fibres were simulated as hollow tubes

(and not as solid cylinders as in [6]).

3.2. Simulation method
The basic idea of the simulation method is to model the birefrin-

gent myelin sheaths as series of linear optical retarder elements

which are represented by Jones matrices. By defining the direc-

tion of the optic axes (radial/axial), both the microscopic and

the macroscopic model can be simulated. The simulation

approach is based on the simulation tool SIMPLI developed

by Dohmen et al. [6]. For this study, the simulation tool was

extended by the microscopic model and modified such that

various fibre configurations with individual orientations, radii

and myelin sheath thickness can be realized.

The simulation tool is based on several assumptions

and simplifications: first of all, the use of the Jones matrix

calculus requires linear optical elements and perfect polari-

zers (i.e. the outgoing light is assumed to be completely
polarized). Another assumption is that the incident light

can be described by parallel rays of light with straight optical

pathways, i.e. the light is assumed to be non-diffusive and

refraction, diffraction and scattering are neglected. For this

study, a parallel and straight beam of light seems a reasonable

approximation for the LAP because the imaging system has a

small numerical aperture (the acceptance angle of the objective

lens is less than 18) so that the camera only captures light rays

that are almost parallel to each other.

The simulation consists of several steps:

(1) Generation of synthetic nerve fibres in a three-dimensional
volume. The nerve fibres are modelled as hollow tubes

representing the myelin sheaths (figure 2a). In order to

approximate the geometry of the fibres, the simulation

volume is discretized into small cubic volume elements

(called voxels), as indicated schematically by the grid in

figure 2c.

(2) Generation of a three-dimensional vector field. For sufficiently

small voxel sizes, the birefringence of the myelin sheaths

can approximately be described by assigning each myelin

voxel j a unit vector that indicates the direction of the

optic axis (wj, aj) within the myelin sheath. In the macro-

scopic model, the vectors are oriented parallel to the fibre

axis. In the microscopic model, the vectors are oriented

radially to the fibre axis (figure 2b).

(3) Generation of a synthetic 3D-PLI image series. In order to

model the birefringence effect of the myelin sheaths,

each myelin voxel is represented by the Jones matrix of

a rotated wave retarder. The retarder axis is aligned

with the optic axis within the myelin voxel (figure 2c).

The synthetic 3D-PLI image series is calculated analo-

gously to the derivation of the sinusoidal intensity

profile as given in equation (2.5), with Mtissue being

replaced by the product of N matrices representing the

myelin voxels along the optical path:

ET ¼ Py � ðMN �MN�1 � � �M1Þ �Ml=4 � Ex: ð3:1Þ

The matrix Mj ; Mdjðwj � rÞ is the Jones matrix of a

rotated wave retarder as given in equation (2.2) and

http://rsif.royalsocietypublishing.org/
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represents the jth myelin voxel. The rotation angle

depends on the in-plane direction angle wj of the optic

axis and the phase shift dj on the out-of-plane inclination

angle aj. The Jones matrices of the linear polarizers and

the quarter-wave retarder are given by equations (2.1)

and (2.3). For each rotation angle of the polarimeter

(r ¼ 08, 108, . . . , 1708), all Jones matrices along the optical

path are multiplied (figure 2c), yielding a series of 18 syn-

thetic 3D-PLI images with a sinusoidal intensity profile

for each image pixel.

3.3. Simulation parameters
The choice of the simulation parameters was inspired by real

experimental conditions. According to typical dimensions of

large nerve fibres in human white matter [16,27–29], the

diameter and the myelin sheath thickness of the simulated

nerve fibres were chosen to be 15 mm and 2.5 mm, respect-

ively (figure 3a). The fibres were generated in a simulation

volume with dimensions x � y � z ¼ 64 � 64 � 70 mm3, cor-

responding to the pixel size of the LAP and the thickness of

the brain section. The simulation volume was discretized

into cubic voxels with a side length of Dxsim. In a preliminary

study (see later, §4.1), the optimal voxel size was determined

to be Dxsim ¼ 0.1 mm, which was used for all following simu-

lations. Note that the dimensions are given in micrometres to

meet the experimental conditions. As only relative length

scales matter for the qualitative simulation results, the units

could be chosen arbitrarily.

Since measuring the birefringence of the micrometre-thick

brain sections is impossible with the employed set-ups and lit-

erature values are not given for the currently used preparation

technique, an upper limit for the birefringence of the myelin

sheathsDn was estimated: under the assumption that a brain sec-

tion that is completely filled with a homogeneous birefringent

material with in-plane optic axis (a ¼ 08) induces a maximum

possible retardation ðj sin dj ¼ 1, d ¼ p=2Þ, the upper limit

of the birefringence was calculated by rearranging equation

(2.7): Dn ¼ l=ð4tÞ ¼ ð525 nmÞ=ð4 � 70 mmÞ � 0:001875: Note

that the choice of Dn only changes the overall magnitude of
the retardation and does not affect the simulation results quali-

tatively. In the macroscopic (microscopic) model, the myelin

voxels were simulated with axial (radial) optic axes and negative

(positive) birefringence with respect to the optic axes.

The wavelength of the incident light was chosen to corre-

spond to the peak wavelength of the LAP (l ¼ 525 nm). To

study only the birefringence effect of the nerve fibres, the

fibres were simulated without any absorption.

3.4. Simulation of the optical resolution
To investigate the effect of different optical resolutions on the

measured 3D-PLI signal, the synthetic 3D-PLI image series

were downsampled using the open-source image process-

ing programme Fiji [30]: to account for the limited optical

resolution of the polarimeter, the image series were first convo-

luted with a two-dimensional Gaussian filter with a standard

deviation s. Then, the effect of the spatial discretization of

the CCD chip was modelled by resampling the resulting

images with a sampling factor fs (average when downsizing).

To determine realistic parameters for s and fs, the imaging

properties of the LAP were considered as a point of reference

(appendix B).

Based on these considerations, the synthetic 3D-PLI image

series were downsampled with different parameter sets

(table 1), yielding images with different pixel sizes Dx. The

pixel size of the downsampled images was chosen such that

a multiple of the pixel size corresponds to the side length of

the simulation volume (Dx ¼ 64 mm/n, with n ¼ 4, 8, 16, 32).

The standard deviation was calculated as a linear function of

the pixel size (s ¼ 0.714 Dx, appendix B) and the sampling

factor was calculated by dividing the pixel size of the high-

resolution image series by the pixel size of the downsampled

image ð fs ¼ Dxsim=Dx ¼ 0:1 mm=DxÞ. In the following, the

optical resolution of the imaging system will be given in

terms of the pixel size, which defines the set of downsampling

parameters (s and fs) in table 1. Note that the simulation results

will not change qualitatively as long as the ratio between the

fibre dimensions and the downsampling parameters remains

the same.

http://rsif.royalsocietypublishing.org/


Table 1. Downsampling parameters (selected values): to obtain an image
with pixel size Dx, a two-dimensional Gaussian filter with standard deviation
s ¼ 0.714Dx and resampling with sampling factor fs ¼ 0.1 mm/Dx are
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Dx (mm) s (mm) fs

2 1.43 1/20

4 2.86 1/40

8 5.71 1/80

16 11.43 1/160
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3.5. Calculation of the retardation curve
The determination of the inclination angle a is challenging for

3D-PLI because the peak-to-peak amplitude of the measured

intensity profile ðjsin djÞ is highly sensitive to noise and—

among others—influenced by the density of myelinated

nerve fibres (see below).

In the standard 3D-PLI analysis, the inclination angle is

calculated from the measured intensity profile assuming

that the brain tissue can locally be described by the effective

model of uniaxial negative birefringence. In order to investi-

gate whether the effective model can be used to extract the

correct fibre inclinations, the retardation computed from

equation (2.7) was compared to the retardation values

derived from simulations using the macroscopic and the

microscopic model (see §3.1). For that purpose, the retar-

dation images were calculated for different fibre inclinations

and different optical resolutions, respectively. For a better

comparison between the retardation values of the single

fibre and the fibre bundle, only the pixel in the centre of

each (downsampled) retardation image was considered for

evaluation. If pixels at other locations had been chosen,

the retardation values of the single fibre would have been

influenced by boundary effects that do not exist for the

fibre bundle or real brain tissue which are completely filled

with fibres. The retardation values from the centre of each

downsampled retardation image were plotted against the

corresponding inclination angle, yielding a retardation curve
for each downsampling step. The retardation curves were

compared to the normalized retardation curve of the effective

model (cf. equation (2.7)), in the following referred to as the

theoretical curve: jsin dj ¼ jsinððp=2Þ cos2 aÞj.
To be able to compare different retardation curves,

the retardation was normalized for each curve with the

maximum retardation value, respectively:

jsin d̂ j ¼ sin
p

2

d

dmax

� �
: ð3:2Þ

As only birefringent material (mainly myelin) is respon-

sible for the phase shift in equation (2.7), t describes not the

thickness of the whole brain section but rather the local
myelin thickness tm, i.e. the combined thickness of myelin

sheaths along the optical path. Due to the inhomogeneity of

brain tissue, the local myelin density of a brain section is

less than 100% i.e. the maximum possible retardation

is jsinðda¼08,maxÞj , 1. If the inclination is calculated under

the assumption that the maximum possible retardation

equals 1, the inclination angle will be overestimated. In

order to obtain a more precise estimation of the inclination
angle, a so-called myelin density correction was applied to

the downsampled retardation images.

In the case of the macroscopic model, in which the optic

axes within one fibre have the same orientations, d scales lin-

early with tm. In the case of the microscopic model, in which

the optic axes within one fibre have different inclination

angles, the upper limit of d scales linearly with tm as long

as the optic axes of neighbouring myelin voxels have similar

orientations (appendix C). Thus, the dependence on the

myelin density can be eliminated to the greatest possible

extent by multiplying the phase shift d with a correction

factor (t/tm):

jsin (dcorr)j ¼ sin
t

tm
d

� �����
����: ð3:3Þ

In order to apply the myelin density correction to the down-

sampled retardation images, tm was replaced by the

combined thickness of myelin voxels along the optical path

(after applying the Gaussian filter and resampling). The

resulting retardation images were normalized according to

equation (3.2), yielding jsinðd̂corrÞj.
4. Simulation results
4.1. Comparison of analytical and numerical solution
To estimate the accuracy of the simulation results for the

microscopic model, a single fibre with radial optic axes and

perpendicularly incident light (figure 3b) was generated for

different voxel sizes (Dxsim) and the numerically computed

phase difference between extraordinary and ordinary wave

(DFnum) was compared to the analytical solution (DFana).

Assuming that reflection and refraction effects can be

neglected so that the associated extraordinary and ordinary

waves follow the same pathway, Bear & Schmidt [18] derived

an analytical expression for the phase difference:

DFana ¼
2p

l
G � 4p

l
r0Dn arccos

r0

r1

� �
� arccos

r0

r2

� �� �
,

ð4:1Þ

where G is the optical path length difference between the extra-

ordinary and ordinary waves, r1 the radius of the whole nerve

fibre (outer cylinder), r2 the radius of the non-birefringent axon

(inner cylinder) and r0 the distance at which the light is incident

perpendicular to the fibre axis (figure 3b).

In order to computeDFnum, the propagation of the ordinary

and extraordinary waves was simulated separately: in the case

of the ordinary wave, the light is polarized parallel to the longi-

tudinal axis of the fibre. In the case of the extraordinary wave,

the light is polarized perpendicular to the longitudinal axis

of the fibre (figure 3b). The phase for both the ordinary wave

(Fo) and the extraordinary wave (Fe) was calculated from the

corresponding electric field vector ET in equation (3.1):

F ¼ arctan
ImðjETjÞ
ReðjETjÞ

� �
: ð4:2Þ

The numerically computed phase differenceDFnum ¼ Fe2

Fo was evaluated at various distances 0 , r0 , 5 mm away

from the centre of the fibre and compared to the analytical

solution given in equation (4.1), with r1 ¼ 7.5 mm, r2 ¼ 5 mm,

l ¼ 525 nm and Dn ¼ 0.001875 (cf. §3.3). In order to study

the impact of the spatial discretization on the accuracy of

the numerical solution, the simulation was performed for
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various voxel sizes 1.50 mm . Dxsim . 0.06 mm. As a measure

of consistency between the numerical and the analytical

solution, the relative phase difference was calculated:

(DFana 2 DFnum)/DFana.

Figure 4a,b shows the relative phase difference plotted

against r0 for various voxel sizes Dxsim. As can be seen, the

numerical solution fluctuates around the analytical solution

for voxel sizes of 0.5 mm and less. With smaller voxel sizes,

the numerical solution approaches the analytical solution

(indicated by the dashed black line). This behaviour is

especially evident when considering the mean of the absolute

relative phase difference for each voxel size (figure 4c): for a

voxel size of Dxsim ¼ 1.5 mm (corresponding to one-tenth of

the fibre diameter), the mean absolute relative phase differ-

ence is about 12%. For Dxsim ¼ 0.5 mm, it is about 6% and

for Dxsim ¼ 0.06 mm, it is only 0.8%. This demonstrates that

the simulation tool produces correct results.

As a good compromise between computation time and

accuracy, all following fibre simulations were performed

with a voxel size of Dxsim ¼ 0.1 mm (corresponding to

1/150 of the fibre diameter). For this voxel size, the relative

phase difference is no more than 4% (figure 4b) and the

mean relative phase difference is about 1.3% (figure 4c).
4.2. Simulation of a single fibre
In a preliminary study, the limitations of the effective model

of uniaxial negative birefringence were first studied for a straight

single fibre. The fibre was simulated according to both the

macroscopic and the microscopic models with different incli-

nation angles (a ¼ 08, 108, . . . , 908) and different optical

resolutions. The dimensions of the fibre and the other simulation

parameters were chosen as described in §3.3. The retardation

curves were calculated from the downsampled retardation

images (without/with myelin density correction) and
normalized as described in §3.5. An example of downsampled

and corrected retardation images can be found in appendix D.

Figure 5 shows the dimensions of the simulated single

fibre and the corresponding retardation curves (continuous

lines) for both simulation models and different optical resol-

utions (according to table 1). The theoretical retardation curve

of the effective model is indicated by a dashed black line. In

the case of the macroscopic model, the uncorrected retar-

dation curves (figure 5a) are already very similar to the

theoretical curve for all investigated optical resolutions.

After the myelin density correction (figure 5c), all retardation

curves match the theoretical curve exactly, independently of

the optical resolution. In the case of the microscopic model

(figure 5b,d ), the retardation curves for a pixel size much

smaller than the fibre diameter (Dx , 2 mm) are inverted as

compared to the theoretical curve for a , 908, i.e. the micro-

scopic and the macroscopic model yield totally different

results. For intermediate pixel sizes (2 mm � Dx � 8 mm),

the retardation curves are non-monotonic, i.e. the assignment

of the inclination angle is ambiguous. Finally, for pixel sizes

larger than the fibre diameter (Dx ¼ 16 mm), the uncorrected

retardation curve (figure 5b) is similar to the theoretical

curve. After the myelin density correction (figure 5d ), the

retardation curve matches the theoretical curve almost exactly.

4.3. Simulation of a fibre bundle
In brain tissue, nerve fibres are usually organized in hexago-

nal close-packed fibre bundles [13]. In order to investigate the

effect of fibre bundles on the 3D-PLI signal, a hexagonal

bundle of straight parallel fibres with an inter-fibre spacing

of 1 mm was simulated (figure 6e). In order to obtain compar-

able results, the same dimensions and simulation parameters

were chosen as for the single fibre.

Figure 6 shows the normalized retardation curves for

both simulation models and different optical resolutions
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(according to table 1). The (downsampled) retardation images

that were used to compute the corrected retardation curves of

the microscopic model are shown in appendix D.

In the case of the macroscopic model, the uncorrected

retardation curves (figure 6a) are very similar to the theoreti-

cal retardation curve of the effective model (dashed black

line) for all investigated optical resolutions. As compared to

the retardation curves of the single fibre (figure 5a), the retar-

dation curves of the fibre bundle are closer to the theoretical

curve. After the myelin density correction (figure 6c), the

curves are almost identical. In the case of the microscopic

model, the uncorrected retardation curves (figure 6b) are

also closer to the theoretical curve as compared to the uncor-

rected retardation curves of the single fibre (figure 5b). The

myelin density correction (figure 6d ) makes only a small

difference, especially for low optical resolutions. For the

simulated fibre bundle, the transition between the micro-

scopic and the macroscopic model already occurs for pixel

sizes larger than the fibre radius (Dx � 8 mm).
5. Discussion
In 3D-PLI, the fibre orientations are derived under the

assumption that the brain tissue can (locally) be described

as a homogeneous and uniaxial birefringent material with

the optic axis indicating the predominant fibre direction. Fur-

thermore, the density of myelinated fibres is assumed to be

the same for the whole brain section. In this paper, the limit-

ations of this effective birefringence model have been studied

for the first time. For that purpose, a single fibre and a hexa-

gonal fibre bundle (with diameters d ) were simulated based

on the Jones matrix calculus, employing a microscopic and

a macroscopic model of birefringence and different optical

resolutions (defined by the pixel size Dx as given in table 1).

The transition between the two models is apparent when

analysing the retardation curves: for high optical resolutions

ðDx� dÞ, the radial optic axes of the microscopic model are

resolved. In this case, the optic axes are oriented perpendicu-

lar to the longitudinal fibre axis so that the retardation curves

are inverted as compared to the macroscopic model and
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fibres with high inclination angles are interpreted as flat

fibres. The zero retardation value for a ¼ 908 is an artefact

arising from the fact that the retardation is evaluated at the

centre of the retardation image which—in the case of vertical

fibres—contains no myelin (cf. figure 8, upper right corner).

For intermediate optical resolutions (Dx , d ), there is a tran-

sition zone between the microscopic and the macroscopic

model so that an unambiguous assignment between retar-

dation and inclination is not possible. For sufficiently

low optical resolutions (single fibre: Dx . d; fibre bundle:

Dx . d/2), the microscopic and the macroscopic model

yield similar results (figures 5d and 6d ) so that the effective

model of uniaxial negative birefringence can be used to

compute the fibre inclinations.

Thus, for the simulated fibre bundle (consisting of five fibre

layers with d ¼ 15 mm), the effective model can be used to

interpret LAP measurements (DxLAP ¼ 64 mm . d/2), but not

to interpret PM measurements (DxPM ¼ 1.33 mm , d/2). How-

ever, the diameters of the simulated fibres represent an upper

estimate of typical fibre diameters in the human brain. The

diameters of myelinated nerve fibres range from 0.3 to 15 mm

[16,27–29] and the majority of the fibres (e.g. 80% in the
corpus callosum [27]) have diameters of 1 mm or below so

that the condition DxPM . d/2 is still fulfilled. In addition,

fibre diameters much smaller than 15 mm implicate that

the measured brain section (with thickness 70 mm) contains

much more fibre layers than the simulated fibre bundle. A com-

parison between the simulated single fibre and the fibre bundle

suggests that the more fibre layers located along the optical

path, the smaller the minimum pixel size for which the

effective model is still valid. To verify this hypothesis, the limit-

ations of the effective model should also be studied in terms of

the number of fibre layers along the optical path. However, a

larger number of fibre layers also increases the probability

that fibres with different spatial orientations are measured

within the same volume, which poses a major challenge for

3D-PLI [6]. In future studies, the limitations of the effective

model should therefore also be investigated for non-parallel

fibre structures.

The simulations have shown that—in regions with paral-

lel fibre structures—the effective model of uniaxial negative

birefringence is valid for the employed optical set-ups.

For imaging systems with very high optical resolutions, the

effective model needs to be reconsidered. Even if the optical
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resolution is too high to extract the correct fibre inclinations,

3D-PLI remains a valuable neuroimaging technique as the

image contrasts of transmittance and retardation still provide

detailed structural information on the two-dimensional nerve

fibre architecture in large histological brain sections.

The effective model that is currently used for the data

analysis in 3D-PLI does not only assume parallel fibre struc-

tures, but also a uniform myelin density. The simulations

have shown that the retardation signal is considerably influ-

enced by the myelin density, which impairs the reconstructed

fibre orientations. It could be demonstrated that the estima-

tion of the fibre inclination is considerably improved by the

myelin density correction which incorporates the local myelin

thickness of the examined tissue into the calculation of the incli-

nation angle. While the correction has a large effect on the

retardation curves of the single fibre, the effect is smaller for

the fibre bundle which is much more homogeneous than the

single fibre. Thus, the myelin density correction is especially

useful for regions with an inhomogeneous density of myeli-

nated nerve fibres (e.g. for transition zones between white

and grey matter). In the case of the microscopic model, the cor-

rection does not work as well as for the macroscopic model

because the retardation also depends on the direction of the

radially oriented optic axes in the myelin sheath, but it is still

a considerable improvement. In order to incorporate the

myelin density correction into the 3D-PLI signal analysis,

the local myelin thickness tm of the sample needs to be deter-

mined. The intensity values of the transmittance image seem

to be a good measure of the local myelin thickness in brain

tissue [5].

The purpose of this study was to explore and understand

the most dominant effects that generate the birefringence sig-

nals in 3D-PLI. To fully understand the physical processes

behind 3D-PLI and to improve the interpretation of the recon-

structed fibre orientations, a direct comparison between

simulation and experiment is required. The long-term aim

should be to develop a simulation tool of 3D-PLI that con-

siders all relevant effects needed for reproducing the

experimental results. To this end, the simulation model

should be extended step by step and the relevant effects

should be identified.

Although the simulations show that the simplified micro-

scopic model can already be used to explain the effective

negative birefringence of parallel nerve fibres, future studies

should include the positive birefringence of the axon and

investigate how this modification changes the transition

between the microscopic and the macroscopic model.

So far, only straight and parallel fibres have been investi-

gated. To provide more realistic fibre models, the fibres

should be simulated with varying fibre diameters, myelin

sheath thickness and spatial orientations. As fibres with differ-

ent spatial orientations pose a major challenge for 3D-PLI [6],

future studies should focus on investigating inhomogeneous,

non-parallel fibre structures. To enable a direct comparison

with the experiment, the simulated fibre configurations

should be based on experimentally determined fibre structures.

In addition to a more realistic fibre model, the propagation

of light should also be simulated more realistically. In this

study, the incident light was described by a parallel beam of

light. However, in the experiment, the employed light source

emits diffusive light, i.e. the sample is illuminated by light

with slightly different angles of incidence. As the measured

birefringence signals depend on the angle between the light
wave and the nerve fibres, a non-zero angle of incidence changes

the retardation curves. For the LAP, which has a small numerical

aperture, the effect can presumably be neglected. However, for

systems with higher optical resolutions and higher numerical

apertures, the effect of a Gaussian distribution of incident

angles should be investigated further.

Moreover, the simulations were based on the Jones matrix

calculus which is only applicable to completely polarized and

coherent light. As the light source emits incoherent light

and the polarizers are not perfect, the Jones matrices should

be replaced by Müller matrices [31], which enable partially

polarized and incoherent light to be studied.

Finally, the assumption of a linear optical pathway is a

great simplification. The refractive index of the myelin

sheath is higher than the refractive indices of the inner axon

and the surrounding tissue [9,32,33], which will cause refrac-

tion/reflection at the interfaces and scattering of light. In

future studies, the effects of refraction and scattering on the

measured birefringence signal should be investigated in

more detail. As the used simulation tool (SIMPLI) is based

on a matrix calculus, other simulation approaches will be

required to investigate such nonlinear pathways.
6. Conclusion
In this study, we laid a theoretical foundation for 3D-PLI.

The effective model of uniaxial negative birefringence, which

is currently used to compute the nerve fibre orientations from

experimental data, has been validated for the first time. Using

simulations based on the Jones matrix calculus, we have

shown that the effective model can be used for the employed

optical set-ups, i.e. as long as the polarimeter does not resolve

structures smaller than the diameter of single nerve fibres.

The developed Jones matrix formalism for simulating 3D-PLI

has proved to be a powerful tool to gain a deeper theoretical

understanding of the physical processes behind 3D-PLI and

to better interpret the experimental data. The simulations

enable not only validation of the computational model of the

fibre reconstruction, but also optimization of the experimental

set-up and the measurement method.
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Appendix A. Derivation of the phase shift
When polarized light passes through the birefringent brain

section, it is split into an ordinary and an extraordinary

wave which both experience different refractive indices. The

refractive index ne that the extraordinary wave experiences

when passing through the birefringent tissue under an

angle u with respect to the optic axis, is given by [34]:

1

neðuÞ2
¼ 1

n2
o

cos2 uþ 1

n2
E

sin2 u ðA 1Þ

, 1

n2
o

� 1

neðuÞ2
¼ 1

n2
o

� 1

n2
E

� �
sin2 u, ðA 2Þ

where no is the ordinary refractive index and nE ; neðu ¼ 908Þ
the principal extraordinary refractive index of the brain tissue.

The birefringence of biological tissue (Dn ¼ nE � no ¼
10�3 . . . 10�2 [35]) is small as compared to the values of the

refractive indices no and nE (n ¼ 1.3–1.5 [33]). Therefore, a

Taylor expansion can be applied to the function

fðDnÞ; 1

n2
o

� 1

n2
E

¼ 1

n2
o

� 1

ðno þ DnÞ2
ðA 3Þ

in Dn ¼ 0:

fðDnÞ ¼
X1
l¼0

f ðlÞð0Þ
l!
ðDnÞl ¼ f ð0Þ þ f 0ð0ÞDnþ . . .

¼ 0þ 2

n3
o

Dnþ . . . ðA 4Þ

The same expansion can be done for ð1=n2
o � 1=neðuÞ2Þ in

ðDnðuÞ ¼ neðuÞ � no � 1Þ. With these Taylor expansions,

equation (A 2) can be written as

DnðuÞ � Dn sin2 u: ðA 5Þ

Choosing a coordinate system in which the light propa-

gates in the z-direction and the brain tissue lies in the

xy-plane, the optic axis (oriented in the direction of the

nerve fibres) makes an angle u with the z-axis, i.e. the out-

of-plane inclination angle of the fibre is a ¼ 9082u. With

this definition follows: DnðuÞ � Dn cos2 a.

Thus, when the light passes through a brain section of

thickness t, the extraordinary wave experiences a phase

shift with respect to the ordinary wave which depends on

the inclination angle of the optic axis:

d ¼ 2p

l
tDnðuÞ � 2p

l
tDn cos2 a: ðA 6Þ

This is the formula of the phase shift as given in

equation (2.7).
Appendix B. Derivation of the downsampling
parameters
In previous measurements, the optical resolution of the LAP

was investigated by employing a USAF test chart which con-

tains line pairs (lp) with different spacings [36]. From the

measured line intensity profiles, the Michelson contrast C
was computed as

C ¼ Imax � Imin

Imax þ Imin
, ðB 1Þ

where Imax corresponds to the mean intensity of the maxima

and Imin to the mean intensity of the (local) minima in the

line intensity profile (cf. figure 7b). The largest number of line

pairs per millimetre that can just be resolved (according to

the Rayleigh criterion) was determined to be 5.66 lp mm21,

which corresponds to a width per line pair of lLAP ¼

176.7 mm and a contrast of CLAP ¼ 20:1%. A width per line

pair of 157.5 mm yields a Michelson contrast of 11.2%.

According to these measurement results, a test image

with three lines (pixel size: 0.1 mm) and a line width of

lLAP=2 � 88:4 mm was created, and the downsampling pro-

cedure (Gaussian filter and resampling) was applied to the

test image (figure 7a). The sampling factor was calculated by

dividing the pixel size of the test image by the pixel size of

the LAP: fs,LAP ¼ 0.1 mm/64 mm. To reproduce the measured

contrast of the line intensity profile (figure 7b), a Gaussian

filter with a standard deviation of sPM ¼ 45.7 mm was applied.

To avoid boundary effects and ensure a symmetric line

intensity profile, the dimensions of the image (1216 �
1216 mm) were chosen such that the downsampled image

consists of an odd number of pixels (19 � 19 px).

Based on the determined parameters for the LAP (DxLAP,

sLAP, fs,LAP), downsampling parameters for imaging systems

with other optical resolutions (table 1) were derived: the ratio

between the pixel size of the LAP image and the determined

standard deviation of the two-dimensional Gaussian filter is

sLAP=DxLAP ¼ 45:7 mm=64 mm � 0:714: Analogous measure-

ments of the PM yield a similar ratio between pixel size and

standard deviation [36]. Assuming that this ratio is the same

for all simulated imaging systems, the standard deviation of

the two-simensional Gaussian filter was calculated from the

pixel size Dx of the resulting downsampled image:

s ¼ 0:714Dx: ðB 2Þ

After applying the Gaussian filter, the synthetic image

series (with pixel size Dxsim) was resampled with a sampling

http://rsif.royalsocietypublishing.org/
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factor of

fs ¼
Dxsim

Dx
¼ 0:1 mm

Dx
, ðB 3Þ

yielding a downsampled image series with pixel size Dx.
Appendix C. Dependence of the phase shift on
the local myelin thickness
Each myelin voxel of a simulated nerve fibre is represented

by the Jones matrix of a rotated wave retarder as defined in

equation (2.2). Depending on what kind of model is used

(macroscopic or microscopic), the retarder axis is either

oriented parallel or radially to the fibre axis (figure 2b).

In the macroscopic model, the optic axes of the myelin

voxels are all oriented in the fibre direction (w, a) so that

the voxels can be described by the same Jones matrix Md(b)

with phase shift d and b ; w� r. When the light propagates

through N voxels of myelin, the multiplication of the N corre-

sponding Jones matrices yields (using equation (2.2) and
R(b)R(2b) ¼ ):

ðMdðbÞÞN ¼ RðbÞ eid=2 0

0 e�id=2

 !

� Rð�bÞ � � �RðbÞ eid=2 0

0 e�id=2

 !
Rð�bÞ

¼ RðbÞ eid=2 0

0 e�id=2

 !N

Rð�bÞ

¼ RðbÞ eiNd=2 0

0 e�iNd=2

 !
Rð�bÞ

¼ MðNdÞðbÞ:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;
ðC 1Þ

Thus, the N myelin voxels with thickness Dt (along the opti-

cal path) and phase shift d can be replaced by one myelin

voxel with side length ðNDt ; tmÞ and phase shift:

d0 ; Nd ¼ð2:7Þ 2p
l

DnðNDtÞ cos2 a ¼ 2p

l
Dntm cos2 a: ðC 2Þ
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In other words, the phase shift d (and for small d also the

retardation j sin dj) scales linearly with the combined thick-

ness of myelin voxels (NDt), i.e. with the local myelin

thickness tm.

In the microscopic model, the optic axes of the myelin voxels

along the optical path all have different orientations (wj, aj)

(figure 2c). If the optic axes of neighbouring myelin voxels

have a similar direction (w2 � w1 � 1 and a2 � a1 � 1), the

multiplication of the N Jones matrices of the voxels can be sim-

plified. Forw2 � w1 � 1, one can defineb2 � b1 ; h21 � 1 and

the multiplication of a pair of rotation matrices yields:

Rð�b2Þ � Rðb1Þ ¼
cosðb2Þ sinðb2Þ
� sinðb2Þ cosðb2Þ

� �

�
cosðb1Þ � sinðb1Þ
sinðb1Þ cosðb1Þ

� �

¼
cosðb2 � b1Þ sinðb2 � b1Þ
� sinðb2 � b1Þ cosðb2 � b1Þ

� �

�
1 h21

�h21 1

� �
,

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðC 3Þ

using a first-order approximation in h21.

The multiplication of two Jones matrices yields (with

Mj ; MdjðbjÞ):

M2 �M1 ¼
ð2:2Þ

Rðb2Þ
eid2=2 0

0 e�id2=2

 !

� Rð�b2Þ � Rðb1Þ
eid1=2 0

0 e�id1=2

 !
Rð�b1Þ

�
ðC 3Þ

Rðb2Þ
eiðd1þd2Þ=2 h21eiðd2�d1Þ=2

�h21e�iðd2�d1Þ=2 e�iðd1þd2Þ=2

 !
Rð�b1Þ:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ðC 4Þ

The multiplication of four Jones matrices yields (ignoring

terms in the order of h2
ji ):

M4 �M3 �M2 �M1 � Rðb4Þ

� eiðd1þd2þd3þd4Þ=2 h0

h00 e�iðd1þd2þd3þd4Þ=2

 !
Rð�b1Þ, ðC 5Þ
where the elements of the secondary diagonal are given by

h0 ¼h21eiðd4þd3þd2�d1Þ=2 þ h32eiðd4þd3�d2�d1Þ=2

þ h43eiðd4�d3�d2�d1Þ=2 ðC 6Þ
and

h00 ¼�h21e�iðd4þd3þd2�d1Þ=2 � h32e�iðd4þd3�d2�d1Þ=2

� h43e�iðd4�d3�d2�d1Þ=2:

ðC 7Þ

If the number of myelin voxels (i.e. the number of matrices Mj)

is small, the elements of the secondary diagonal in the resulting

matrix can be neglected for h jk � 1. If the number of myelin

voxels is large, the arguments of the exponential functions in

the secondary diagonal will take all possible values and

cancel each other for h jk � hlm 8 j, k, l, m. In both cases, the

multiplication of N Jones matrices yields:

MN �MN�1 � � �M1 � RðbNÞ

� eiðd1þ���þdN Þ=2 0
0 e�iðd1þ���þdN Þ=2

� �
Rð�b1Þ:

ðC 8Þ

Thus, the N myelin voxels with thickness Dt and phase

shift dj can be replaced by one myelin voxel with thickness

(NDt ¼ tm) and phase shift:

d0 ¼
XN

j¼1

dj ¼
ð2:7Þ 2p

l
DnDt

XN

j¼1

cos2 aj �
2p

l
Dntm, ðC 9Þ

given that the optic axes of neighbouring myelin voxels have

similar directions.

The analytical considerations have shown that the phase

shifts of individual voxels add together in both simulation

models: in the macroscopic model, the phase shift scales lin-

early with the local myelin thickness tm. In the microscopic

model, this is only true for the upper limit of the phase

shift. The dependence on the local myelin thickness is taken

into account in the myelin density correction (see §3.5).

Appendix D. Retardation images of the fibre
bundle
Figure 8.
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